Skip to main content

Nucleation and Surface Melting of Ice

  • Conference paper
Ice Physics and the Natural Environment

Part of the book series: NATO ASI Series ((ASII,volume 56))

Abstract

The freezing of water and the melting of ice, phenomena that are extraordinarily familiar from the world around, are only poorly understood at a molecular level. Like all liquids, water can be undercooled without freezing; like most solids, ice cannot be superheated to a significant extent. The dynamics of these phase transitions, and what they tell about the molecular level structure of interfaces and critical nuclei, is revealed by experiment, computer simulation, and theory. In some regards, water resembles simpler liquids in the kinetics of its changes of state, but in others it is quite different. This chapter explores the microscopic dynamics of freezing and melting, with particular emphasis on the water-ice system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Oxtoby, J. Phys. Cond Matter 4, 7627 (1992).

    Article  Google Scholar 

  2. J. L. Katz and F. Spaepen, Phil Mag. B 37, 137 (1978).

    Google Scholar 

  3. D. Turnbull and J. C. Fisher, J. Chem. Phys. 17, 71 (1949).

    Article  Google Scholar 

  4. D. W. Oxtoby and P. R. Harrowell, J. Chem. Phys. 96, 3834 (1992).

    Article  Google Scholar 

  5. G. R. Wood and A. G. Walton, J. Appl. Phys. 41, 3027 (1970).

    Article  Google Scholar 

  6. G. T. Butorin and V. P. Skripov, Sov. Phys.-Crystallogr. 17, 322 (1972).

    Google Scholar 

  7. J. Huang and L. S. Bartell, J. Phys. Chem. 99, 3924 (1995).

    Article  Google Scholar 

  8. S. C. Hardy, Phil. Mag. 35, 471 (1977).

    Article  Google Scholar 

  9. D. R. MacFarlane, R. K. Kadiyala, and C. A. Angell, J. Chem. Phys. 79, 3921 (1983).

    Article  Google Scholar 

  10. P. R. Harrowell and D. W. Oxtoby, J. Chem. Phys. 80, 1639 (1984).

    Article  Google Scholar 

  11. Y. C. Shen and D. W. Oxtoby, J. Chem. Phys. 105, 6517 (1996).

    Article  Google Scholar 

  12. L. A. Baez and P. Clancy, J. Chem. Phys. 102, 8138 (1995).

    Article  Google Scholar 

  13. P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932(1996).

    Google Scholar 

  14. K. Ding, D. Chandler, S. J. Smithline, and A. D. J. Haymet, Phys. Rev. Lett. 59, 1698(1987)

    Article  Google Scholar 

  15. O. A. Karim, P. A. Kay, and A. D. J. Haymet, J. Chem. Phys. 92, 4634 (1990).

    Article  Google Scholar 

  16. I. M. Svishchev and P. G. Kusalik, Phys. Rev. Lett. 73, 975 (1994).

    Article  Google Scholar 

  17. Y. C. Shen and D. W. Oxtoby, Phys. Rev. Lett. 77, 3585 (1996).

    Article  Google Scholar 

  18. R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976).

    Article  Google Scholar 

  19. H. R. Pruppacher, J. Atmos. Sci. 52, 1924 (1995).

    Article  Google Scholar 

  20. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).

    Article  Google Scholar 

  21. H Tanaka, Nature 380, 328 (1996).

    Article  Google Scholar 

  22. O. Mishima, Nature 384, 546 (1996).

    Article  Google Scholar 

  23. D. W. Oxtoby, in Inhomogeneous Liquids, ed. by Douglas Henderson (Marcel Dekker, New York, 1992), Chapter 10

    Google Scholar 

  24. W. Barlow and A. D. J. Haymet, Rev. Sci. Inst. 66, 2996 (1995).

    Article  Google Scholar 

  25. J. Rosinski and A. Lecinski, J. Phys. Chem. 85, 2993 (1981).

    Article  Google Scholar 

  26. M. Gavish, R. Popovitz-Biro, M. Lahav, and L. Leiserowitz, Science 250, 973 (1990).

    Article  Google Scholar 

  27. K. B. Storey and J. M. Storey, Sci. Am. (December, 1990), p. 92.

    Google Scholar 

  28. C. A. Knight and N. C. Knight, Science (Nov. 10, 1972).

    Google Scholar 

  29. R. Lipowsky, Phys. Rev. Lett. 49, 1575 (1982).

    Article  Google Scholar 

  30. R. Ohnesorge, H. Lowen, and H. Wagner, Phys. Rev. E 50, 4801 (1994).

    Article  Google Scholar 

  31. J. Z. Larese and Q. M. Zhang, Phys. Rev. Lett. 64, 922 (1990).

    Article  Google Scholar 

  32. D. Zhu and J. G. Dash, Phys. Rev. Lett. 60, 432 (1988).

    Article  Google Scholar 

  33. J. W. M. Frenken and J. F. van der Veen, Phys. Rev. Lett. 54, 134 (1985).

    Article  Google Scholar 

  34. B. Pluis, A. W. Denier van der Gon, J. W. M. Frenken, and J. F. van der Veen, Phys. Rev. Lett. 59, 2678 (1987)

    Article  Google Scholar 

  35. J. J. Metois and J. C. Heyraud, J. Phys. France 50, 3175 (1989)

    Article  Google Scholar 

  36. J. G. Dash, H. Fu and J. S. Wettlaufer, Rep. Prog. Phys. 58, 115 (1995)

    Article  Google Scholar 

  37. M. Elbaum andM. Schick, Phys. Rev. Lett. 66, 1713 (1991)

    Article  Google Scholar 

  38. M Elbaum, S. G. Lipson, and J. G. Dash, J. Cryst. Growth 129, 491 (1993)

    Article  Google Scholar 

  39. P. Buffat and J.-P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  Google Scholar 

  40. T. L. Beck, J. Jellinek, and R. S. Berry, J. Chem. Phys. 87, 545 (1987)

    Article  Google Scholar 

  41. F. Ercolessi, W. Andreoni, and E. Tosatti, Phys. Rev. Lett. 66, 911 (1991)

    Article  Google Scholar 

  42. M. B. Baker and J. G. Dash, J. Cryst. Growth 97, 770 (1989); J. Geophys. Res. 99, 10621 (1994).

    Article  Google Scholar 

  43. D. Beaglehole, J. Cryst. Growth 112, 663 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oxtoby, D.W. (1999). Nucleation and Surface Melting of Ice. In: Wettlaufer, J.S., Dash, J.G., Untersteiner, N. (eds) Ice Physics and the Natural Environment. NATO ASI Series, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60030-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60030-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64226-5

  • Online ISBN: 978-3-642-60030-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics