Skip to main content

Immunoglobulin Isotypes: Structure, Function, and Genetics

  • Chapter
Book cover Origin and Evolution of the Vertebrate Immune System

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 248))

Abstract

Immunoglobulin (Ig) classes (in mammals, IgM, IgA, IgD, IgG, IgE) are defined by the isotypes of heavy (H) chains (µ, α, δ, γ, and ε). Each isotype is in turn distinguished by unique structures in its constant region domains. These different structures confer distinctive functions on the Ig classes. When two or more Ig classes are very similar, as occurs with the four different types of IgG found in man and mouse, they are usually termed subclasses. Each isotype is encoded by a distinct gene and multiple heavy chain isoforms can be produced by alternative pathways of RNA processing, such as the secreted (slg) and membrane (mlg) forms of all H chains, or the full-length and truncated H chain isoforms of certain avian antibodies. Allelic variation in the constant (C) regions gives rise to allotypes. The different types of light (L) chains (in mammals, к and λ) are also typically referred to as isotypes. This system of classification of Igs was developed from studies of man and his immunological understudy, the mouse, and has proven useful not only in these two species, but also in other mammalian species. Although the classification of mammalian Ig classes and isotypes is quite clear, the situation with Igs from nonmammalian vertebrates is not. For example, is the shark molecule referred to as IgM really IgM? Should we call the predominant low molecular weight Ig in chickens IgG or IgY? This chapter discusses the ways in which these and similar questions have been approached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkison MA, Basurco B, Hedrick RP (1996) Humoral immunoglobulins of the white sturgeon, Acipenser transmontanus: partial characterization of and recognition with monoclonal antibodies. Dev Comp Immunol 20: 285–298

    PubMed  CAS  Google Scholar 

  • Anderson M, Amemiya C, Luer C, Litman R, Rast J, Niimura Y, Litman G (1994) Complete genomic sequence and patterns of transcription of a member of an unusual family of closely related, chromosomally dispersed Ig gene clusters in Raja. Int Immunol 6: 1661–1670

    PubMed  CAS  Google Scholar 

  • Anderson MK, Shamblott MJ, Litman RT, Litman GW (1995) Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity. J Exp Med 182: 109–119

    PubMed  CAS  Google Scholar 

  • Anderson MK, Strong SJ, Litman RT, Luer CA, Amemiya CT, Rast JP, Litman (1999) A long form of the skate IgX gene exhibits a striking resemblance to the new shark IgW and Ig NARC genes. Immunogenetics 49: 56–67

    CAS  Google Scholar 

  • Aparicio S, Brenner S (1997) How good a model is the Fugu genome? Nature 387: 140

    PubMed  CAS  Google Scholar 

  • Arun SS, Breuer W, Hermanns W (1996) Immunohistochemical examination of light chain expression (lambda/kappa ratio) in canine, feline, equine, bovine and porcine plasma cells. Zentralbi Veterinarmed A 43: 573–576

    CAS  Google Scholar 

  • Aveskogh M, Hellman L (1998) Evidence for an early appearance of modern post-switch isotypes in mammalian evolution; cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica. Eur J Immunol 9: 2738–2750

    Google Scholar 

  • Barre S, Greenberg AS, Flajnik MF, Chothia C (1994) Structural conservation of hypervariable regions in immunoglobulins in evolution. Natl Struct Biol 1: 915–920

    CAS  Google Scholar 

  • Bengtén E, Leanderson T, Pilström L (1991) Immunoglobulin heavy chain eDNA from the teleost Atlantic cod (Gadus morhua L.): nucleotide sequences of secretory and membrane form show an unusual splicing pattern. Eur J Immunol 21: 3027–3033

    PubMed  Google Scholar 

  • Bengtén E, Daggfeldt A, Magor BG, Warr GW, Pilström L (1997) Organization and transcription enhancers of Ig L chain genes in Atlantic cod. Dev Comp Immunol 21: 162

    Google Scholar 

  • Bernstein RM, Schluter SF, Shen S, Marchalonis JJ (1996) A new high molecular weight immunoglobulin class from the carcharhine shark: implications for the properties of the primordial immunoglobulin. Proc Natl Acad Sci USA 93: 3289–3293

    CAS  Google Scholar 

  • Bentancourt OH, Attal J, Theron MC, Puissant C, Houdebine LM (1993) Efficiency of introns from various origins in fish cells. Mol Mar Biol Biotech 2: 181–188

    Google Scholar 

  • Blomberg BB, Rudin CM, Storb U (1991) Identification and localization of an enhancer for the human lambda L chain Ig gene complex. J Immunol 147: 2354–2358

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Fjellanger I, Gjeruldsen ST (1968) Immunoglobulin M: local synthesis and selective secretion in patients with immunoglobulin A deficiency. Science 160: 789–791

    PubMed  CAS  Google Scholar 

  • Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366: 265–268

    PubMed  CAS  Google Scholar 

  • Brüggemann M (1987) Genes encoding the immunoglobulin constant regions. In: Calabi F, Neuberger MS (eds) Molecular genetics of immunoglobulin. Elsevier Science, Amsterdam, pp 51–80

    Google Scholar 

  • Buhl AM, Cambier JC (1997) Co-receptor and accessory regulation of B-cell antigen receptor signal transduction. Immunol Rev 160: 127–138

    PubMed  CAS  Google Scholar 

  • Burton DR (1987) Structure and function of antibodies. In: Calabi F, Neuberger MS (eds) Molecular genetics of immunoglobulin. Elsevier Science, Amsterdam, pp 1–50

    Google Scholar 

  • Campbell KS, Backstrom BT, Tiefenthaler G, Palmer E (1994) CART: a conserved antigen receptor transmembrane motif. Sem Immunol 6: 393–410

    CAS  Google Scholar 

  • Cheng H-L, Blattner FR, Fitzmaurice L, Mushinski JF, Tucker PW (1982) Structure of genes for membrane and secreted murine IgD heavy chains. Nature 296: 410–415

    PubMed  CAS  Google Scholar 

  • Chintalacharuvu KR, Morrison SL (1996) Residues critical for H-L disulfide bond formation in human IgAl and IgA2. J Immunol 157: 3443–3449

    PubMed  CAS  Google Scholar 

  • Clem LW (1971) Phylogeny of immunoglobulin structure and function. IV. Immmnoglobulins of the giant grouper, Epinephalus itaira. J Biol Chem 246: 9–15

    PubMed  CAS  Google Scholar 

  • Clem LW, DeBoutaud F, Sigel MM (1967) Phylogeny of immunoglobulin structure and function. Immunoglobulins of the nurse shark. J Immunol 99: 1226–1235

    PubMed  CAS  Google Scholar 

  • Clem LW, Small PA (1967) Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark. J Exp Med 125: 893–920

    PubMed  CAS  Google Scholar 

  • Daggfeldt A, Bengtén E, Pilström L (1993) A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38: 199–209

    PubMed  CAS  Google Scholar 

  • Diaz M. Greenberg AS, Flajnik MF (1998) Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci USA 95: 14343–14348

    PubMed  CAS  Google Scholar 

  • Du Pasquier L, Wilson M, Greenberg AS, Flajnik MF (1998) Somatic mutation in ectothermic vertebrates: musings on selection and origins. In: Kelsoe G, Flajnik M (eds) Somatic diversification of immune responses. Springer, Berlin Heidelberg New York, pp 199–216

    Google Scholar 

  • Du Pasquier L, Flajnik MF (1999) Origin and evolution of the vertebrate immune system. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 605–650

    Google Scholar 

  • Edelman GM, Gally JA (1962) The nature of Bence-Jones proteins. Chemical similarities to polypeptide chains of myeloma globulins and normal 7-globulins. J Exp Med 116: 207–227

    PubMed  CAS  Google Scholar 

  • Elgar G, Clark M, Green A, Sanford R (1997) How good a model is the Fugu genome? Nature 387: 14

    Google Scholar 

  • Faith RE, Clem LW (1973) Passive cutaneus anaphylaxis in the chicken. Biological fractionation of the mediating antibody population. Immunol 25: 151–164

    Google Scholar 

  • Feddersen RM, Van Ness BG (1985) Double recombination of a single immunoglobulin kappa-chain allele: implications for the mechanism of rearrangement. Proc Natl Acad Sci USA 82: 4793–4797

    PubMed  CAS  Google Scholar 

  • Fellah JS, Iscaki S, Vaerman JP, Charlemagne J (1992) Transient developmental expression of IgY and secretory component like protein in the gut of the axolotl (Ambystoma mexicauum). Dev Immunol 2: 181–190

    PubMed  CAS  Google Scholar 

  • Ford JE, Home WA, Gibson DM (1994) Light chain isotype regulation in the horse. Characterization of Ig kappa genes. J Immunol 153: 1099–1111

    PubMed  CAS  Google Scholar 

  • Frazer JK, Capra JD (1999) Immunoglobulins: structure and function. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 37–74

    Google Scholar 

  • Ghaffari SH, Lobb CJ (1993) Structure and genomic organization of immunoglobulin light chain in the channel catfish. An unusual genomic organizational pattern of segmental genes. J hnmunol 151: 6900–6912

    PubMed  CAS  Google Scholar 

  • Ghaffari SH, Lobb CJ (1997) Structure and genomic organization of a second class of immunoglobulin light chain genes in the channel catfish. J Immunol 159: 250–258

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Steiner L, Kasahara M, Flajnik MF (1993) Isolation of a shark immunoglobulin light chain cDNA clone encoding a protein resembling mammalian kappa light chains: implications for the evolution of light chains. Proc Natl Acad Sci USA 90: 10603–10607

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374: 168–173

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Hughes AL, Guo J, Avila D, McKinney EC, Flajnik MF (1996) A novel “chimeric” antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur J Immunol 26: 1123–1129

    PubMed  CAS  Google Scholar 

  • Hagman J, Rudin CM, Haasch D, Chaplin D, Storb U (1990) A novel enhancer in the immunoglobulin lambda locus is duplicated and functionally independent of NF kappa B. Genes Dev 4: 978–992

    PubMed  CAS  Google Scholar 

  • Haire RN, Ota T, Rast JP, Litman RT, Chan FY, Zon LI, Litman GW (1996) A third light chain gene isotype in Xenopus laevis consists of six distinct VL families and is related to mammalian λ genes. J Immunol 157: 1544–1550

    PubMed  CAS  Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363: 446–448

    PubMed  CAS  Google Scholar 

  • Harding FA, Cohen N, Litman GW (1990a) Immunoglobulin heavy chain gene organization and complexity in the skate, Raji ernacea. Nucl Acids Res 18: 1015–1020

    CAS  Google Scholar 

  • Harding FA, Amemiya CT Litman RT Cohen N, Litman GW (1990b) Two distinct immunoglobulin heavy chain isotypes in a primitive, cartilaginous fish, Raja erinacea. Nuc Acids Res 18: 6369–6376

    CAS  Google Scholar 

  • Harisdangkul V, McDougal JS, Knapp M, Christian CL (1975) Naturally occurring low molecular weight IgM in patients with rheumatoid arthritis, systemic lupus erythematosus and macroglobulinemia. I. Purification and immunologic studies. J Immunol 115: 216–222

    PubMed  CAS  Google Scholar 

  • Hayzer DJ (1990) Immunoglobulin lambda L chain evolution: Igo and Ig7„ like sequences form three major groups. Immunogenetics 32: 157–174

    PubMed  CAS  Google Scholar 

  • Hazenbos WLW, Heijnen IAFM, Meyer D, Hofhuis FMA, de Lavalette CR, Schmidt RE, Capel PJA, van de Winkel JGJ, Gessner JE, van den Berg TK, Verbeek JS (1998) Murine IgGI complexes trigger immune effector functions predominantly via FcyRIII (CD16). J Immunol 161: 3026–3032

    PubMed  CAS  Google Scholar 

  • Helm BA, Ling Y, Teale C, Padlan EA, Brüggemann M (1991) The nature and importance of the inter-e chain disulfide bonds in human IgE. Eur J Immunol 21: 1543–1548

    PubMed  CAS  Google Scholar 

  • Higgins DA, Warr GW (1993) Duck immunoglobulins: structure, functions and molecular genetics. Avian Pathol 22: 211–236

    PubMed  CAS  Google Scholar 

  • Hinds-Frey KR, Nishikata H, Litman RT, Litman GW (1993) Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J Exp Med 178: 815–824

    PubMed  CAS  Google Scholar 

  • Hohman VS, Schluter SF, Marchalonis JJ (1992) Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains. Proc Natl Acad Sci USA 89: 276–280

    PubMed  CAS  Google Scholar 

  • Hohman VS, Schuchman DB, Schluter SF, Marchalonis JJ (1993) Genomic clone for sandbar shark lambda light chain: generation of diversity in the absence of gene rearrangement. Proc Natl Acad Sci USA 90: 9882–9886

    PubMed  CAS  Google Scholar 

  • Home WA, Ford JE, Gibson DM (1992) L chain isotype regulation in horse. I. Characterization of Ig lambda genes. J Immunol 149: 3927–3936

    PubMed  CAS  Google Scholar 

  • Honjo T, Matsuda F (1995) Immunoglobulin heavy chain loci of mouse and human. In: Honjo T, Alt FW (eds) Immunoglobulin genes. Academic Press, London, pp 145–171

    Google Scholar 

  • Hordvik I, Voie AM, Glette J, Male R, Endresen C (1992) Cloning and sequence analysis of two isotypic IgM heavy chain genes from Atlantic salmon, Salmo salar L. Eur J Immunol 22: 2957–2962

    PubMed  CAS  Google Scholar 

  • Hsu E, Lefkovits I. Flajnik M, Du Pasquier L (1991) Light chain heterogeneity in the amphibian Xenopus. Mol Immunol 28: 985–994

    PubMed  CAS  Google Scholar 

  • Hsu E (1994) The variation in immunoglobulin heavy chain constant regions in evolution. Semin Immunol 6: 383–391

    PubMed  CAS  Google Scholar 

  • Kabat EA, Wu TT, Perry HM, Gottesmann KS, Foeller G (1991) Sequences of proteins of Immuno- logical Interest. 5th edn. Department of Health Services, National Institutes Health, Bethesda

    Google Scholar 

  • Kerr MA (1990) The structure and function of human IgA. Biochem J 271: 285–296

    PubMed  CAS  Google Scholar 

  • Klapper D, Clem LW, Small PA (1971) Proteolytic fragmentation of elasmobranch immunoglobulins. Biochemistry 10: 645–652

    PubMed  CAS  Google Scholar 

  • Klein J (1998) In an immunological twilight zone. Proc Natl Acad Sci USA 95:11504–11505

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Tomonaga S, Kajii T (1984) A second class of immunoglobulin other than IgM present in the serum of a cartilaginous fish, the skate Raja kenojei: isolation and characterization. Mol Immunol 21:397–404

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Tomonaga S (1988) The second immunoglobulin class is commonly present in cartilaginous fish belonging to the order Rajiformes. Mol Immunol 25: 115–120

    PubMed  CAS  Google Scholar 

  • Kokubu F, Hinds K, Litman R, Shamblott MJ, Litman GW (1988) Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 7: 1979–1988

    PubMed  CAS  Google Scholar 

  • Kubo RT, Rosenblum IY, Benedict AA (1970) The unblocked N-terminal sequences of chicken IgG k-like light chain. J Immunol 105: 534–536

    PubMed  CAS  Google Scholar 

  • Lake JAS Moore JE (1998) Phylogenetic analysis and comparative genomics. Trends Guide to Bioinformatics, Trends Suppl, Elsevier Science, Amsterdam, pp 22–23

    Google Scholar 

  • Lee MA, Bengtén E, Daggfeldt A, Rytting AS, Pilström L (1993) Characterisation of rainbow trout cDNAs encoding a secreted and membrane-bound Ig heavy chain and the genomic intron upstream of the first constant exon. Mol Immunol 30: 641–648

    PubMed  CAS  Google Scholar 

  • Leslie GA, Clem LW (1969) Phylogeny of immunoglobulin structure and function. III. Immunoglobulins of the chicken. J Exp Med 130: 1337–1352

    PubMed  CAS  Google Scholar 

  • Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17: 109–147

    PubMed  CAS  Google Scholar 

  • Lobb CJ, Olson MO, Clem LW (1984) Immunoglobulin light chain classes in a teleost fish. J Immunol 132: 1917–1923

    PubMed  CAS  Google Scholar 

  • Lobb CJ (1987) Secretory immunity induced in catfish, Ictalurus punctatus, following bath immunization. Dev Comp Immunol 11: 727–738

    PubMed  CAS  Google Scholar 

  • Lucero JE, Rosenberg GH, Miller RD (1998) Marsupial light chains: complexity and conservation of 2 in the opossum Manodelphis domestica. J Immunol 161: 6724–6732

    PubMed  CAS  Google Scholar 

  • Lundqvist ML, Strömberg S, Pilström L (1998) Ig heavy chain of the sturgeon Acipenser baeri: eDNA sequence and diversity. Immunogenetics 48: 372–382

    PubMed  CAS  Google Scholar 

  • Lundqvist M, Bengtén E, Strömberg S. Pilström L (1996) Immunoglobulin light chain gene in the Siberian sturgeon (Acipenser baeri). J Immunol 157: 2031–2038

    PubMed  CAS  Google Scholar 

  • Lutz C, Ledermann B, Kosco-Vilbois MH, Ochsenbein AF, Zinkernagel RM, Kohler G, Brombacher F (1998) IgD can largely substitute for loss of IgM function in B cells. Nature 393: 797–801

    PubMed  CAS  Google Scholar 

  • Magor B, Wilson MR, Miller NW, Clem LW, Middleton DL, Warr GW (1994) An Ig heavy chain enhancer of the channel catfish Ictalurus punctatus: evolutionary conservation of function but not structure. J Immunol 153: 5556–5563

    PubMed  CAS  Google Scholar 

  • Magor KE, Warr GW, Middleton D, Wilson MR, Higgins DA (1992) Structural relationship between the two IgY of the duck Anas platyrhvnchos: molecular genetic evidence. J Immunol 149: 2627–2633

    PubMed  CAS  Google Scholar 

  • Magor KE, Higgins D, Middleton DL, Warr GW (1994) One gene encodes the heavy chain for the three different forms of IgY in the duck. J Immunol 153: 5549–5555

    PubMed  CAS  Google Scholar 

  • Magor KE, Warr GW, Bando Y, Middleton DL, Higgins DA (1998) Secretory immune system of the duck (Anas platyrhynchos). Identification and expression of the genes encoding IgA and IgM heavy chains. Eur J Immunol 28: 1063–1068

    PubMed  CAS  Google Scholar 

  • Magor KE, Higgins DA, Middleton DL, Warr GW (1999) Opposite orientation of the alpha and upsilon constant region genes in the immunoglobulin heavy chain of the duck. Immunogenetics 49: 692–695

    PubMed  CAS  Google Scholar 

  • Mansikka A (1992) Chicken IgA H chains: implications concerning the evolution of H chain genes. J Immunol 149: 855–861

    PubMed  CAS  Google Scholar 

  • Marchalonis JJ, Weltman JK (1971) Relatedness among proteins: A new method of estimation and its application to immunoglobulins. Comp. Biochem. Physiol (B) 38: 609–625

    CAS  Google Scholar 

  • Marchalonis JJ, Schluter SF, Bernstein RM, Shen S, Edmundson AB (1998) Phylogenetic emergence and molecular evolution of the immunoglobulin family. Adv Immunol 70: 417–506

    PubMed  CAS  Google Scholar 

  • Max EE (1999) Immunoglobulins: Molecular genetics. In: Paul WE (ed) Fundamental Immunology. 4th edn. Lippincott-Raven, Philadelphia, pp 111–182

    Google Scholar 

  • McCormack WT, Carlson LM, Tjoelker LW, Thompson CB (1989) Evolutionary comparison of the avian IgL locus: combinatorial diversity plays a role in the generation of the antibody repertoire in some avian species. Int Immunol 1: 332–341

    PubMed  CAS  Google Scholar 

  • McCormack WT, Thompson CB (1990) Somatic diversification of the chicken immunoglobulin light chain gene. Adv Immunol 48: 41–67

    PubMed  CAS  Google Scholar 

  • McDougal JS, Harisdangkul V, Christian CL (1975) Naturally-occurring low molecular weight IgM in patients with rheumatoid arthritis, systemic lupus erythematosus, and macroglobulinemia. II. Structural studies and comparison of some physicochemical properties of reduced and alkylated IgM, and low molecular weight IgM. J Immunol 115: 223–229

    PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Dayhoff MO (1972) Evolution of species and proteins: a time scale. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5. National Biomedical Research Foundation, Georgetown University, Washington DC, pp 47–52

    Google Scholar 

  • Michael N. Accavitti MA, Masteller E, Thompson CB (1998) The antigen binding characteristics of mAbs derived from in vivo priming of avian B cells. Proc Natl Acad Sci USA 95: 1166–1171

    PubMed  CAS  Google Scholar 

  • Mikoryak CA, Steiner LA (1988) Amino acid sequence of the constant region of immunoglobulin light chains from Rana catesbeiana. Mol Immunol 25: 695–703

    PubMed  CAS  Google Scholar 

  • Miller NW, Sizemore RC, Clem LW (1985) Phylogeny of lymphocyte heterogeneity: the cellular requirements for in vitro antibody responses of channel catfish leukocytes. J Immunol 134: 2884–2888

    PubMed  CAS  Google Scholar 

  • Miller NW, Rycyzyn MA, Wilson MR, Warr GW, Naftel JP, Clem LW (1994) Development and characterization of channel catfish long term B cell lines. J Immunol 152: 2180–2189

    PubMed  CAS  Google Scholar 

  • Miller N, Wilson M. Bengten E, Stuge T, Warr G, Clem W (1998) Functional and molecular characterization of teleost leukocytes. Immunol Rev 166: 187–197

    PubMed  CAS  Google Scholar 

  • Mußmann R, Wilson M, Marcuz A, Courtet M, Du Pasquier L (1996a) Membrane exon sequences of the three Xenopus Ig classes explain the evolutionary origin of mammalian isotypes. Eur J Immunol 26: 409–414

    PubMed  Google Scholar 

  • Mußmann R, Du Pasquier L, Hsu E (19966) Is Xenopus IgX an analog of IgA? Eur J Immunol 26: 2823–2830

    PubMed  Google Scholar 

  • Mußmann R, Courtet M, Du Pasquier L (1998) Development of the early B cell population in Xenopus. Eur J Immunol 28: 2947–2959

    PubMed  Google Scholar 

  • Nitschke L, Kosco MH, Kohler G, Lamers MC (1993) Immunoglobulin D (IgD)-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc Natl Acad Sci USA 90: 1887–1891

    PubMed  CAS  Google Scholar 

  • Ng PLK, Higgins DA (1986) Bile immunoglobulin of the duck (Anas platprhvnclzos). I. Preliminary characterization and ontogeny. Immunol 58: 323–327

    CAS  Google Scholar 

  • Ota T, Rast JP, Litman GW, Amemiya CT (1997) Lungfish immunoglobulins and their evolutionary implications. Dev Comp Immunol 21: 159

    Google Scholar 

  • Parham P (1995) Antibody structure. The ducks dilemma. Nature 374: 16–17

    PubMed  CAS  Google Scholar 

  • Partula S, Schwager J, Timmusk S, Pilström L, Charlemagne J (1996) A second immunoglobulin light chain isotype in the rainbow trout. Immunogenetics 45: 44–51

    PubMed  CAS  Google Scholar 

  • Parvari R, Avivi A, Lenter F (1988) Chicken immunoglobulin gamma-heavy chains: limited gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus. EMBO J 7: 739–744

    PubMed  CAS  Google Scholar 

  • Perchalski J, Clem LW, Small PA (1968) 7SyM immunoglobulin in normal human cord serum. Amer J Med Sci 256: 107–111

    Google Scholar 

  • Peterson ML (1994) RNA processing and expression of immunoglobulin genes. In: Snow EC (ed) Handbook of B and T lymphocytes. Academic Press, San Diego, pp 321–342

    Google Scholar 

  • Peterson ML, Perry RP (1989) The regulated production of µm and is mRNA is dependent on the relative efficiencies of is poly(A) site usage and the Cµ4-to-Ml splice. Mol Cell Biol 9: 726–738

    PubMed  CAS  Google Scholar 

  • Pilström L, Lundquist ML, Wermenstan NE (1998) The immunoglobulin light chain in poikilothermic vertebrates. Immunol Rev 166: 123–132

    PubMed  Google Scholar 

  • Pleiman CM, D’Ambrosio D, Cambier JC (1994) The B-cell antigen receptor complex: structure and signal transduction. Immunol Today 15: 393–399

    PubMed  CAS  Google Scholar 

  • Pumphrey R (1986) Computer models of the human immunoglobulins. Shape and segmental flexibility. Immunol Today 7: 174–178

    CAS  Google Scholar 

  • Putnam FW, Takahashi N, Tetaert D, Debuire B, Lin LC (1981) Amino acid sequence of the first constant region domain and the hinge region of the delta heavy chain of human IgD. Proc Natl Acad Sci USA 78: 6168–6172

    PubMed  CAS  Google Scholar 

  • Rast JP, Anderson MK, Ota T, Litman RT, Margittai M, Shamblott MJ, Litman GW (1994) Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics 40: 83–99

    PubMed  CAS  Google Scholar 

  • Reynaud CA, Dahan A, Weill JC (1983) Complete sequence of a chicken lambda light chain immunoglobulin derived from the nucleotide sequence of its mRNA. Proc Natl Acad Sci USA 80: 4099–4103

    PubMed  CAS  Google Scholar 

  • Reynaud CA, Anquez V, Grimai H, Weill JC (1987) A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48: 379–388

    PubMed  CAS  Google Scholar 

  • Reynaud CA, Dahan A, Anquez V, Weill JC (1989) Somatic hyperconversion diversifies the single gene of the chicken with a high incidence in the D region. Cell 59: 171–183

    PubMed  CAS  Google Scholar 

  • Roes J, Rajewsky K (1993) Immunoglobulin D-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J Exp Med 177: 45–55

    PubMed  CAS  Google Scholar 

  • Rombout WM, Joosten EPHM (1998) Mucosal immunity. In: Pastoret PP, Griebel P, Bazin H, Govaerts A (eds) Immunology of fishes, in Handbook of vertebrate immunology, Academic Press, San Diego, pp 39–40

    Google Scholar 

  • Ross DA, Wilson MR, Miller NW, Clem LW, Warr GW (1998) Evolutionary variation of immunoglobulins p heavy chain RNA processing pathways: origins, effect and implications. Immunol Rev 166: 143–151

    PubMed  CAS  Google Scholar 

  • Roux KH, Greenberg AS, Greene L, Strelets L, Avila D, McKinney EC. Flajnik MF (1998) Structural analysis of the nurse shark (new) antigen receptor (NAR): Molecular convergence of NAR and unusual mammalian immunoglobulins. Proc Natl Acad Sci USA 95: 11804–11809

    PubMed  CAS  Google Scholar 

  • Rycyzyn MA, Wilson MR, Warr GW, Clem LW, Miller NW (1996) Membrane immunoglobulin-associated molecules on channel catfish B lymphocytes. Dev Comp Immunol 20: 341–351

    PubMed  CAS  Google Scholar 

  • Sanchez C, Alvarez A, Castillo A, Zapata A, Villena A, Dominguez J (1995) Two different subpopulations of Ig bearing cells in lymphoid organs of rainbow trout. Dev Comp Immunol 19: 79–86

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  • Schluter SF, Bernstein RM, Marchalonis JJ (1997) Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates. Immunol Today 18: 543–549

    PubMed  CAS  Google Scholar 

  • Schumaker VN, Phillips ML, Hansen DC (1991) Dynamic aspects of antibody structure. Mol Immunol 28: 1347–1360

    PubMed  CAS  Google Scholar 

  • Schwager J, Burckert N, Schwager M. Wilson M (1991) Evolution of immunoglobulin light chain genes: analysis of Xenopus IgL isotypes and their contribution to antibody diversity. EMBO J 10: 505–511

    PubMed  CAS  Google Scholar 

  • Shamblott MJ, Litman GW (1989) Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization. EMBO J 8: 3733–3739

    PubMed  CAS  Google Scholar 

  • Shankey TV, Clem LW (1980a) Phylogeny of immunoglobulin structure and function VIII. Intermolecular heterogeneity of shark 19 s IgM antibodies to pneumococcal polysaccaride. Mol Immunol 17: 365–375

    PubMed  CAS  Google Scholar 

  • Shankey TV, Clem LW (1980b) Phylogeny of immunoglobulin structure and function IX. Intramolecular heterogeneity of shark 19 s IgM antibodies to the dinitrophenyl hapten. J Immunol 125: 2690–2698

    PubMed  CAS  Google Scholar 

  • Sitnikova T, Nei M (1998) Evolution of immunoglobulin Kappa chain variable region genes in vertebrates. Mol Biol Evol 15: 50–60

    PubMed  CAS  Google Scholar 

  • Slattery J, Holowka D, Baird B (1985) Segmental flexibility of receptor-bound immunoglobulin E. Biochemistry 24: 7810–7820

    CAS  Google Scholar 

  • Small PA, Klapper DG, Clem LW (1970) Half-lives body distribution and lack of interconversion of serum 19 s and 7 s IgM of sharks. J Immunol 105: 29–37

    PubMed  CAS  Google Scholar 

  • Stewart SE, Du Pasquier L, Steiner LA (1993) Diversity of expressed V and J regions of immunoglobulin light chains in Xenopus lavis. Eur J Immunol 23: 1980–1986

    PubMed  CAS  Google Scholar 

  • Swofford DL (1993) PAUP: Phylogentic analysis using parsimony (Illinois Nat Hist Survey, Champagne IL), version 3.1. 1

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 11: 4673–4680

    Google Scholar 

  • Thorbecke GJ, Leslie GA (eds) (1982) Immunoglobulin D: structure and function. Annals New York Acad Sciences, New York

    Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581

    PubMed  CAS  Google Scholar 

  • Tucker PW, Slightom JL, Blattner FR (1981a) Mouse IgA heavy chain gene sequence: implications for evolution of immunoglobulin hinge exons. Proc Natl Acad Sci USA 78: 7644–7648

    Google Scholar 

  • Tucker PW, Cheng H-L, Richards JE, Fitzmaurice L. Mushinski JF, Blattner FR (198lb) Genetic aspects of IgD expression: III. Functional implications of the sequence and organization of the C8 gene. In: Thorbecke GJ, Leslie GA (eds) Annals New York Acad Sciences, New York, pp 26–40

    Google Scholar 

  • van Ginkel FW, Pascual DW, Clem LW (1991) Proteolytic fragmentation of channel catfish antibodies. Dev Comp Immunol 15: 41–51

    PubMed  Google Scholar 

  • van Ginkel FW, Miller NW, Cuchens MA, Clem LW (1994) Activation of channel catfish B cells by membrane immunoglobulin cross-linking. Dev Comp Immunol 18: 97–107

    PubMed  Google Scholar 

  • Warr GW (1995) The immunoglobulins of fish. Dev Comp Immunol 19: 1–12

    PubMed  CAS  Google Scholar 

  • Warr GW, Magor KE, Higgins DA (1995) IgY: clues to the origins of modern antibodies. Immunol Today 16: 392–398

    PubMed  CAS  Google Scholar 

  • Watanabe H, Kobsyashl K (1974) Peculiar IgA system identified in chicken. J Immunol 113: 1405–1409

    PubMed  CAS  Google Scholar 

  • Wilson MR, Warr GW (1992) Fish immunoglobulins and the genes that encode them. Ann Rev Fish Diseases 2: 201–221

    Google Scholar 

  • Wilson MR, Marcuz A, van Ginkel F, Miller NW, Clem LW, Middleton D, Warr GW (1990) The immunoglobulin M heavy chain constant region gene of the channel catfish, lctalurus punctatus: an unusual mRNA splice pattern produces the membrane form of the molecule. Nucl Acids Res 18: 5227–5233

    PubMed  CAS  Google Scholar 

  • Wilson MR, van Ravenstein E, Miller NW, Clem LW, Middleton DL, Warr GW (1995a) eDNA sequences and organization of IgM heavy chain genes in two holostean fish. Dev Comp Immunol 19: 153–164

    CAS  Google Scholar 

  • Wilson MR, Ross DA, Miller NW, Clem LW, Middleton DL, Warr GW (1995b) Alternate pre-mRNA processing pathways in the production of membrane IgM heavy chains in holostean fish. Dev Comp Immunol 19: 165–177

    CAS  Google Scholar 

  • Wilson M, Bengtén E, Miller NW. Clem LW, Du Pasquier, Warr GW (1997) A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci USA 94: 4593–4597

    PubMed  CAS  Google Scholar 

  • Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for anti-body complementarity. J Exp Med 132: 211–250

    PubMed  CAS  Google Scholar 

  • Yamawaki-Kataoka Y, Miyata T, Honjo T (1981) The complete nucleotide sequence of mouse immunoglobulin gamma 2a gene and evolution of heavy chain genes: further evidence for intervening sequence-mediated domain transfer. Nucl Acids Res 9: 1365–1381

    PubMed  CAS  Google Scholar 

  • Zezza DJ, Stewart SE, Steiner LA (1992) Genes encoding Xenopus (tens Ig L chains. Implications for the evolution of kappa and lambda chains. J Immunol 149: 3968–3977

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bengtén, E., Wilson, M., Miller, N., Clem, L.W., Pilström, L., Warr, G.W. (2000). Immunoglobulin Isotypes: Structure, Function, and Genetics. In: Du Pasquier, L., Litman, G.W. (eds) Origin and Evolution of the Vertebrate Immune System. Current Topics in Microbiology and Immunology, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59674-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59674-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64078-0

  • Online ISBN: 978-3-642-59674-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics