Skip to main content

Spinal Cord and Brainstem: Pattern Generators and Reflexes

  • Chapter
Book cover Comprehensive Human Physiology

Abstract

In this chapter, we shall attempt to look at the elements described in Chap. 49 from a more functional angle and integrate them into a coherent picture. This is no easy task, because, as has become apparent, the networks in brainstem and spinal cord are complex, and their operation under natural conditions therefore often cannot be assessed or perhaps even imagined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles M (1982) Local cortical circuits. An electrophysiological study. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Alstermark B, Gorska T, Johannisson T, Lundberg A (1986) Effects of dorsal column transection in the upper cervical segments on visually guided forelimb movements. Neurosci Res 3:462–466

    PubMed  CAS  Google Scholar 

  3. Armstrong DM (1988) The supraspinal control of mammalian locomotion. J Physiol (Lond) 405:1–37

    PubMed  CAS  Google Scholar 

  4. Arshavsky YI, Gelfand IM, Orlovsky GN (1983) The cerebellum and control of rhythmical movement. Trends Neurosci 6:417–422

    Google Scholar 

  5. Baker J, Wickland C (1988) Kinematic properties of the vestibulocollic reflex. In: Peterson BW, Richmond FJ (eds) Control of head movement. Oxford University Press, New York, pp 167–177

    Google Scholar 

  6. Berkinblit MB, Feldman AG, Fukson OI (1986) Adaptability of innate motor patterns and motor control mechanisms. Behav Brain Sci 9:585–599

    Google Scholar 

  7. Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699

    PubMed  CAS  Google Scholar 

  8. Bigland-Ritchie B, Johansson RS, Lippold OCJ, Woods JJ (1983a) Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol (Lond) 340:335–346

    PubMed  CAS  Google Scholar 

  9. Bigland-Ritchie B, Johansson RS, Lippold OCJ, Woods JJ (1983b) Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol 50:313–324

    PubMed  CAS  Google Scholar 

  10. Bigland-Ritchie B, Dawson NJ, Johansson RS, Lippold OCJ (1986) Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. J Physiol (Lond) 379:451–459

    PubMed  CAS  Google Scholar 

  11. Bjursten LM, Norsell K, Norsell U (1976) Behavioural repertory of cat without cerebral cortex from infancy. Exp Brain Res 25:115–130

    PubMed  CAS  Google Scholar 

  12. Boorman G, Becker WJ, Morrice B-L, Lee RG (1992) Modulation of the soleus H-reflex during pedalling in normal humans and in patients with spinal spasticity. J Neurol Neurosurg Psychiatry 55:1150–1156

    PubMed  CAS  Google Scholar 

  13. Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol (Lond) 234:723–748

    PubMed  CAS  Google Scholar 

  14. Capaday C, Cody FWJ, Stein RB (1990) Reciprocal inhibition of soleus motor output in humans during walking and voluntary tonic activity. J Neurophysiol 64:607–616

    PubMed  CAS  Google Scholar 

  15. Chanaud CM, MacPherson JM (1991) Functionally complex muscles of the cat hindlimb. Exp Brain Res 85:271–280

    PubMed  CAS  Google Scholar 

  16. Cheney PD, Fetz EE (1984) Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J Physiol (Lond) 349:249–272

    PubMed  CAS  Google Scholar 

  17. Clamann HP (1990) Changes that occur in motor units during activity. In: Binder MD, Mendell LM (eds) The segmental motor system. Oxford University Press, New York, pp 239–257

    Google Scholar 

  18. Conway BA, Hultborn H, Kiehn O (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res 68:643–656

    PubMed  CAS  Google Scholar 

  19. Crago PE, Houk JC, Hasan Z (1981) Regulatory actions of human stretch reflex. J Neurophysiol 39:925–935

    Google Scholar 

  20. Crone C, Nielsen J (1989) Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. J Physiol (Lond) 416:255–272

    PubMed  CAS  Google Scholar 

  21. Diener HC, Bootz F, Dichgans J, Bruzek W (1983) Variability of postural reflexes in humans. Exp Brain Res 52:423–428

    PubMed  CAS  Google Scholar 

  22. Dietz V (1992) Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 72:33–69

    PubMed  CAS  Google Scholar 

  23. Dietz V, Schmidtbleicher D, Noth J (1979) Neuronal mechanisms of locomotion. J Neurophysiol 42:1212–1222

    PubMed  CAS  Google Scholar 

  24. Dietz V, Quintern J, Berger W (1985) Afferent control of human stance and gait: evidence for blocking of group I afferents during gait. Exp Brain Res 61:153–163

    PubMed  CAS  Google Scholar 

  25. Douglas JR, Noga BR, Dai X, Jordan LM (1993) The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J Neurosci 13:990–1000

    PubMed  CAS  Google Scholar 

  26. Drew T (1991) Visuomotor coordination in locomotion. Curr Opin Neurobiol 1:652–657

    PubMed  CAS  Google Scholar 

  27. Drew T (1993) Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. J Neurophysiol 70:179–199

    PubMed  CAS  Google Scholar 

  28. Dubose L, Schelhorn TB, Clamann HP (1987) Changes in contractile speed of cat motor units during activity. Muscle Nerve 10:744–752

    PubMed  CAS  Google Scholar 

  29. Dubuc R, Cabelguen J-M, Rossignol S (1988) Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat. J Neurophysiol 60:2014–2036

    PubMed  CAS  Google Scholar 

  30. Dueñas SH, Loeb GE, Marks WB (1990) Monosynaptic and dorsal root reflexes during locomotion in normal and thalamic cats. J Neurophysiol 63:1467–1476

    PubMed  Google Scholar 

  31. Duysens J, Trippel M, Horstmann GA, Dietz V (1990) Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82:351–358

    PubMed  CAS  Google Scholar 

  32. Edamura M, Yang MJF, Stein RB (1991) Factors that determine the magnitude and the time course of human H-reflexes in locomotion. J Neurosci 11:420–427

    PubMed  CAS  Google Scholar 

  33. Edgley SA, Jankowska E, Shefchyk S (1988) Evidence that mid-lumbar neurones in reflex pathways from group II afferents are involved in locomotion in the cat. J Physiol (Lond) 403:57–71

    PubMed  CAS  Google Scholar 

  34. Evarts EV, Shinoda Y, Wise SP (1984) Neurophysiological approaches to higher brain function. Wiley, New York

    Google Scholar 

  35. Feldman AG (1980) Superposition of motor programs — I. Rhythmic forearm movements in man. Neuroscience 5:81–90

    PubMed  CAS  Google Scholar 

  36. Feldman AG, Adamovich SV, Ostry DJ, Flanagan JR (1990) The origin of electromyograms — explanations based on the equilibrium point hypothesis. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems: biomechanics and movement organization. Springer, Berlin Heidelberg New York, pp 195–213

    Google Scholar 

  37. Fitch S, McComas A (1985) Influence of human muscle length on fatigue. J Physiol (Lond) 362:205–213

    PubMed  CAS  Google Scholar 

  38. Forssberg H, Grillner S, Rossignol S (1977) Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res 132:121–139

    PubMed  CAS  Google Scholar 

  39. Gamper E (1926) Bau und Leistungen eines menschlichen Mittelhirnwesens. Z Gesamte Neurol Psychiatr 104:49–120

    Google Scholar 

  40. Gandevia SC (1990) Neuromuscular fatigue mechanisms: central and peripheral factors affecting motoneuronal output in fatigue. Fatigue in sports and exercise F.I.T. Victoria University of Technology, Footscray, Australia, pp 9–15

    Google Scholar 

  41. Gandevia SC, Burke D (1992) Does the nervous system depend on kinesthetic information to control natural limb movements? Behav Brain Sci 15:614–632

    Google Scholar 

  42. Garcia-Rill E (1986) The basal ganglia and the locomotor regions. Brain Res Rev 11:47–63

    Google Scholar 

  43. Garland SJ, Garner SH, McComas AJ (1988) Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle. J Physiol (Lond) 401:547–556

    PubMed  CAS  Google Scholar 

  44. Gelfand IM, Orlovsky GN, Shik ML (1988) Locomotion and scratching in tetrapods. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 167–199

    Google Scholar 

  45. Gielen CCAM, Ramaekers L, van Zuylen EJ (1988) Long-latency stretch reflexes as co-ordinated functional responses in man. J Physiol (Lond) 407:275–292

    PubMed  CAS  Google Scholar 

  46. Gordon DA, Enoka RM, Stuart DG (1990a) Motor-unit fatigue in adult cats during a standard fatigue test. J Physiol (Lond) 421:569–582

    PubMed  CAS  Google Scholar 

  47. Gordon DA, Enoka RM, Stuart DG (1990b) Force development and relaxation in single motor units of adult cats during a standard fatigue test. J Physiol (Lond) 421:583–594

    PubMed  CAS  Google Scholar 

  48. Gossard J-P, Rossignol S (1990) Phase-dependent modulation of dorsal root potentials evoked by peripheral nerve stimulation during fictive locomotion in the cat. Brain Res 537:1–13

    PubMed  CAS  Google Scholar 

  49. Gossard JP, Brownstone RM, Barajon I, Hultborn H (1994) Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp Brain Res 98:213–228

    PubMed  CAS  Google Scholar 

  50. Graham-Brown T (1912) The factors in rhythmic activity of the nervous system. Proc R Soc Lond B 85:278–289

    Google Scholar 

  51. Grill SE, Vallbo AB, Rymer WZ (1992) Conditional feedback of human muscle spindle afferents. Soc Neurosci Abstr 18:1548

    Google Scholar 

  52. Grillner S (1985) Neural control of vertebrate locomotion — central mechanisms and reflex interaction with special reference to the cat. In: Barnes WJP, Gladden MH (eds) Feedback and motor control in invertebrates and vertebrates. Croom Helm, London, pp 35–56

    Google Scholar 

  53. Grillner S, Wallén P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    PubMed  CAS  Google Scholar 

  54. Grillner S, Wallén P, Brodin L (1991) Neuronal network generating locomotor behavior in lamprey. Annu Rev Neurosci 14:169–199

    PubMed  CAS  Google Scholar 

  55. Hammond PH (1955) Involuntary activity in biceps following the sudden application of velocity to the abducted forearm. J Physiol (Lond) 127:23P–25P

    Google Scholar 

  56. Hammond PH (1956) The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J Physiol (Lond) 132:17P–18P

    Google Scholar 

  57. Hasan Z, Enoka RM (1985) Isometric torque-angle relationship and movement-related activity of human elbow flexors: implications for the equilibrium-point hypothesis. Exp Brain Res 59:441–450

    PubMed  CAS  Google Scholar 

  58. Hayward L, Breitbach D, Rymer WZ (1988) Increased inhibitory effects on close synergists during muscle fatigue in the decerebrate cat. Brain Res 440:199–203

    PubMed  CAS  Google Scholar 

  59. Hayward L, Wesselmann U, Rymer WZ (1991) Effects of muscle fatigue on mechanically sensitive afferents of slow conduction velocity in the cat triceps surae. J Neurophysiol 65:360–370

    PubMed  CAS  Google Scholar 

  60. Ho S, O’Donovan MJ (1993) Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo. J Neurosci 13:1354–1371

    PubMed  CAS  Google Scholar 

  61. Houk JC, Rymer WZ (1981) Neural control of muscle length and tension. In: Brooks VB (ed) The nervous system. American Physiological Society, Bethesda, pp 257–323 (Handbook of physiology, vol II, part 1)

    Google Scholar 

  62. Houk JC, Singer JJ, Goldman MR (1970) An evaluation of length and force feedback to soleus muscles of decerebrate cats. J Neurophysiol 33:784–811

    PubMed  CAS  Google Scholar 

  63. Hulliger M (1984) The mammalian muscle spindle and its central control. Rev Physiol Biochem Pharmacol 101:1–110

    PubMed  CAS  Google Scholar 

  64. Hulliger M (1987) The role of muscle spindle receptors and fusimotor neurones in the control of movement. Electroencephalogr Clin Neurophysiol [Suppl] 39:58–66

    CAS  Google Scholar 

  65. Hulliger M, Nordh E, Vallbo AB (1982) The absence of position response in spindle afferent units from human finger muscles during accurate position holding. J Physiol (Lond) 322:167–179

    PubMed  CAS  Google Scholar 

  66. Hultborn H, Illert M (1991) How is motor behavior reflected in the organization of spinal systems? In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, New York, pp 49–73

    Google Scholar 

  67. Hultborn H, Pierrot-Deseilligny E (1979) Changes in recurrent inhibition during voluntary soleus contractions in man studied by an H-reflex technique. J Physiol (Lond) 297:229–251

    PubMed  CAS  Google Scholar 

  68. Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M (1987) Changes in presynaptic inhibition of la fibres at the onset of voluntary contraction in man. J Physiol (Lond) 389:757–772

    PubMed  CAS  Google Scholar 

  69. Humphrey DR, Reed DJ (1983) Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 347–372

    Google Scholar 

  70. Jacobs BL, Fornal CA (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 16:346–352

    PubMed  Google Scholar 

  71. Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    PubMed  CAS  Google Scholar 

  72. Jankowska E, Jukes MGM, Lund S, Lundberg A (1967a) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to motoneurones of flexors and extensors. Acta Physiol Scand 70:369–388

    PubMed  CAS  Google Scholar 

  73. Jankowska E, Jukes MGM, Lund S, Lundberg A (1967a) The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    PubMed  CAS  Google Scholar 

  74. Katz R, Pierrot-Deseilligny E (1984) Facilitation of soleus-coupled Renshaw cells during voluntary contractions of pretibial flexor muscles in man. J Physiol (Lond) 355:587–603

    PubMed  CAS  Google Scholar 

  75. Kaufmann MP, Rotto DM, Rybicki KJ (1988) Pressor reflex responses to static muscular contraction: its afferent arm and possible neurotransmittrers. Am J Cardiol 62:58E–62E

    PubMed  Google Scholar 

  76. Kernell D (1992) Organized variability in the neuromuscular system: a survey of task-related adaptations. Arch Ital Biol 130:19–66

    PubMed  CAS  Google Scholar 

  77. Kernell D, Monster AW (1982a) Time course and properties of late adaptation in spinal motoneurones of the cat. Exp Brain Res 46:191–196

    PubMed  CAS  Google Scholar 

  78. Kernell D, Monster AW (1982b) Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Exp Brain Res 46:197–204

    PubMed  CAS  Google Scholar 

  79. Keshner EA, Allum JHJ (1990) Muscle activation patterns coordinating postural stability from head to foot. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems: biomechanics and movement organization. Springer, Berlin Heidelberg New York, pp 481–497

    Google Scholar 

  80. Kirsch RF, Rymer WZ (1987) Neural compensation for muscular fatigue: evidence for significant force regulation in man. J Neurophysiol 57:1893–1910

    PubMed  Google Scholar 

  81. Kirsch RF, Rymer WZ (1992) Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human. J Neurophysiol 68:449–470

    PubMed  CAS  Google Scholar 

  82. Lacquaniti F, Borghese NA, Carrozzo M (1992) Internal models of limb geometry in the control of hand compliance. J Neurosci 12:1750–1762

    PubMed  CAS  Google Scholar 

  83. Lee RG, Tatton WG (1982) Long latency reflexes to imposed displacements of the human wrist: dependence on duration of movement. Exp Brain Res 45:207–216

    PubMed  CAS  Google Scholar 

  84. Lee RG, Murphy JT, Tatton WG (1983) Long-latency myotatic reflexes in man: mechanisms, functional significance, and changes in patients with Parkinson’s disease. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 489–508

    Google Scholar 

  85. Liddell EGT, Phillips CG (1994) Pyramidal section in the cat. Brain 67:1–9

    Google Scholar 

  86. Loeb GE, Hoffer JA, Pratt CA (1985) The activity of spindle afferents from cat anterior thigh muscles. I. Identification and patterns during normal locomotion. J Neurophysiol 54:549–564

    PubMed  CAS  Google Scholar 

  87. Lund JP, Enomoto S (1988) The generation of mastication by the mammalian central nervous system. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 41–72

    Google Scholar 

  88. Macefield G, Hagbarth K-E, Gorman R, Gandevia SC, Burke D (1991) Decline in spindle support to α-motoneurones during sustained voluntary contractions. J Physiol (Lond) 44:497–512

    Google Scholar 

  89. Macpherson JM (1991) How flexible are muscle synergies? In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, New York, pp 33–47

    Google Scholar 

  90. Magnus R (1924) Körperstellung. Springer, Berlin

    Google Scholar 

  91. Marple-Horvat DE, Amos AJ, Armstrong DM, Criado JM (1993) Changes in the discharge patterns of cat motor cortex neurones during unexpected perturbations of on-going locomotion. J Physiol (Lond) 462:87–113

    PubMed  CAS  Google Scholar 

  92. Marsden CD, Meadows JC, Merton PA (1983a) “Muscular wisdom” that minimizes fatigue during prolonged effort in man: peak rates of motoneuron discharge and slowing of discharge during fatigue. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 169–211

    Google Scholar 

  93. Marsden CD, Rothwell JC, Day BL (1983b) Long-latency automatic responses to muscle stretch in man: origin and function. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 509–539

    Google Scholar 

  94. Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–58

    PubMed  CAS  Google Scholar 

  95. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, London

    Google Scholar 

  96. Matthews PBC (1991) The human stretch reflex and the motor cortex. Trends Neurosci 14:87–91

    PubMed  CAS  Google Scholar 

  97. McIntyre AK, Proske U, Rawson JA (1984) Cortical projection of afferent information from tendon organs in the cat. J Physiol (Lond) 354:395–406

    PubMed  CAS  Google Scholar 

  98. Merton PA (1953) Speculations on the servo-control of movement. In: Wolstenholme GEW (ed) The spinal cord. Churchill, London, pp 247–255

    Google Scholar 

  99. Mori S (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 28:161–195

    PubMed  CAS  Google Scholar 

  100. Murphy PR, Martin HA (1993) Fusimotor discharge patterns during rhythmic movements. Trends Neurosci 16:273–278

    PubMed  CAS  Google Scholar 

  101. Nashner LM (1976) Adapting reflexes controlling the human posture. Exp Brain Res 26:59–72

    PubMed  CAS  Google Scholar 

  102. Nashner LM, McCollum G (1985) The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci 8:135–172

    Google Scholar 

  103. Nashner LM, Shupert CJL, Horak FB, Black FO (1989) Organization of posture controls: an analysis of sensory and mechanical constraints. In: Allum JHJ, Hulliger M (eds) Afferent control of posture and locomotion. Elsevier, Amsterdam, pp 399–3418 (Progress in brain research, vol 80)

    Google Scholar 

  104. Nichols TR, Houk JC (1976) Improvement in linearity and regulation of stiffness that results from actions of the stretch reflex. J Neurophysiol 29:119–142

    Google Scholar 

  105. Nichols TR, Koffler-Smulevitz D (1991) Mechanical analysis of heterogenic inhibition between soleus muscle and the pretibial flexors in the cat. J Neurophysiol 66:1139–1155

    PubMed  CAS  Google Scholar 

  106. Orlovsky GN (1972) Activity of vestibulospinal neurons during locomotion. Brain Res 46:85–98

    PubMed  CAS  Google Scholar 

  107. Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297

    PubMed  CAS  Google Scholar 

  108. Pearson KG, Collins DF (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 70:1009–1017

    PubMed  CAS  Google Scholar 

  109. Pearson KG, Ramirez JM, Jiang W (1992) Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Exp Brain Res 90:557–566

    PubMed  CAS  Google Scholar 

  110. Pellionisz AJ, Peterson BW (1988) A tensorial model of neck motor activation. In: Peterson BW, Richmond FJ (eds) Control of head movement. Oxford University Press, New York, pp 178–186

    Google Scholar 

  111. Peterson BW, Baker JF (1991) Spatial transformations in vestibular reflex systems. In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, New York, pp 121–135

    Google Scholar 

  112. Phillips CG (1969) The Ferrier lecture: motor apparatus of the baboon’s hand. Proc R Soc B 173:141–174

    CAS  Google Scholar 

  113. Piercey MF, Goldfarb J (1974) Discharge patterns of Renshaw cells evoked by volleys in ipsilateral cutaneous and high-threshold muscle afferents and their relationship to reflexes recorded in ventral roots. J Neurophysiol 37:294–302

    PubMed  CAS  Google Scholar 

  114. Pierrot-Deseilligny E (1989) Peripheral and descending control of neurones mediating non-monosynaptic Ia excitation to motoneurons: a presumed propriospinal system in man. In: Allum JHJ, Hulliger M (eds) Afferent control of posture and locomotion. Elsevier, Amsterdam, pp 305–314 (Progress in brain research, vol 80)

    Google Scholar 

  115. Pratt CA, Jordan LM (1987) Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J Neurophysiol 57:56–71

    PubMed  CAS  Google Scholar 

  116. Prochazka A (1986) Proprioception during voluntary movement. Can J Physiol Pharmacol 64:499–504

    PubMed  CAS  Google Scholar 

  117. Prochazka A (1989) Sensorimotor gain control: a basic strategy of the motor system? Prog Neurobiol 33:281–307

    PubMed  CAS  Google Scholar 

  118. Prochazka A, Wand P (1980) Tendon organ discharge during voluntary movements in cats. J Physiol (Lond) 303:385–390

    PubMed  CAS  Google Scholar 

  119. Prochazka A, Westerman RA, Ziccone SP (1977) Ia afferent activity during a variety of movements in the cat. J Physiol (Lond) 268:423–448

    PubMed  CAS  Google Scholar 

  120. Prochazka A, Trend P, Hulliger M, Vincent S (1989) Ensemble proprioceptive activity in the cat step cycle: towards a representative look-up chart. In: Allum JHJ, Hulliger M (eds) Afferent control of posture and locomotion. Elsevier, Amsterdam, pp 61–74 (Progress in brain research, vol 80)

    Google Scholar 

  121. Rack PMH (1981) Limitations of somatosensory feedback in control of posture and movement. In: Brooks VB (ed) The nervous system. American Physiological Society, Bethesda, pp 229–256 (Handbook of physiology, vol II, part 1)

    Google Scholar 

  122. Richter DW, Spyer KM (1990) Cardiorespiratory control. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 189–207

    Google Scholar 

  123. Rotto DM, Kaufmann MP (1988) Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol 64:2306–2313

    PubMed  CAS  Google Scholar 

  124. Schaafsma A (1991) Posture maintenance at the human elbow joint. Med dissertation, Groningen

    Google Scholar 

  125. Schieppati M, Romano C, Gritti I (1990) Convergence of la fibres from synergistic and antagonistic muscles onto interneurones inhibitory to soleus in humans. J Physiol (Lond) 431:365–377

    PubMed  CAS  Google Scholar 

  126. Schor RH, Kearney RE, Dieringer N (1988) Reflex stabilization of the head. In: Peterson BW, Richmond FJ (eds) Control of head movement. Oxford University Press, New York, pp 141–166

    Google Scholar 

  127. Shefchyk S, McCrea D, Kriellaars D, Fortier P, Jordan L (1990) Activity of interneurons within the L4 spinal segment of the cat during brainstem-evoked native locomotion. Exp Brain Res 80:290–295

    PubMed  CAS  Google Scholar 

  128. Sherrington CS (1924) Problems of muscular receptivity. Nature 113:929–932

    Google Scholar 

  129. Shik ML, Orlovski GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501

    PubMed  CAS  Google Scholar 

  130. Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the midbrain. Biophysics 11:659–666

    CAS  Google Scholar 

  131. Sillar KT (1991) Spinal pattern generation and sensory gating mechanisms. Curr Opin Neurobiol 1:583–589

    PubMed  CAS  Google Scholar 

  132. Stuart DG, Callister RJ (1993) Afferent and spinal reflex aspects of muscle fatigue: issues and speculations. In: Sargeant AJ, Kerneil D (eds) Neuromuscular fatigue. North-Holland, Amsterdam, pp 169–180

    Google Scholar 

  133. Taylor A, Gottlieb S (1985) Convergence of several sensory modalities in motor control. In: Barnes WJP, Gladden MH (eds) Feedback and motor control in invertebrates and vertebrates. Croom Helm, London, pp 77–91

    Google Scholar 

  134. Thilmann AF, Schwarz M, Töpper R, Fellows S J, Noth J (1991) Different mechanisms underlie the long-latency stretch reflex response of active human muscle at different joints. J Physiol (Lond) 444:631–643

    PubMed  CAS  Google Scholar 

  135. Trendelenburg W (1911) Untersuchungen über reizlose vorübergehende Ausschaltung am Zentralnervensystem. III. Die Extremitätenregion der Großhirnrinde. Pflugers Arch 137:515–544

    Google Scholar 

  136. Viala D, Buser P (1971) Modalités d’obtention de rhythmes locomoteurs chez le lapin spinal par traitements pharmacologiques (DOPA, 5-HTP, D-amphétamine). Brain Res 35:151–165

    PubMed  CAS  Google Scholar 

  137. Wiesendanger M (1986) Experimental evidence for the existence of a proprioceptive transcortical loop. In: Freund H-J, Buettner U, Cohen B, Noth J (eds) The oculomotor and skeletomotor systems: differences and similarities. Elsevier, Amsterdam, pp 67–74

    Google Scholar 

  138. Wilson VJ (1988) The tonic neck reflex: spinal circuitry. In: Peterson BW, Richmond FJ (eds) Control of head movement. Oxford Universiy Press, New York, pp 100–107

    Google Scholar 

  139. Windhorst U (1988) How brain-like is the spinal cord? Interacting cell assemblies in the nervous system. Springer, Berlin Heidelberg New York

    Google Scholar 

  140. Windhorst U, Kokkoroyiannis T (1991) Interaction of recurrent inhibitory and muscle spindle afferent feedback during muscle fatigue. Neuroscience 43:249–259

    PubMed  CAS  Google Scholar 

  141. Woods JJ, Furbush F, Bigland-Ritchie B (1987) Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. J Neurophysiol 58:125–137

    PubMed  CAS  Google Scholar 

  142. Yang JF, Stein RB (1990) Phase-dependent reflex reversal in human leg muscles during walking. J Neurophysiol 63:1109–1117

    PubMed  CAS  Google Scholar 

  143. Yang JF, Stein RB, James KB (1991) Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Exp Brain Res 87:679–687

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Windhorst, U. (1996). Spinal Cord and Brainstem: Pattern Generators and Reflexes. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics