Skip to main content

Sensory Endings in Ligaments: Response Properties and Effects on Proprioception and Motor Control

  • Chapter

Abstract

As early as the 1950s joint ligaments were demonstrated to contain sensory endings that are sensitive to small changes in ligament tension and to passive joint movements. Since then the morphological characteristics and the functional properties of these sensory endings have received considerable interest. This chapter is to reviews the information available on the sensory properties of ligaments and their role in motor control and proprioception. Some clinical implications of these findings are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JA (1977) Feedback theory of how joint receptors regulate the timing and positioning of a limb. Psychol Rev 84: 504–523

    PubMed  CAS  Google Scholar 

  2. Akazawa K, Aldridge JW, Steeves JD, Stein RB (1982) Modulation of stretch reflexes during locomotion in the mesencephalic cat. J Physiol (Lond) 329: 553–567

    CAS  Google Scholar 

  3. Akazawa K, Milner TE, Stein RB (1983) Modulation of reflex EMG and stiffness in response to stretch of human finger muscle. J Neurophysiol 49: 16–27

    PubMed  CAS  Google Scholar 

  4. Allum JHJ, Mauritz K-H (1984) Compensation for intrinsic muscle stiffness by short-latency reflexes in human triceps surae muscles. J Neurophysiol 52: 797–818

    PubMed  CAS  Google Scholar 

  5. Andersen P, Andersson SA, Lömo T (1967) Nature of thalamo-cortical relations during spontaneous barbiturate spindle activity. J Physiol (Paris) 192: 283–307

    CAS  Google Scholar 

  6. Andersson S, Stener B (1959) Exp evaluation of the hypothesis of ligamento-muscular protective reflexes. II. A study in cat using the medial collateral ligament of the knee joint. Acta Physiol Scand 48: 27–49

    CAS  Google Scholar 

  7. Andersson SA, Landgren S, Wolsk D (1966) The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat. J Physiol (Paris) 183: 576–591

    CAS  Google Scholar 

  8. Andrew BL (1954) The sensory innervation of the medial ligament of the knee joint. J Physiol (Paris) 123: 241–250

    CAS  Google Scholar 

  9. Andrew BL, Dodt E (1953) The deployment of sensory nerve endings at the knee joint of the cat. Acta Physiol Scand 28: 287–296

    Google Scholar 

  10. Aniss AM, Diener H-C, Hore J, Burke D, Gandevia SC (1990) Reflex activation of muscle spindles in human pretibial muscles during standing. J Neurophysiol 64: 671–679

    PubMed  CAS  Google Scholar 

  11. Aniss AM, Diener H-C, Hore J, Gandevia SC, Burke D (1990) Behavior of human muscle receptors when reliant on proprioceptive feedback during standing. J Neurophysiol 64: 661–670

    PubMed  CAS  Google Scholar 

  12. Appelberg B (1981) Selective central control of dynamic gamma motoneurons utilised for the functional classification of gamma cells. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. Macmillan, London, pp 97–108

    Google Scholar 

  13. Appelberg B, Hulliger M, Johansson H, Sojka P (1982) Fusimotor reflexes in triceps surae elicited by natural stimulation of muscle afferents from the cat ipsilateral hind limb. J Physiol (Lond) 329: 211–229

    CAS  Google Scholar 

  14. Appelberg B, Hulliger M, Johansson H, Sojka P (1983) Actions on y-motoneurones elicited by electrical stimulation of group I muscle afferent fibres in the hind limb of the cat. J Physiol (Lond) 335: 237–253

    CAS  Google Scholar 

  15. Appelberg B, Hulliger M, Johansson H, Sojka P (1983) Actions on y-motoneurones elicited by electrical stimulation of group II muscle afferent fibres in the hind limb of the cat. J Physiol (Lond) 335: 255–273

    CAS  Google Scholar 

  16. Appelberg B, Hulliger M, Johansson H, Sojka P (1983) Actions on y-motoneurones elicited by electrical stimulation of group III muscle afferent fibres in the hind limb of the cat. J Physiol (Lond) 335: 275–292

    CAS  Google Scholar 

  17. Arvidsson I, Eriksson E, Haggmark T, Johnson RJ (1981) Isokinetic thigh muscle strength after ligament reconstruction in the knee joint: results from a 5–10 year follow-up after reconstructions of the anterior cruciate ligament in the knee joint. Int J Sports Med 2: 7–11

    PubMed  CAS  Google Scholar 

  18. Barrack RL, Skinner HB, Brunet ME, Haddad RJ (1983) Functional performance of the knee after intraarticular anesthesia. Am J Sports Med 11: 258–261

    PubMed  CAS  Google Scholar 

  19. Barrack RL, Skinner HB, Buckley SL (1989) Proprioception in the anterior cruciate deficient knee. Am J Sports Med 17: 1–6

    PubMed  CAS  Google Scholar 

  20. Barrack RL, Skinner HB, Cook SD (1984) Proprioception of the knee joint. Paradoxical effect of training. Am J Med 63: 175–181

    CAS  Google Scholar 

  21. Barrack RL, Skinner HB, Cook SD, Haddad RJ (1983) Effect of articular disease and total knee arthroplasty on knee joint-position sense. J Neurophysiol 50: 684–687

    PubMed  CAS  Google Scholar 

  22. Barrett DS (1991) Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg Br 73: 833–837

    PubMed  CAS  Google Scholar 

  23. Barrett DS, Cobb AG, Bentley G (1991) Joint proprioception in normal, osteoarthritic and replaced knees. J Bone Joint Surg Br 73: 53–56

    PubMed  CAS  Google Scholar 

  24. Basmajian JV (1963) Control and training of individual motor units. Science 141: 440–441

    PubMed  CAS  Google Scholar 

  25. Baxendale RH, Davey NJ, Ellaway PH, Ferrell WR (1992) The interaction between joint and cutaneous afferent input in the regulation of fusimotor neurone discharge. In: Jami L, Pierrot-Deseilligny E, Zytnicki D (eds) Muscle afferents and spinal control of movement. Pergamon, Oxford, pp 95–104

    Google Scholar 

  26. Baxendale RH, Ferrell WR (1983) Discharge characteristics of the elbow joint nerve of the cat. Brain Res 261: 195–203

    PubMed  CAS  Google Scholar 

  27. Beard DJ, Dodd CAF, Trundle HR, Simpson AHRW (1994) Proprioception enhancement for anterior cruciate ligament deficiency: a prospective randomised trial of two physiotherapy regimes. J Bone Joint Surg Br 76: 654–659

    PubMed  CAS  Google Scholar 

  28. Beard DJ, Kyberd PJ, Fergusson CM, Dodd CAF (1993) Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery. J Bone Joint Surg Br 75: 311–315

    PubMed  CAS  Google Scholar 

  29. Beard DJ, Kyberd PJ, O’Connor JJ, Fergusson CM, Dodd CAF (1994) Reflex hamstring contraction latency. J Orthop Res 12: 219–228

    PubMed  CAS  Google Scholar 

  30. Belcari P, Carli G, Strata P (1974) The projection of the posterior knee joint nerve to the cerebellear cortex. J Physiol (Paris) 237: 371–384

    CAS  Google Scholar 

  31. Bennett DJ (1994) Stretch reflex responses in the human elbow joint during a voluntary movement. J Physiol (Lond) 474: 339–351

    CAS  Google Scholar 

  32. Bergenheim M (1995) Encoding of stimulus discrimination in ensembles of muscle afferents. Its relation to proprioceptive coding and to the genesis and spread of muscle tension and pain. Umeâ University Medical Dissertations, no 446, pp 1–48

    Google Scholar 

  33. Bergenheim M, Johansson H, Pedersen J (1995) The role of the y-system for improving information transmission in populations of la afferents. Neurosci Res 23: 207–215

    PubMed  CAS  Google Scholar 

  34. Bevan L, Cordo P, Carlton L, Carlton M (1994) Proprioceptive coordination of movement sequences: discrimination of joint angle versus angular distance. J Neurophysiol 71: 1862–1872

    PubMed  CAS  Google Scholar 

  35. Birrell GJ, McQueen DS, Iggo A, Grubb BD (1990) The effects of 5-HT on articular sensory receptors in normal and arthritic rats. Br J Pharmacol 101: 715–721

    PubMed  CAS  Google Scholar 

  36. Boyd IA (1954) The histological structure of the receptors in the knee-joint of the cat correlated with their physiological response. J Physiol (Paris) 124: 476–488

    CAS  Google Scholar 

  37. Boyd IA, Roberts TDM (1953) Proprioceptive discharges from stretch-receptors in the knee-joint of the cat. J Physiol (Paris) 122: 38–58

    CAS  Google Scholar 

  38. Branch TP, Hunter R, Donath M (1989) Dynamic EMG analysis of anterior cruciate deficient legs with and without bracing during cutting. Am J Sports Med 17: 35–41

    PubMed  CAS  Google Scholar 

  39. Bullock-Saxton JE (1994) Local sensation changes and altered hip muscle function following severe ankle sprain. Phys Ther 74: 17–31

    PubMed  CAS  Google Scholar 

  40. Burgess PR, Clark FJ (1969) Characteristics of knee joint receptors in the cat. J Physiol (Paris) 203: 317–335

    CAS  Google Scholar 

  41. Burke D, Gandevia SC (1992) Selective activation of fusimotor neurones innervating human tibialis anterior. In: Jami L, Pierrot-Deseilligny E, Zytnicki D (eds) Muscle afferents and spinal control of movement. Pergamon, Oxford, pp 151–156

    Google Scholar 

  42. Burke D, Gandevia SC, Macefield G (1988) Responses to passive movement of receptors in joint, skin and muscle of the human hand. J Physiol (Lond) 402: 347–361

    CAS  Google Scholar 

  43. Campbell DE, Glenn W (1982) Rehabilitation of knee flexor and knee extensor muscle strength in patients with meniscectomies, ligamentous repairs, and chondromalacia. Phys Ther 62: 10–16

    PubMed  CAS  Google Scholar 

  44. Carli G, Farabollini F, Fontani G, Meucci M (1979) Slowly adapting receptors in cat hip joint. J Neurophysiol 42: 767–778

    PubMed  CAS  Google Scholar 

  45. Carlsöö S, Nordstrand A (1968) The coordination of the knee-muscles in some voluntary movements and in the gait in cases with and without knee joint injuries. Acta Chir Scand 134: 423–426

    PubMed  Google Scholar 

  46. Ciccotti MG, Kerlan RK, Perry J, Pink M (1994) An electromyographic analysis of the knee during functional activities. II. The anterior cruciate ligament-deficient and -reconstructed profiles. Am J Sports Med 22: 651–658

    PubMed  CAS  Google Scholar 

  47. Clark FJ (1972) Central projection of sensory fibers from the cat knee joint. J Neurobiol 3: 101–110

    PubMed  CAS  Google Scholar 

  48. Clark FJ, Burgess PR (1975) Slowly adapting receptors in cat knee joint: can they signal joint angle. J Neurophysiol 38: 1448–1463

    PubMed  CAS  Google Scholar 

  49. Clark FJ, Burgess RC, Chapin JW, Lipscomb WT (1985) Role of intramuscular receptors in the awareness of limb position. J Neurophysiol 54: 1529–1540

    PubMed  CAS  Google Scholar 

  50. Clark FJ, Grigg P, Chapin JW (1989) The contribution of articular receptors to proprioception with the fingers in humans. J Neurophysiol 61: 186–193

    PubMed  CAS  Google Scholar 

  51. Clark FJ, Horch KW, Bach SM, Larson GF (1979) Contributions of cutaneous and joint receptors to static knee-position sense in man. J Neurophysiol 42: 877–888

    PubMed  CAS  Google Scholar 

  52. Clark FJ, Landgren S, Silfvenius H (1973) Projections to the cat’s cerebral cortex from low threshold joint afferents. Acta Physiol Scand 89: 504–521

    PubMed  CAS  Google Scholar 

  53. Co FH, Skinner HB, Cannon WD (1993) Effect of reconstruction of the anterior cruciate ligament on proprioception of the knee and the heel strike transient. J Orthop Res 11: 696–704

    PubMed  CAS  Google Scholar 

  54. Coggeshall RE, Hong KAP, Langford LA, Schaible H-G, Schmidt RF (1983) Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res 272: 185–188

    PubMed  CAS  Google Scholar 

  55. Cole KJ, Pope D, Brand RA (1989) Discharge properties of mechanoreceptive afferents in the cat anterior cruciate ligament. Soc Neurosc Abstr 15: 441

    Google Scholar 

  56. Cordo P, Carlton L, Bevan L, Carlton M, Kerr GK (1994) Proprioceptive coordination of movement sequences: role of velocity and position information. J Neurophysiol 71: 18481861

    Google Scholar 

  57. Corrigan JP, Cashman WF, Brady MP (1992) Proprioception in the cruciate deficient knee. J Bone Joint Surg Br 74: 247–250

    PubMed  CAS  Google Scholar 

  58. Craig AD, Heppelmann B, Schaible H-G (1988) The projection of the medial and posterior articular nerves of the cat’s knee to the spinal cord. J Comp Neurol 276: 279–288

    PubMed  CAS  Google Scholar 

  59. Craske B (1977) Perception of impossible limb positions induced by tendon vibration. Science 169: 71–73

    Google Scholar 

  60. Creed RS, Denny-Brown D, Eccles JC, Liddell EGT, Sherrington CS (1932) Reflex activity of the spinal cord. Clarendon, Oxford

    Google Scholar 

  61. Denti M, Monteleone M, Berardi A, Panni SA (1994) Anterior cruciate ligament mechanoreceptors. Histological studies on lesions and reconstruction. Clin Orthop 308: 2932

    Google Scholar 

  62. Dietz V (1992) Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 72: 33–69

    PubMed  CAS  Google Scholar 

  63. Djupsjöbacka M, Johansson H, Bergenheim M (1994) Influences on the y-muscle-spindle system from muscle afferents stimulated by increased intramuscular concentrations of arachidonic acid. Brain Res 663: 293–302

    PubMed  Google Scholar 

  64. Djupsjöbacka M, Johansson H, Bergenheim M, Sandström U (1994) A multichannel hook electrode for simultaneous recording of up to 12 nerve filaments. J Neurosci Methods 52: 69–72

    PubMed  Google Scholar 

  65. Djupsjöbacka M, Johansson H, Bergenheim M, Wenngren BI (1995) Influences on the ymuscle-spindle system from muscle afferents stimulated by increased intramuscular concentrations of bradykinin and 5-HT. Neurosci Res 22: 325–333

    PubMed  Google Scholar 

  66. Dougherty PM, Sluka KA, Sorkin LS, Westlund KN, Willis WD (1992) Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Res Rev 17: 1–13

    PubMed  CAS  Google Scholar 

  67. Draganich LF, Jaeger RJ, Kralj AR (1989) Coactivation of the hamstrings and quadriceps during extension of the knee. J Bone Joint Surg Am 71: 1075–1081

    PubMed  CAS  Google Scholar 

  68. Eccles RM, Lundberg A (1959) Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch Ital Biol 97: 199–221

    Google Scholar 

  69. Edgerton VR, de Guzman CP, Gregor RJ (1991) Trainability of the spinal cord to generate hindlimb stepping patterns in adult spinalized cats. In: Shimamura M, Grillner S, Edgerton VR (eds) Neurophysiological bases of human locomotion. Japan Scientific Societies, Tokyo, pp 411–423

    Google Scholar 

  70. Edgley SA, Jankowska E (1987) Field potentials generated by group II muscle afferents in the middle lumbar segments of the cat spinal cord. J Physiol (Lond) 385: 393–413

    CAS  Google Scholar 

  71. Edin BB (1990) Finger joint movement sensitivity of non-cutaneous mechanoreceptor afferents in the human radial nerve. Exp Brain Res 82: 417–422

    PubMed  CAS  Google Scholar 

  72. Edin BB (1992) Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol 67: 1105–1113

    PubMed  CAS  Google Scholar 

  73. Edin BB, Abbs JH (1991) Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. J Neurophysiol 65: 657–670

    PubMed  CAS  Google Scholar 

  74. Ekholm J, Eklund G, Skoglund S (1960) On the reflex effects from the knee joint of the cat. Acta Physiol Scand 50: 167–174

    PubMed  CAS  Google Scholar 

  75. Eklund G (1972) Position sense and the state of contraction: the effect of vibration. J Neurol Neurosurg Psychiatry 35: 606–611

    Google Scholar 

  76. Eklund G, Skoglund S (1960) On the specificity of the Ruffini like joint receptors. Acta Physiol Scand 49: 184–191

    PubMed  CAS  Google Scholar 

  77. Elmqvist L-G, Lorentzon R, Johansson C, Fugl-Meyer AR (1988) Does a torn cruciate ligament lead to change in the central nervous drive of the knee extensors? Eur J Appl Physiol 58: 203–207

    CAS  Google Scholar 

  78. Elmqvist L-G, Lorentzon R, Lângström M, Fugl-Meyer AR (1988) Reconstruction of the anterior cruciate ligament. Long-term effects of different knee angles at primary immobilization and different modes of early training. Am J Sports Med 16: 455–462

    PubMed  CAS  Google Scholar 

  79. Erickson RP (1968) Stimulus coding in topographic and nontopographic afferent modalities: on the significance of the activity of individual sensory neurons. Psychol Rev 75: 447–465

    PubMed  CAS  Google Scholar 

  80. Evatt ML, Wolf SL, Segal RL (1989) Modification of human spinal stretch reflex: preliminary studies. Neurosci Lett 105: 350–355

    PubMed  CAS  Google Scholar 

  81. Ferrell WR (1980) The adequacy of stretch receptors in the cat knee joint for signaling joint angle throughout a full range of movement. J Physiol (Paris) 299: 85–99

    CAS  Google Scholar 

  82. Ferrell WR (1987) The effect of acute joint distension on mechanoreceptor discharge in the knee of the cat. Q J Exp Physiol 72: 493–499

    PubMed  CAS  Google Scholar 

  83. Ferrell WR, Craske B (1992) Contribution of joint and muscle afferents to position sense at the human proximal interphalangeal joint. Exp Physiol 77: 331–342

    PubMed  CAS  Google Scholar 

  84. Ferrell WR, Crighton A, Sturrock RD (1992) Position sense at the proximal interphalangeal joint is distorted in patients with rheumatoid arthritis of finger joints. Exp Physiol 77: 675–680

    PubMed  CAS  Google Scholar 

  85. Ferrell WR, Milne SE (1989) Factors affecting the accuracy of position matching at the proximal interphalangeal joint in human subject. J Physiol (Lond) 411: 575–583

    CAS  Google Scholar 

  86. Ferrell WR, Smith A (1989) The effect of loading on position sense at the proximal interphalangeal joint of the human index finger. J Physiol (Lond) 418: 145–161

    CAS  Google Scholar 

  87. Ferrell WR, Wood L, Baxendale RH (1988) The effect of acute joint inflammation on flexion reflex excitability in the decerebrate, low-spinal cat. Q J Exp Physiol 73: 95–102

    PubMed  CAS  Google Scholar 

  88. Fields HL, Clanton CH, Anderson SD (1977) Somatosensory properties of spinoreticular neurones in the cat. Brain Res 120: 49–66

    PubMed  CAS  Google Scholar 

  89. Freeman MAR, Wyke B (1966) Articular contributions to limb muscle reflexes. The effects of partial neurectomy of the knee-joint on postural reflexes. Br J Surg 53: 61–69

    PubMed  CAS  Google Scholar 

  90. Freeman MAR, Wyke B (1967) Articular reflexes at the ankle joint: an electromyographic study of normal and abnormal influences of ankle-joint mechanoreceptors upon reflex activity in the leg muscles. Br J Surg 54: 990–1001

    PubMed  CAS  Google Scholar 

  91. Freeman MAR, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. J Anat 101: 505–532

    PubMed  CAS  Google Scholar 

  92. Gandevia SC, Hall LA, McCloskey DI, Potter EK (1983) Proprioceptive sensation at the terminal joint of the middle finger. J Physiol (Lond) 335: 507–517

    CAS  Google Scholar 

  93. Gandevia SC, McCloskey DI (1976) Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. J Physiol (Paris) 260: 387–407

    CAS  Google Scholar 

  94. Gandevia SC, McCloskey DI, Burke D (1992) Kinaesthetic signals and muscle contraction. Trends Neurosci 15: 62–65

    PubMed  CAS  Google Scholar 

  95. Gardner E, Haddad B (1953) Pathways to the cerebral cortex for afferent fibres from the hindleg of the cat. Am J Physiol 172: 475–482

    PubMed  CAS  Google Scholar 

  96. Gardner E, Latimer F, Stilwell D (1949) Central connections for afferent fibers from the knee joint of the cat. Am J Physiol 159: 195–198

    PubMed  CAS  Google Scholar 

  97. Gardner E, Noer R (1952) Projection of afferent fibers from muscles and joints to the cerebral cortex of the cat. J Physiol (Paris) 168: 437–441

    CAS  Google Scholar 

  98. Gauffin H, Pettersson G, Tegner Y, Tropp H (1990) Function testing in patients with old rupture of the anterior cruciate ligament. Int J Sports Med 11: 73–77

    PubMed  CAS  Google Scholar 

  99. Gentle MJ, Thorp BH (1994) Sensory properties of ankle joint capsule mechanoreceptors in acute monoarthritic chickens. Pain 57: 361–374

    PubMed  CAS  Google Scholar 

  100. Gerber C, Hoppeler H, Claassen H, Robotti G, Zehnder R, Jakob RP (1985) The lower-extremity musculature in chronic symptomatic instability of the anterior cruciate ligament. J Bone Joint Surg Am 67: 1034–1043

    PubMed  CAS  Google Scholar 

  101. Ghez C, Hening W, Favilla M (1990) Parallel interacting channels in the initiation and specification of motor response features. In: Jeennerod M (ed) Attention and performance, vol 12. Erlbaum, Hillsdale, pp 265–293

    Google Scholar 

  102. Gilhodes JC, Roll JP, Tardy-Gervet MF (1986) Perceptual and motor effects of agonistantagonist muscle vibration in man. Exp Brain Res 61: 395–402

    PubMed  CAS  Google Scholar 

  103. Giove TP, Miller SJI, Kent BE, Sanford TL, Garrick JG (1983) Nonoperative treatment of the torn anterior cruciate ligament. J Bone Joint Surg Am 65: 184–192

    PubMed  CAS  Google Scholar 

  104. Goertzen M, Gruber J, Dellmann A, Clahsen H, Schulitz K-P (1992) Neurohistological findings after experimental anterior cruciate ligament allograft transplantation. Arch Orthop Trauma Surg 111: 126–129

    PubMed  CAS  Google Scholar 

  105. Goodwin GM, McCloskey DI, Matthews PBC (1972) The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95: 705–748

    PubMed  CAS  Google Scholar 

  106. Goodwin GM, McCloskey DI, Matthews PBC (1972) The persistence of appreciable kinesthesia after paralysing joint afferents but preserving muscle afferents. Brain Res 37: 326–329

    PubMed  CAS  Google Scholar 

  107. Grabiner MD, Campbell KR, Hawthorne DL, Hawkins DA (1989) Electromyographic study of the anterior cruciate ligament-hamstrings synergy during isometric knee extension. J Orthop Res 7: 152–155

    PubMed  CAS  Google Scholar 

  108. Grabiner MD, Koh TJ, Miller GF (1992) Further evidence against a direct automatic neuromotor link between the ACL and hamstrings. Med Sci Sports Exerc 24: 1075–1079

    PubMed  CAS  Google Scholar 

  109. Granit R (1979) Interpretation of supraspinal effects on the gamma system. In: Granit R, Pompeiano O (eds) Progress in brain research. Reflex control of posture and movement. Elsevier, Amsterdam, pp 147–154

    Google Scholar 

  110. Grigg P (1975) Mechanical factors influencing response of joint afferent neurons from cat knee. J Neurophysiol 38: 1473–1483

    PubMed  CAS  Google Scholar 

  111. Grigg P (1994) Peripheral neural mechanisms in proprioception. J Sport Rehabil 3: 2–17

    Google Scholar 

  112. Grigg P, Finerman GA, Riley LH (1973) Joint-position sense after total hip replacement. J Bone Joint Surg Am 55: 1016–1025

    PubMed  CAS  Google Scholar 

  113. Grigg P, Greenspan BJ (1977) Response of primate joint afferent neurons to mechanical stimulation of knee joint. J Neurophysiol 40: 1–8

    PubMed  CAS  Google Scholar 

  114. Grigg P, Hoffman AH (1982) Properties of Ruffini afferents revealed by stress analysis of isolated sections of cat knee capsule. J Neurophysiol 47: 41–54

    PubMed  CAS  Google Scholar 

  115. Grigg P, Hoffman AH, Fogarty KE (1982) Properties of Golgi-Mazzoni afferents in cat knee joint capsule, as revealed by mechanical studies of isolated joint capsule. J Neurophysiol 47: 31–40

    PubMed  CAS  Google Scholar 

  116. Grigg P, Schaible H-G, Schmidt RF (1986) Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol 55: 635–643

    PubMed  CAS  Google Scholar 

  117. Grillner S, Hongo T, Lund S (1969) Descending monosynaptic and reflex control of ymotoneurones. Acta Physiol Scand 75: 592–613

    PubMed  CAS  Google Scholar 

  118. Grimby G, Gustafsson E, Peterson L, Renström P (1980) Quadriceps function and training after knee ligament surgery. Med Sci Sports Exerc 12: 70–75

    PubMed  CAS  Google Scholar 

  119. Grubb BD, Birrell GJ, McQueen DS, Iggo A (1991) The role of PGE2 in the sensitization of mechanoreceptors in normal and inflamed ankle joints of the rat. Exp Brain Res 84: 383392

    Google Scholar 

  120. Gruber J, Wolter D, Lierse W (1988) In vivo study on the proprioceptive function of knee ligaments. Abstracts of the Third Congress of the European Society of Knee Surgery and Arthroscopy, Amsterdam, p 6

    Google Scholar 

  121. Guilbaud G (1991) Central neurophysiological processing of joint pain on the basis of studies performed in normal animals and in models of experimental arthritis. Can J Physiol Pharmacol 69: 637–646

    PubMed  CAS  Google Scholar 

  122. Hagbarth KE, Eklund G (1966) Motor effects of vibratory muscle stimuli in man. In: Granit R (ed) Muscular afferents and motor control. Almqvist, Stockholm, pp 177–186

    Google Scholar 

  123. Hall MG, Ferrell WR, Baxendale RH, Hamblen DL (1994) Knee joint proprioception: threshold detection levels in healthy young subjects. Neuro Orthop 15: 81–90

    Google Scholar 

  124. Harrison PJ, Hultborn H, Jankowska E, Katz R, Storai B, Zytnicki D (1984) Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurones in rats and cats. Neurosci Lett 45: 15–19

    PubMed  CAS  Google Scholar 

  125. Hasan Z, Stuart DG (1988) Animal solutions to problems of movement control: the role of proprioceptors. Annu Rev Neurosci 11: 199–199

    PubMed  CAS  Google Scholar 

  126. He X, Proske U, Schaible H-G, Schmidt RF (1988) Acute inflammation of the knee joint in the cat alters responses of flexor motoneurons to leg movements. J Neurophysiol 59: 326–340

    PubMed  CAS  Google Scholar 

  127. Heetderks W (1978) Principal component analysis of neural population responses of knee joint proprioceptors in cat. Brain Res 156: 51–65

    PubMed  CAS  Google Scholar 

  128. Hoffer JA, Andreassen S (1981) Limitations in the servo-regulation of soleus muscle stiffness in premammillary cats. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. Macmillan, London, pp 311–324

    Google Scholar 

  129. Holden JP, Grood ES, Korvick DL, Cummings JF, Butler DL, Bylski-Austrow DI (1994) In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech 27: 517–526

    PubMed  CAS  Google Scholar 

  130. Houk JC (1979) Regulation of stiffness by skeletomotor reflexes. Annu Rev Physiol 41: 99–114

    PubMed  CAS  Google Scholar 

  131. Houk JC, Crago PE, Rymer WZ (1981) Function of the dynamic response in stiffness: a predictive mechanism provided by non-linear feedback. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. Macmillan, London, pp 299–309

    Google Scholar 

  132. Hulliger M (1984) The mammalian muscle spindle and its central control. Rev Physiol Biochem Pharmacol 101: 1–110

    PubMed  CAS  Google Scholar 

  133. Hulliger M, Dyrmyller N, Prochazka A, Trend P (1989) Flexible fusimotor control of muscle spindle feedback during a variety of natural movements. Prog Brain Res 80: 87101

    Google Scholar 

  134. Hulliger M, Matthews PBC, Noth J (1977) Effects of combining static and dynamic fusimotor stimulation on the response of the muscle spindle primary ending to sinusoidal stretching. J Physiol (Paris) 267: 839–856

    CAS  Google Scholar 

  135. Hulliger M, Nordh E, Thelin A-E, Vallbo AB (1989) The responses of afferent fibres from the glabrous skin of the hand during voluntary finger movements in man. J Physiol (Paris) 291: 233–249

    Google Scholar 

  136. Hurley MV, Jones DW, Wilson D, Newham DJ (1992) Rehabilitation of quadriceps inhibited due to isolated rupture of the anterior cruciate ligament. J Orthop Rheumatol 5: 145–154

    Google Scholar 

  137. Ihara H, Nakayama A (1986) Dynamic joint control training for knee ligament injuries. Am J Sports Med 14: 309–315

    PubMed  CAS  Google Scholar 

  138. Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72: 623–666

    PubMed  CAS  Google Scholar 

  139. Jennings AG (1994) A proprioceptive role for the anterior cruciate ligament: a review of the literature. J Orthop Rheumatol 7: 3–13

    Google Scholar 

  140. Jennings AG, Seedholm BB (1994) Proprioception in the knee and reflex hamstring contraction latency. J Bone Joint Surg Br 76: 491–494

    PubMed  CAS  Google Scholar 

  141. Johansson H (1985) Reflex integration in the y-motor system. In: Boyd IA, Gladden MH (eds) The muscle spindle. Macmillan, London, pp 297–301

    Google Scholar 

  142. Johansson H (1988) Rubrospinal and rubrobulbospinal influences on dynamic and static y-motoneurones. Behav Brain Res 28: 97–107

    PubMed  CAS  Google Scholar 

  143. Johansson H (1991) Role of knee ligaments in proprioception and regulation of muscle stiffness. J Electromyogr Kinesiol 1: 158–179

    PubMed  CAS  Google Scholar 

  144. Johansson H, Bergenheim M, Djupsjöbacka M, Sjölander P (1995) Analysis of stimulus separation in ensembles of muscle afferents. In: Taylor A, Gladden M, Durbaba R (eds) Alpha and gamma motor systems. Plenum, New York, pp 287–293

    Google Scholar 

  145. Johansson H, Bergenheim M, Djupsjöbacka M, Sjölander P (1995) A method for analysis of stimulus separation in ensembles of afferents. J Neurosci Methods 63: 67–74

    PubMed  CAS  Google Scholar 

  146. Johansson H, Lorentzon R, Sjölander P, Sojka P (1990) The anterior cruciate ligament. A sensor acting on the y-muscle-spindle systems of muscles around the knee joint. Neuro Orthop 9: 1–23

    Google Scholar 

  147. Johansson H, Silfvenius H (1977) Axon-collateral activation by dorsal spinocerebellar tract fibres of group I relay cells of nucleus Z in the cat medulla oblongata. J Physiol (Paris) 265: 341–369

    CAS  Google Scholar 

  148. Johansson H, Silfvenius H (1977) Input from ipsilateral proprio-and exteroceptive hind limb afferents to nucleus Z of the cat medulla oblongata. J Physiol (Paris) 265: 371–393

    CAS  Google Scholar 

  149. Johansson H, Silfvenius H (1977) Connexions from large, ipsilateral hind limb muscle and skin afferents to the rostral main cuneate nucleus and to the nucleus X region in the cat. J Physiol (Paris) 265: 395–428

    CAS  Google Scholar 

  150. Johansson H, Sjölander P (1993) The neurophysiology of joints. In: Wright V, Radin EL (eds) Mechanics of human joints: physiology, pathophysiology, and treatment. Dekker, New York, pp 243–290

    Google Scholar 

  151. Johansson H, Sjölander P, Sojka P (1986) Actions on y-motoneurones elicited by electrical stimulation of joint afferent fibres in the hind limb of the cat. J Physiol (Lond) 375: 137–152

    CAS  Google Scholar 

  152. Johansson H, Sjölander P, Sojka P (1988) Fusimotor reflexes in triceps surae muscle elicited by natural and electrical stimulation of joint afferents. Neuro Orthop 6: 67–80

    Google Scholar 

  153. Johansson H, Sjölander P, Sojka P (1990) Activity in receptor afferents from the anterior cruciate ligament evokes reflex effects on fusimotor neurones. Neurosci Res 8: 54–59

    PubMed  CAS  Google Scholar 

  154. Johansson H, Sjölander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop 268: 161–178

    PubMed  Google Scholar 

  155. Johansson H, Sjölander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng 18: 341–368

    PubMed  CAS  Google Scholar 

  156. Johansson H, Sjölander P, Sojka P (1991) Fusimotor reflex profiles of individual triceps surae primary muscle spindle afferents assessed with multi-afferent recording technique. J Physiol (Paris) 85: 6–19

    CAS  Google Scholar 

  157. Johansson H, Sjölander P, Sojka P, Wadell I (1989) Reflex actions on the y-musclespindle systems of muscles acting at the knee joint elicited by stretch of the posterior cruciate ligament. Neuro Orthop 8: 9–21

    Google Scholar 

  158. Johansson H, Sojka P (1991) Pathophysiological mechanisms involved in genesis and spread of muscle tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: a hypothesis. Med Hypotheses 35: 196–203

    PubMed  CAS  Google Scholar 

  159. Jones LA (1988) Motor illusions: what do they reveal about proprioception? Psychol Bull 103: 72–86

    PubMed  CAS  Google Scholar 

  160. Kannus P (1988) Knee flexor and extensor strength ratios with deficiency of the lateral collateral ligament. Arch Phys Med Rehabil 69: 928–931

    PubMed  CAS  Google Scholar 

  161. Korvick DL, Pijanowski GJ, Schaffer DJ (1994) Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. J Biomech 27: 77–87

    PubMed  CAS  Google Scholar 

  162. Krauspe R, Schmidt M, Schaible H-G (1992) Sensory innervation of the anterior cruciate ligament. An electrophysiological study of the response properties of single identified mechanoreceptors in the cat. J Bone Joint Surg Am 74: 390–397

    PubMed  CAS  Google Scholar 

  163. Krauspe R, Schmidt M, Schaible H-G (1993) Different patterns of activation of sensory nerve endings with thick myelinated afferent axons supplying the medial collateral and anterior cruciate ligament of the cat’s knee joint. Neuro Orthop 14: 67–80

    Google Scholar 

  164. Kuno M, Munoz-Martinez EJ, Randic M (1973) Sensory inputs to neurones in Clarke’s column from muscle, cutaneous and joint receptors. J Physiol (Paris) 228: 327–342

    CAS  Google Scholar 

  165. Kâlund S, Sinkjaer T, Arendt-Nielsen L, Simonsen 0 (1990) Altered timing of hamstring muscle action in anterior cruciate ligament deficient patients. Am J Sports Med 18: 245–248

    PubMed  Google Scholar 

  166. Landgren S, Silfvenius H (1969) Projection to cerebral cortex of group I muscle afferents from the cat’s hind limb. J Physiol (Paris) 200: 353–372

    CAS  Google Scholar 

  167. Landgren S, Silfvenius H (1971) Nucleus z, the medullary relay in the projection path to the cerebral cortex of group I muscle afferents from the cat’s hind limb. J Physiol (Paris) 218: 551–571

    CAS  Google Scholar 

  168. Lass P, Kâlund S, LeFevre S, Arendt-Nielsen L, Sinkjaer T, Simonsen O (1991) Muscle coordination following rupture of the anterior cruciate ligament. Electromyographic studies of 14 patients. Acta Orthop Scand 62: 9–14

    PubMed  CAS  Google Scholar 

  169. Lephart SM, Fu FH (1995) The role of proprioception in the treatment of sports injuries. Sports Exerc Inj 1: 96–102

    Google Scholar 

  170. Lephart SM, Kocher MS, Fu FH (1992) Proprioception following ACL reconstruction. J Sport Rehabil 1: 186–196

    Google Scholar 

  171. Limbird TJ, Shiavi R, Frazer M, Borra H (1988) EMG profiles of knee joint musculature during walking: changes induced by anterior cruciate ligament deficiency. J Orthop Res 6: 630–638

    PubMed  CAS  Google Scholar 

  172. Lindström S, Takata M (1972) Monosynaptic excitation of dorsal spinocerebellar tract neurones from low threshold joint afferents. Acta Physiol Scand 84: 430–432

    PubMed  Google Scholar 

  173. Loeb GE (1984) The control and responses of mammalian muscle spindles during normally executed motor tasks. In: Terjung RL (ed) Exercise and sport sciences reviews. Collamore, Toronto, pp 157–204

    Google Scholar 

  174. Lorentzon R, Elmqvist L-G, Sjöström M, Fagerlund M, Fugl-Meyer AR (1989) Thigh musculature in relation to chronic anterior cruciate ligament tear: muscle size, morphology, and mechanical output before reconstruction. Am J Sports Med 17: 423–429

    PubMed  CAS  Google Scholar 

  175. Lundberg A, Malmgren K, Schomburg ED (1978) Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. J Physiol (Paris) 284: 327–343

    CAS  Google Scholar 

  176. Lundberg A, Oscarsson O (1960) Functional organization of the dorsal spino-cerebellar tract in the cat. VII. Identification of units by antidromic activation from the cerebellar cortex with recognition of five functional subdivisions. Acta Physiol Scand 50: 356–374

    PubMed  CAS  Google Scholar 

  177. Macefield G, Gandevia SC, Burke D (1990) Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J Physiol (Lond) 429: 113–129

    CAS  Google Scholar 

  178. Marks R, Percy JS, Semple J, Kumar S (1994) Comparison between the surface electromyogram of the quadriceps surrounding the knees of healthy women and the knees of women with osteoarthrosis. Clin Exp Rheumatol 12: 11–15

    PubMed  CAS  Google Scholar 

  179. Marks R, Quinney HA, Wessel J (1993) Proprioceptive sensibility in women with normal and osteoarthritic knee joints. Clin Rheumatol 12: 170–175

    PubMed  CAS  Google Scholar 

  180. Marsden CD, Merton PA, Morton HB (1972) Servo action in human voluntary movement. Nature 238: 140–143

    PubMed  CAS  Google Scholar 

  181. Marsden CD, Merton PA, Morton HB (1977) The sensory mechanism of servo action in human muscle. J Physiol (Paris) 265: 521–535

    CAS  Google Scholar 

  182. Marsden CD, Rothwell JC, Day BL (1984) The use of peripheral feedback in the control of movement Trends Neurosci 7: 253–257

    Google Scholar 

  183. Marshall KW, Tatton WG (1990) Joint receptors modulate short and long latency muscle responses in the awake cat. Exp Brain Res 83: 137–150

    PubMed  CAS  Google Scholar 

  184. Matthews PBC (1982) Where does Sherrington’s “muscular sense” originate? Muscles, joints, corollary discharges? Annu Rev Neurosci 5: 189–218

    PubMed  CAS  Google Scholar 

  185. Maunz RA, Pitts NG, Peterson BW (1978) Cat spinoreticular neurones: locations, responses and changes in responses during repetitive stimulation. Brain Res 148: 365–379

    PubMed  CAS  Google Scholar 

  186. McCall WDJ, Farias MC, Williams WJ, BeMent SL (1974) Static and dynamic responses of slowly adapting joint receptors. Brain Res 70: 221–243

    PubMed  Google Scholar 

  187. McCloskey DI (1973) Differences between the senses of movement and position shown by the effects of loading and vibration of muscles in man. Brain Res 63: 119–131

    Google Scholar 

  188. McCloskey DI, Cross MJ, Honner R, Potter E (1983) Sensory effects of pulling or vibrating exposed tendons in man. Brain 106: 21–37

    PubMed  Google Scholar 

  189. McCloskey DI, Macefield G, Gandevia SC, Burke D (1987) Sensing position and movements of the fingers. News Physiol Sci 2: 226–230

    Google Scholar 

  190. McIntyre AK, Proske U, Tracey DJ (1978) Afferent fibres from muscle receptors in the posterior nerve of the cat’s knee joint. Exp Brain Res 33: 415–424

    PubMed  CAS  Google Scholar 

  191. McIntyre AK, Proske U, Tracey DJ (1978) Fusimotor responses to volleys in joint and interosseous afferents in the cat’s hindlimb. Neurosci Lett 10: 287–292

    PubMed  CAS  Google Scholar 

  192. McNair PJ, Marshall RN (1994) Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Arch Phys Med Rehabil 75: 584–589

    PubMed  CAS  Google Scholar 

  193. McNair PJ, Marshall RN, Matheson JA (1989) Gait of subjects with anterior cruciate ligament deficiency. Clin Biomech 4: 243–248

    Google Scholar 

  194. McNair PJ, Marshall RN, Maguire K (1994) Knee effusion and quadriceps muscle strength. Clin Biomech 9: 331–334

    Google Scholar 

  195. McNair PJ, Wood GA, Marshall RN (1992) Stiffness of the hamstring muscles and its relationship to function in anterior cruciate ligament deficient individuals. Clin Biomech 7: 131–137

    Google Scholar 

  196. Merton P A (1953) Speculations on the servo-control of movement. In: Wolotenholme GEW (ed) The spinal cord. Churchill, London, pp 247–255

    Google Scholar 

  197. Meyers DER, Snow PJ (1982) The responses to somatic stimuli of deep spinothalamic tract cells in the lumbar spinal cord of the cat. J Physiol (Lond) 329: 355–371

    CAS  Google Scholar 

  198. Miyatsu M, Atsuta Y, Watakabe M (1993) The physiology of mechanoreceptors in the anterior cruciate ligament. An experimental study in decerebrate-spinalised animals. J Bone Joint Surg Br 75: 653–657

    PubMed  CAS  Google Scholar 

  199. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20: 408–434

    PubMed  CAS  Google Scholar 

  200. Mountcastle VB, Poggio GF, Werner G (1963) The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. J Neurophysiol 26: 807–834

    PubMed  CAS  Google Scholar 

  201. Mountcastle VB, Powell TPS (1959) Central nervous mechanisms subserving position sense and kinesthesia. Bull Johns Hopkins Hosp 105: 173–200

    PubMed  CAS  Google Scholar 

  202. Mulder T, Hulstyn W (1984) Sensory feedback therapy and theoretical knowledge of motor control and learning. Am J Phys Med 63: 226–244

    PubMed  CAS  Google Scholar 

  203. Murphy PR, Stein RB, Taylor J (1984) Phasic and tonic modulation of impulse rates in 7motoneurons during locomotion in premammillary cats. J Neurophysiol 52: 228–243

    PubMed  CAS  Google Scholar 

  204. Nade S, Newbold PJ, Straface SF (1987) The effects of direction and acceleration of movement of the knee joint of the dog on medial articular nerve discharge. J Physiol (Lond) 388: 505–519

    CAS  Google Scholar 

  205. Neugebauer V, Schaible H-G, Schmidt RF (1989) Sensitization of articular afferents to mechanical stimuli by bradykinin. Pflugers Arch 415: 330–335

    PubMed  CAS  Google Scholar 

  206. Newham DJ, Hurley MV, Jones DJ (1989) Ligamentous knee injury and muscle inhibition. J Orthop Rheumatol 2: 163–173

    Google Scholar 

  207. Nichols TR (1987) The regulation of muscle stiffness. Implications for the control of limb stiffness. Med Sci Sport Exerc 26: 36–47

    Google Scholar 

  208. Nichols TR (1989) The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. J Physiol (Lond) 410: 463–477

    CAS  Google Scholar 

  209. Nielsen J, Sinkjaer T, Toft E, Kagamihara Y (1994) Segmental reflexes and ankle joint stiffness during co-contraction of antagonistic ankle muscles in man. Exp Brain Res 102: 350–358

    PubMed  CAS  Google Scholar 

  210. Noyes FR, Keller CS, Grood ES, Butler DL (1984) Advances in the understanding of knee ligament injury, repair, and rehabilitation. Med Sci Sports Exerc 16: 427–443

    PubMed  CAS  Google Scholar 

  211. Nyland J, Brosky T, Currier D, Nitz A, Caborn D (1994) Review of the afferent neural system of the knee and its contribution to motor learning. J Orthop Sports Phys Ther 19: 2–11

    PubMed  CAS  Google Scholar 

  212. Oscarsson O, Rosén I (1963) Projection to cerebral cortex of large muscle spindle afferents in forelimb nerves of the cat. J Physiol (Paris) 169: 924–945

    CAS  Google Scholar 

  213. Pai Y-C, Chang HJ, Chang RW, Sinacore JM, Lewis JL (1994) Alteration in multijoint dynamics in patients with bilateral knee osteoarthritis. Arthritis Rheum 37: 1297–1304

    PubMed  CAS  Google Scholar 

  214. Palmer I (1938) In the injuries to the ligament of the knee joint, actual study. Acta Chir Scand 81 [Suppl 531: 1–282

    Google Scholar 

  215. Palmer I (1958) Pathophysiology of the medial ligament of the knee joint. Acta Chir Scand 115: 312–318

    PubMed  CAS  Google Scholar 

  216. Partridge EJ (1924) Joints–the limitation of their range of movement and an explanation of certain surgical conditions. J Anat 58: 346–354

    PubMed  CAS  Google Scholar 

  217. Petersen I, Stener B (1959) Experimental evaluation of the hypothesis of ligamentomuscular protective reflexes. III. A study in man using the medial collateral ligament of the knee joint. Acta Physiol Scand 48: 51–61

    CAS  Google Scholar 

  218. Pitman MI, Nainzadeh N, Menche D, Gasalberti R, Song EK (1992) The intraoperative evaluation of the neurosensory function of the anterior cruciate ligament in human using somatosensory evoked potentials. Arthroscopy 8: 442–447

    PubMed  CAS  Google Scholar 

  219. Pope DF, Cole KJ, Brand RA (1990) Physiological loading of the anterior cruciate ligament does not activate quadriceps or hamstrings in the anesthetized cat. Am J Sports Med 18: 595–599

    PubMed  CAS  Google Scholar 

  220. Pope MH, Johnson RJ, Brown DW, Tighe C (1979) The role of the musculature in injuries to the medial collateral ligament. J Bone Joint Surg Am 61: 398–402

    PubMed  CAS  Google Scholar 

  221. Provins KA (1958) The effect of training and handedness on the performance of two simple motor tasks. Q J Exp Psychol 10: 29–39

    Google Scholar 

  222. Rack PMH (1981) Limitations of somatosensory feedback in control of posture and movement. In: Brooks VB (ed) Handbook of physiology. The nervous system II. American Physiological Society, Bethesda, pp 229–256

    Google Scholar 

  223. Ray RH, Doetsch GS (1990) Coding of stimulus location and intensity in populations of mechanosensitive nerve fibers of the raccoon. I. single fiber response properties. Brain Res Bull 25: 517–532

    PubMed  CAS  Google Scholar 

  224. Ray RH, Doetsch GS (1990) Coding of stimulus location and intensity in populations of mechanosensitive nerve fibers of the raccoon. II. Across-fiber response patterns. Brain Res Bull 25: 533–550

    PubMed  CAS  Google Scholar 

  225. Ribot E, Roll J-P, Vedel J-P (1986) Efferent discharges recorded from single skeletomotor and fusimotor fibres in man. J Physiol (Lond) 375: 251–268

    CAS  Google Scholar 

  226. Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47: 177–190

    PubMed  CAS  Google Scholar 

  227. Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76: 213–222

    PubMed  CAS  Google Scholar 

  228. Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD (1982) Manual motor performance in a deafferented man. Brain 105: 515–542

    PubMed  Google Scholar 

  229. Rymer WZ, D’Almeida A (1980) Joint position sense. The effects of muscle contraction. Brain 103: 1–22

    PubMed  CAS  Google Scholar 

  230. Sanes JN, Jennings VA (1984) Centrally programmed patterns of muscle activity in voluntary motor behavior of humans. Exp Brain Res 54: 23–32

    PubMed  CAS  Google Scholar 

  231. Schaible H-G, Schmidt RF (1983) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49: 35–44

    PubMed  CAS  Google Scholar 

  232. Schaible H-G, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54: 1109–1122

    PubMed  CAS  Google Scholar 

  233. Schaible H-G, Schmidt RF (1988) Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 60: 2180–2195

    PubMed  CAS  Google Scholar 

  234. Schaible H-G, Schmidt RF (1988) Excitation and sensitization of fine articular afferents from cat’s knee joint by prostaglandin E2. J Physiol (Lond) 403: 91–104

    CAS  Google Scholar 

  235. Schaible H-G, Schmidt RF, Willis WD (1987) Convergent inputs from articular, cutaneous and muscle receptors onto ascending tract cells in the spinal cord. Exp Brain Res 66: 479–488

    PubMed  CAS  Google Scholar 

  236. Schaible H-G, Schmidt RF, Willis WD (1987) Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp Brain Res 66: 489–499

    PubMed  CAS  Google Scholar 

  237. Schepelmann K, Messlinger K, Schaible HG, Schmidt RF (1992) Inflammatory mediators and nociception in the joint: excitation and sensitization of slowly conducting afferent fibers of cats knee by prostaglandin I2. Neuroscience 50: 237–247

    PubMed  CAS  Google Scholar 

  238. Schmidtbleicher D, Gollhofer A, Frick U (1988) Effects of a stretch-shortening typed training on the performance capability and innervation characteristics of leg extensor muscles. In: de Groot G, Hollander AP, Huijing PA, van Ingen Schenau GJ (eds) International series on biomechanics. Biomechanics XI-A. Free University Press, Amsterdam, pp 185–189

    Google Scholar 

  239. Schutte MJ, Dabezies EJ, Zimny ML, Happel LT (1987) Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg Am 69: 243–247

    PubMed  CAS  Google Scholar 

  240. Scott DT, Ferrell WR, Baxendale RH (1994) Excitation of soleus/gastrocnemius y-motoneurones by group II knee joint afferents is suppressed by group IV joint afferents in the decerebrate, spinalized cat. Exp Physiol 79: 357–364

    PubMed  CAS  Google Scholar 

  241. Seto JL, Orofino AS, Morrissey MC, Medeiros JM, Mason WJ (1988) Assessment of quadriceps/hamstring strength, knee ligament stability, functional and sports activity levels five years after anterior cruciate ligament reconstruction. Am J Sports Med 16: 170180

    Google Scholar 

  242. Sherrington CS (1894) On the anatomical constitution of nerves of skeletal muscles: with remarks on recurrent fibres in the ventral spinal nerve root. J Physiol (Paris) 17: 211–258

    Google Scholar 

  243. Sherrington CS (1906) The integrative action of the nervous system. Constable, London

    Google Scholar 

  244. Sinkjaer T, Toft E, Andreassen S, Hornemann BC (1988) Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol 60: 1110–1121

    PubMed  CAS  Google Scholar 

  245. Sinkjaer T, Arendt-Nielsen L (1991) Knee stability and muscle coordination in patients with anterior cruciate ligament injuries: an electromyographic approach. J Electromyogr Kinesiol 1: 209–217

    PubMed  CAS  Google Scholar 

  246. Sinkjaer T, Hayashi R (1989) Regulation of wrist stiffness by the stretch reflex. J Biomech 22: 1133–1140

    PubMed  CAS  Google Scholar 

  247. Sittig AC, Denier van der Gon JJ, Gielen CCAM (1987) The contribution of afferent information on position and velocity to the control of slow and fast human forearm movements. Exp Brain Res 67: 33–40

    CAS  Google Scholar 

  248. Sjölander P (1989) A sensory role for the cruciate ligaments. Regulation of joint stability via reflexes onto the y-muscle-spindle system. Umeâ Univerity Medical Dissertaions, no 245, pp 1–48.

    Google Scholar 

  249. Sjölaner P, Djupsjöbacka M, Johansson H, Sojka P, Lorentzon R (1994) Can receptors in the collateral ligaments contribute to knee joint stability and proprioception via effects on the fusimotor-muscle-spindle system? An experimental study in the cat. Neuro Orthop 15: 65–80

    Google Scholar 

  250. Sjölander P, Johansson H (1995) Influences on the y-muscle spindle system from joint mechanoreceptors. In: Taylor A, Gladden M, Durbada R (eds) Alpha and gamma motor systems. Plenum, New York, pp 137–144

    Google Scholar 

  251. Sjölander P, Johansson H (1995) Ipsi-and contralateral reflexes on individual static and dynamic y-motoneurones of the cat. Neurosci Lett (submitted)

    Google Scholar 

  252. Skoglund S (1956) Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol Scand 36: 1–101

    CAS  Google Scholar 

  253. Snyder-Madder L, De Luca PF, Williams PR, Eastlack ME, Bartolozzi AR (1994) Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 76: 555–560

    Google Scholar 

  254. Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC (1991) Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Joint Surg Am 73A:1O25–1036

    Google Scholar 

  255. Sojka P, Johansson H, Sjölander P, Lorentzon R, Djupsjöbacka M (1989) Fusimotor neurones can be reflexly influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Res 483: 177–183

    PubMed  CAS  Google Scholar 

  256. Sojka P, Sjölander P, Johansson H, Djupsjöbacka M (1991) Influence from stretch-sensitive receptors in the collateral ligaments of the knee joint on the y-muscle-spindle systems of flexor and extensor muscles. Neurosci Res 11: 55–62

    PubMed  CAS  Google Scholar 

  257. Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15: 207–213

    PubMed  CAS  Google Scholar 

  258. Stein RB (1982) What muscle variable(s) does the nervous system control in limb movements? Behav Brain Sci 5: 537–577

    Google Scholar 

  259. Stener B (1959) Experimental evaluation of the hypothesis of ligamento-muscular protective reflexes. Acta Physiol Scand 48: 5–26

    CAS  Google Scholar 

  260. Stener B, Petersén I (1962) Electromyographic investigation of reflex effects upon stretching the partially ruptured medial collateral ligament of the knee joint. Acta Chir Scand 124: 396–415

    PubMed  CAS  Google Scholar 

  261. Tegner Y, Lysholm J, Gillquist J, Öberg B (1984) Two-year follow-up of conservative treatment of knee ligament injuries. Acta Orthop Scand 55: 176–180

    PubMed  CAS  Google Scholar 

  262. Tegner Y, Lysholm J, Lysholm M, Gillquist J (1986) Strengthening exercises for old cruciate ligament tears. Acta Orthop Scand 57: 130–134

    PubMed  CAS  Google Scholar 

  263. Tibone JE, Antich TJ, Fanton GS, Moynes DR, Perry J (1986) Functional analysis of anterior cruciate ligament instability. Am J Sports Med 14: 276–284

    PubMed  CAS  Google Scholar 

  264. Toft E, Sinkjaer T, Andreassen S, Larsen K (1991) Mechanical and electromyographic responses to stretch of the human ankle extensors. J Neurophysiol 65: 1402–1410

    PubMed  CAS  Google Scholar 

  265. Tropp H (1985) Functional instability of the ankle joint. Linköping University, disseration no 202

    Google Scholar 

  266. Vilensky JA, O’Connor BL, Brandt KD, Dunn EA, Rogers PI (1994) Serial kinematic analysis of the trunk and limb joints after anterior cruciate ligament transection: temporal, spatial, and angular changes in a canine model of osteoarthritis. J Electromyogr Kinesiol 4: 181–192

    PubMed  CAS  Google Scholar 

  267. Voorhoeve PE, van Kanten RW (1962) Reflex behaviour of fusimotor neurones of the cat upon electrical stimulation of various afferent fibers. Acta Physiol Pharmacol Neerlandica 10: 391–407

    CAS  Google Scholar 

  268. Wadell I, Johansson H, Sjölander P, Sojka P, Djupsjöbacka M, Niechaj A (1991) Fusimotor reflexes influencing secondary muscle spindle afferents from flexor and extensor muscles in the hind limb of the cat. J Physiol (Paris) 85: 223–234

    CAS  Google Scholar 

  269. Wadman WJ (1979) Control of fast goal-directed arm movements. J Hum Mov Stud 5: 317

    Google Scholar 

  270. Wall PD (1975) Signs of plasticity and reconnection in spinal cord damage. Ciba Found Symp 34: 35–63

    PubMed  Google Scholar 

  271. Wall PD, Egger MD (1971) Formations of new connexions in adult rat brains after partial deafferentation. Nature 232: 542–545

    PubMed  CAS  Google Scholar 

  272. Watson JDG, Colebath JG, McCloskey DI (1984) Effects of externally imposed elastic loads on the ability to estimate position and force. Behav Brain Res 13: 267–271

    PubMed  CAS  Google Scholar 

  273. Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22: 89–104

    PubMed  CAS  Google Scholar 

  274. Wolpaw JR (1985) Adaptive plasticity in the spinal stretch reflex: an accessible substrate of memory? Cell Mol Neurobiol 5: 147–165

    PubMed  CAS  Google Scholar 

  275. Wood L, Ferrell WR (1984) Response of slowly adapting articular mechanoreceptors in the cat knee joint to alterations in intra-articular volume. Ann Rheum Dis 43: 327–332

    PubMed  CAS  Google Scholar 

  276. Wyke B (1981) The neurology of joints: a review of general principles. Clin Rheum Dis 7: 223–239

    Google Scholar 

  277. Zimny ML (1988) Mechanoreceptors in articular tissues. Am J Anat 182: 16–32

    PubMed  CAS  Google Scholar 

  278. Zätterström R, Fridén T, Lindstrand A, Moritz U (1994) The effect of physiotherapy on standing balance in chronic anterior cruciate ligament insufficiency. Am J Sports Med 22: 531–536

    PubMed  Google Scholar 

  279. Öhberg F, Johansson H, Bergenheim M, Pedersen J, Djupsjöbacka M (1996) A neural network approach to real-time spike discrimination during simultaneous recording from several multiunit nerve filaments. J Neurosci Methods 64: 181–187

    PubMed  Google Scholar 

  280. Özaktay AC, Cavanaugh JM, Blagoev DC, Getchell TV, King AI (1994) Effects of a carrageenan-induced inflammation in rabbit lumbar facet joint capsule and adjacent tissues. Neurosci Res 20: 355–364

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sjölander, P., Johansson, H. (1997). Sensory Endings in Ligaments: Response Properties and Effects on Proprioception and Motor Control. In: Yahia, L. (eds) Ligaments and Ligamentoplasties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60428-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60428-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64404-7

  • Online ISBN: 978-3-642-60428-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics