Skip to main content

Fluorescence Detection of Bladder Cancer

  • Chapter
Carcinoma of the Bladder

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Visual differentiation of normal tissue from transitional cell carcinoma (TCC) is relatively easy, but carcinoma in situ (CIS) or nonmalignant diseases, such as cystitis (bacterial, chemical, or due to radiotherapy), are often invisible to the naked eye. Therefore, biopsies have to be taken for determination of histopathology. Unfortunately, a biopsy represents only a small sample area, and the final pathology results are available only after several days. Hence there is a need for a more practical diagnostic technique, which would provide an in vivo classification of the tissue type in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alfano RR, Tata DB, Cordero J, Tomashefsky P, Longo FW, Alfano MA (1984) Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Electron 20: 1507–1511

    Article  Google Scholar 

  • Andersson-Engels S, Elner A, Johansson J, et al. (1991) Clinical recordings of laser induced fluorescence spectra for evaluation of tumor demarcation feasibility in selected clinical specialties. Lasers Med Sci 6: 415–421

    Article  Google Scholar 

  • Baert L, Berg R, D’Hallewin MA, Van Damme B, Johansson J, Svanberg S, Svanberg K (1991) Clinical fluorescence diagnosis of human bladder carcinoma following low dose Photofrin injection. SPIE Proc 1525: 385–390

    Article  Google Scholar 

  • Baert L, Berg R, Van Damme B, D’Hallewin MA, Johansson J, Svanberg K, Svanberg S (1993) Clinical fluorescence diagnosis of human bladder carcinoma following low-dose Photofrin infection. Urol 41: 322–330

    Article  PubMed  CAS  Google Scholar 

  • Bedwell J, MacRobert A, Philips D, Bown SG (1992) Fluorescence distribution and photodynamic effect of ALA induced pPLX in the DMH rat colonic tumor model. Br J Cancer 65: 818–824

    Article  PubMed  CAS  Google Scholar 

  • Benson RC, Farrow GM, Kinsey JH, Cortese DA, Zincke H, Utz DC (1982) Detection and localization of in situ carcinoma of the bladder with hematoporphyrin derivative. Mayo Clin Proc 57: 548–555

    PubMed  CAS  Google Scholar 

  • Cothren RM, Richards-Kortum R, Sivak MV, Fitzmaurice M, Rava RP (1990) Gastrointestinal tissue diagnosis by laser induced fluorescence spectroscopy at endoscopy. Endoscopy 36: 105–111

    CAS  Google Scholar 

  • D’Hallewin MA, Baert L (1996) Fluorescence detection of flat transitional cell carcinoma after intravesical instillation of aminolevulinic acid. (submitted to J Urol)

    Google Scholar 

  • D’Hallewin MA, Baert L, Vanherzeele H (1993) Cystoscopic photodetection of human bladder carcinoma without sensitizing agents. LEOS ‘83 Conference. Proc IEEE Lasers and Electro Optics Soc 245

    Google Scholar 

  • D’Hallewin MA, Baert L, Vanherzeele H (1994a) In vivo fluorescence detection of human bladder carcinoma without sensitizing agents. J Am paraplegia Soc 17: 161–164

    Google Scholar 

  • D’Hallewin MA, Baert L, Vanherzeele H (1994b) Fluorescence imaging of bladder cancer. Acta Urol Belg 62: 59–63

    Google Scholar 

  • D’Hallewin MA, Baert L, Vanherzeele H (1995) In vivo detection of human bladder carcinoma without sensitizing agents. SPIE Proc 2395: 110–114

    Google Scholar 

  • Galeotti T, Van Rossum GD, Mayer DH, Chance B (1970) On the fluorescence of NAD(P)H in whole cell preparations of tumours and normal tissues. Eur J Biochem 17: 485–496

    Article  PubMed  CAS  Google Scholar 

  • Harries ML, Lam S, MacAulay C, Qu J, Palcic B (1995) Diagnostic imaging of the larynx: autofluorescence of laryngeal tumours using the helium cadmium laser. Laryng Otol 109: 108–110

    CAS  Google Scholar 

  • Hung J, Lam S, LeRiche JC (1991) Autofluorescence of normal and malignant bronchial tissue. Lasers Surg Med 11: 1035–1040

    Article  Google Scholar 

  • Jichlinski P, Forrer M, Mizeret J, et al. (1995) Comparison of two detection methods for screening superficial bladder transitional cell carcinoma: conventional white light cystoscopy versus fluorescence imaging of protoporphyrin IX induced by a topical application of aminolevulinic acid. Abstract Bios Europe 95

    Google Scholar 

  • Jocham D, Staehler G, Chaussy C, Hammer C, Lohrs U (1981) Laserbehandlung von Blasertumoren nach Photosensibilisierung mit Hematoporphyrin-derivat. Urologe [A] 20: 340–343

    Google Scholar 

  • Kapadia CR, Cutruzzola FW, O’Brial KM, Stetz ML, Enriquez R, Deckelbaum L (1990) Laser induced fluorescence spectroscopy on human colonic mucosa. Gastroenterology 99: 150–157

    PubMed  CAS  Google Scholar 

  • Kappas A, Sassa S, Galbraith RA, Nordman Y (1992) The Porphyrias. In: Scriver CR, Baudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease 6th edn. McGraw Hill, New York, pp 1305–1365

    Google Scholar 

  • Kelly JF, Snell ME (1976) Hematoporphyrin derivative: a possible aid in the diagnosis and treatment of carcinoma of the bladder. J Urol 155: 150–153

    Google Scholar 

  • Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Kessel DF (1982) Components of hematoporphyrin derivatives and their tumor localizing capacity. Cancer Res 42: 1703–1708

    PubMed  CAS  Google Scholar 

  • Kessel DF, Chou TH (1983) Tumor localizing components of the porphyrin preparation hematoporphyrin derivative. Cancer Res 43: 1994–1999

    PubMed  CAS  Google Scholar 

  • König K, Kienle A, Boehncke WH, Kaufmann R, Ruck A, Meier, T, Steiner R (1994) Photodynamic tumor therapy and on-line fluorescence spectroscopy after ALA administration using 633-nm light as therapeutic and fluorescence excitation radiation. Opt Engineer 33: 2945–2952

    Article  Google Scholar 

  • Kriegmair M, Baumgartner R, Knuechel R, Stepp H, Hofstetter F, Hofstetter A (1996) Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 155: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Leveckis J, Burn JL, Brown NJ, Reed MW (1994) Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder. J Urol 152: 550–553

    PubMed  CAS  Google Scholar 

  • Lin CW, Bellnier DA, Prout GR, Andrus WS, Prescott R (1984) Cystoscopic fluorescence detector for photodetection of bladder carcinoma with hematoporphyrin derivative. J Urol 131: 587–590

    PubMed  CAS  Google Scholar 

  • Lipson RL, Baldes EJ, Olsen AM (1961) The use of a derivative of hematoporphyrin in tumour detection. J Natl Cancer Inst 26: 1–11

    PubMed  CAS  Google Scholar 

  • Marchesini R, Brambilla M, Pignoli E, et al. (1992) Light induced fluorescence spectroscopy of adenomas, adenocarcinomas and non neoplastic mucosa in human colon: in vitro measurements. J Photochem Photobiol B 14: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Moan J, Sommer S (1981) Fluorescence and absorption properties of the components of hematoporphyrin derivative. Photobiochem Photobiophys 3: 93–102

    CAS  Google Scholar 

  • Neuman RE, Logan MA (1950) The determination of collagen and elastin in tissues. J Biol Chem 186: 549–556

    PubMed  CAS  Google Scholar 

  • Palcic B, Lam S, Hung J, MacAulay C (1991) Detection and localization of early lung cancer by imaging techniques. Chest 99: 742–743

    Article  PubMed  CAS  Google Scholar 

  • Policard A (1924) Etude sur les aspects offerts par des tumeurs expérimentales axaminées à la lumière de Wood. Compte Rendus Soc Biol 91: 1423–1424

    Google Scholar 

  • Pollack MA, Taylor A, Williams RJ (1942) B vitamins in cancerous tissues. I. Riboflavin. Cancer Res 2: 739–743

    CAS  Google Scholar 

  • Pottier R, Laplante JP, Chow YF (1985) Photofrins; a spectral study. Can J Chem 63: 1463–1469

    Article  CAS  Google Scholar 

  • Profio AE, Balchum OJ (1985) Fluorescence diagnosis of cancer. In: Kessel D (ed) Methods in porphyrin sensitization. Plenum Press, New York pp 43–52

    Google Scholar 

  • Profio AE, Carvin MJ, Sarnaik J, Wudl LR (1984) Fluorescence of hematoporphyrin derivative for detection and characterization of tumors. In: Andreoni A, Cubeddu R (eds) Porphyrins in tumor phototherapy. Plenum Press, New York, pp 321–337

    Google Scholar 

  • Qu J, MacAulay C, Lam S, Palcic B (1994) Laser-induced fluorescence spectroscopy at endoscopy. SPIE Proc 2133: 162–169

    Article  Google Scholar 

  • Ramanujam N, Mitchell M, Mahadevan A, et al. (1994) In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm excited laser induced fluorescence. Proc Natl Acad Sci USA 91: 10193–10197

    Article  PubMed  CAS  Google Scholar 

  • Richards-Kortum R, Rava RP, Petras RE, Fitzmaurice M, Sivak M, Feld M (1991) Spectroscopic diagnosis of colonic dysplasia. Photochem Photobiol 53: 777–786

    PubMed  CAS  Google Scholar 

  • Salmon JM, Kohen E, Viallet P, Hirschberg JG, Wouters AW, Kohen C, Thorell B (1982) Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types. Photochem Photobiol 36: 585–593

    Article  PubMed  CAS  Google Scholar 

  • Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Deutsch TF, Nishioka NS (1992) Ultraviolet laser induced fluorescence of colonic polyps. Gastroenterol 104: 1155–1160

    Google Scholar 

  • Schwartz IP, Possoneau JV, Johnson S, Pasta I (1974) The effect of growth conditions on NAD and NADH concentration and the NAD’/NADH ratio on normal and transformed fibroblasts. J Biol Chem 249: 4138–4143

    PubMed  CAS  Google Scholar 

  • Yashke PN, Bonner RF, Cohen P, Leon MB, Fleisher DE (1989) Laser induced fluorescence spectroscopy may distinguish colon cancer from normal human colon. Gastrointest Endosc 35: 184–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Hallewin, MA., Vanherzeele, H., Baert, L. (1998). Fluorescence Detection of Bladder Cancer. In: Petrovich, Z., Baert, L., Brady, L.W. (eds) Carcinoma of the Bladder. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60258-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60258-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64323-1

  • Online ISBN: 978-3-642-60258-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics