Skip to main content

Organization and Expression of the Mitochondrial Genome

  • Chapter
Mitochondrial Diseases
  • 140 Accesses

Abstract

The first studies which suggested that mitochondria contain part of the genetic information responsible for respiration were carried out on yeast by Ephrussi and collabo rators (Ephrussi et al. 1949). They showed that the genetic material which produced few “petites colonies” on a glucose medium, which were unable to respire, did not segregate according to usual Mende’s laws when the “petite colonie” was crossed with the wild-type strain. Instead, genetic material segregated according to new rules independent of nuclear chromosomes. Indeed, the proportion of “petite colonie” could be randomly found in the descendants, instead of the usual Mendelian repartition of 25/25/50.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson S, Bankier AT, Barrell BG, Debruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial DNA. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93:93–135

    Article  PubMed  CAS  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:189–194

    Article  PubMed  CAS  Google Scholar 

  • Blanchard JL, Smith GW (1996) Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol Biol Evol 13:537–548

    PubMed  CAS  Google Scholar 

  • Chang D, Clayton DA (1987) A mammalian mitochondrial RNA processing activity contains nuclear-encoded RNA. Science 235:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Christianson T, Clayton DA (1988) A tridecamer DNA sequence supports human mitochondrial RNA 3’-end formation in vitro. Mol Cell Biol 8:4502–4509

    PubMed  CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  PubMed  CAS  Google Scholar 

  • Daga A, Micol V, Hess D, Aebersold R, Attardi G (1993) Molecular characterization of the transcription terminator factor from human mitochondria. J. Biol Chem 268:8123–8130

    PubMed  CAS  Google Scholar 

  • Dairaghi DJ, Shadel GS, Clayton DA (1995) Human mitochondrial transcription factor A and promoter spacing integrity are required for transcription initiation. Biochim Biophys Acta. 1271:127–134

    PubMed  Google Scholar 

  • Davis AF, Ropp PA, Clayton DA, Copeland WC (1996) Mitochondrial DNA polymerase gamma is expressed and translated in the absence of mitochondrial DNA maintenance and replication. Nucleic Acids Res 24:2753–2759

    Article  PubMed  CAS  Google Scholar 

  • Doersen CJ, Guerrier-Takeda C, Altman S, Attardi G (1985) Characterization of an RNase P activity from HeLa mitochondria. J Biol Chem 260:5942–5949

    PubMed  CAS  Google Scholar 

  • Ephrussi B, Hottinguer H, Tavlitzki J (1949) Action de Pacriflavine sur les levures. Etude génétique du mutant “Petite colonie”. Ann Inst Pasteur 76: 419–451

    Google Scholar 

  • Escaig-Hayes F, Grigoriev V, Peranzi G, Lestienne P, Fournier J-G (1991) Analysis of human mitochondrial transcripts using electron microscopic in situ hybridization. J Cell Sci 100:851–862

    Google Scholar 

  • Farelly F, Butow RA (1983) Rearranged mitochondrial genes in the yeast nuclear genome. Nature 301:296–301

    Article  Google Scholar 

  • Fischer RP, Parisi M, Clayton DA (1989) Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev 3:2202–2217

    Article  Google Scholar 

  • Fischer RP, Lisowski T, Parisi M, Clayton DA (1992) DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 267:3358–3367

    Google Scholar 

  • Fukada M, Wakasugi S, Tsuzuki T, Nomiyama H, Shimada K (1985) Mitochondrial DNA-like sequences in the human nuclear genome. J Mol Biol 186:257–266

    Article  Google Scholar 

  • Gold HA, Topper JN, Clayton DA, Craft J (1989) The RNA processing enzyme RNase MRP is identical to the Th RNP and related to RNase P. Science 245:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Gray H, Wong TW (1992) Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J Biol Chem 267:5835–5841

    PubMed  CAS  Google Scholar 

  • Gross NJ, Getz GS, Rabinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 244:1552–1562

    PubMed  CAS  Google Scholar 

  • Gyllensten U, Wharton D, Josephson A, Wilson A (1991) Paternal inheritance of mitochondrial DNA in mice. Nature 352: 255–257

    Article  PubMed  CAS  Google Scholar 

  • Hixson J, Clayton DA (1985) Initiation of transcription from each of the two human mitochondrial promoters requires unique nucleotides at the transcriptional start sites. Proc Natl Acad Sci USA 82:2660–2664

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Thilly WG (1995) Multicopy nuclear pseudogenes of mitochondrial DNA reveal recent acute genetic change in the human genome. Curr Genet 28:401–404

    Article  Google Scholar 

  • Hutchinson CA, Newbold JE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251:536–538

    Article  Google Scholar 

  • Kaneda H, Hayashi JI, Takahama S, Taya S, Fischer-Lindahl K, Yonekawa H (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 92:4542–4546

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turnel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG, Garman JD, Oldorfs A, Barsh GS, Clayton DA (1996) A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nat Genet 13:296–302

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Matera G, Ward DC, Craft J (1996) Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA 93:11471–11476

    Article  PubMed  CAS  Google Scholar 

  • Li K, Smagula CS, Parsons WJ, Richardson JA, Gonzales M, Hagler HK, Williams RS (1994) Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J Cell Biol 124:871–882

    Article  PubMed  CAS  Google Scholar 

  • Lygerou Z, Mitchell P, Petfalski B, Tollervey D (1994) The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 8:1423–1433

    Article  PubMed  CAS  Google Scholar 

  • Lygerou Z, Allmang C, Tollervey D, Séraphin B (1996) Accurate processing of a eucaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272:268–270

    Article  PubMed  CAS  Google Scholar 

  • Madsen CS, Ghivizzani SC, Hauswirth WW (1993) Protein binding to a single termination-associated sequence in the mitochondrial DNA D-Loop region. Mol Cell Biol 13:2162–2171

    PubMed  CAS  Google Scholar 

  • Martin NC (1995) Organellar tRNAs: biosynthesis and function. In: Söil D, Rajbandhary UL (eds) tRNA structure, biosynthesis, and function. ASM Press, Washington, DC, pp 127–140

    Google Scholar 

  • Monnat RJ, Loeb LA (1985) Nucleotide sequence preservation of human mitochondrial DNA. Proc Natl Acad Sci USA 82:2895–2899

    Article  PubMed  CAS  Google Scholar 

  • Nass S, Nass MMK (1963) Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments. J Cell Biol 19:613–629

    Article  PubMed  CAS  Google Scholar 

  • Nunnari J, Walter P (1996) Regulation of organelle biogenesis. Cell 84:389–394

    Article  PubMed  CAS  Google Scholar 

  • Paluth JL, Clayton DA (1995) Schizosaccharomyces pombe RNase MRP RNA is homologous to metazoan RNase MRP RNAs and may provide clues to interrelationships between RNase MRP and RNase P. Yeast 11:1249–1264

    Article  Google Scholar 

  • Parisi MA, Clayton DA (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252:965–969

    Article  PubMed  CAS  Google Scholar 

  • Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson M, Berry DL, Holland KA, Weedn V, Gill P, Holland M (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15:363–367

    Article  PubMed  CAS  Google Scholar 

  • Ropp PA, Copeland WC (1996) Cloning and characterization of the human mitochondrial DNA polymerase. Genomics 36:449–458

    Article  PubMed  CAS  Google Scholar 

  • Schatz G, Haslbrunner E, Tuppy H (1964) Deoxyribonucleic acid associated with yeast mitochondria. Biochem Biophys Res Commun 15:127–132

    Article  CAS  Google Scholar 

  • Schmitt ME, Clayton DA (1992) Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNase MRP RNA and essential for cell viability. Genes Dev 6:1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Schmitt ME, Bennett JL, Dairaghi D, Clayton DA (1993) Secondary structure of RNase MRP RNA as predicted by phylogenic comparison. FASEB J 7:208–213

    PubMed  CAS  Google Scholar 

  • Solignac M, Monnerot M, Mounolou JC (1983) Mitochondrial DNA heteroplasmy in Drosophila mauritania. Proc Natl Acad Sci USA 80:6942–6946

    Article  PubMed  CAS  Google Scholar 

  • Thorsness PE, Weber ER (1996) Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int Rev Cytol 165:207–234

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD (1997) Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci USA 94:14900–14905

    Article  PubMed  CAS  Google Scholar 

  • Whittmann TS, Clark AG, Stoneking M, Cann RL, Wilson AC (1986) Allelic variation in human mitochondrial genes based on pattern of restriction site polymorphism. Proc Natl Acad Sci USA 83:9611–9615

    Article  Google Scholar 

  • Wong TW, Clayton DA (1985) DNA primase of human mitochondria is associated with structural RNA that is essential for enzymatic activity. Cell 45:817–825

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Veziers, J., Lestienne, P. (1999). Organization and Expression of the Mitochondrial Genome. In: Lestienne, P. (eds) Mitochondrial Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59884-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59884-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64166-4

  • Online ISBN: 978-3-642-59884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics