Skip to main content

Fundamental Electronic and Optical Properties

  • Chapter
Semiconducting Silicides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 39))

  • 302 Accesses

Abstract

The behavior of electrons in a solid determines its main properties. It is most conveniently specified on the basis of quantum mechanical models describing the electronic band structure of the solid and related optical and transport properties. Computer simulation is employed more and more to validate phenomenological models, to provide complementary information to experimental measurements, and to understand physical phenomena at the atomic scale. In this chapter we focus on the fundamental electronic properties of semiconducting silicides starting from their electronic band structures and extending the analysis to the nature of the orbital band composition, density of states and effective masses of the charge carriers. Related optical properties represented by interband optical spectra, photo and electroluminescence, infrared optical response are then shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.K. Ridley: Quantum Processes in Semiconductors, Second Edition ( Clarendon Press, Oxford, 1988 ).

    Google Scholar 

  2. N. Peyghambarian, S. W. Koch, A. Mysyrowicz: Introduction to Semiconductor Optics(Prentice Hall, Englewood Cliffs, New Jersey, 1993 ).

    Google Scholar 

  3. C.F. Klingshirn: Semiconductor Optics( Springer, Berlin, 1995 ).

    Google Scholar 

  4. P.Y. Yu, M. Cardona: Fundamentals of Semiconductors( Springer, Berlin, 1996 ).

    Google Scholar 

  5. Density Functional: Theory and Applications, edited by D. Joubert (Springer, Berlin, 1998).

    Google Scholar 

  6. F. Meloni, E. Mooser, A. Baldereschi: Bonding nature of conduction states in electron-deficient semiconductors: Mg2Si, Physica B + C (Amsterdam) 117-118(1), 72–74(1983).

    Google Scholar 

  7. D.M. Wood, A. Zunger: Electronic structure of generic semiconductors: Antifluorite silicide and III-V compounds, Phys. Rev. B 34 (6), 4105–4120 (1986).

    CAS  Google Scholar 

  8. N.O. Folland: Self-consistent calculations of the energy band structure of Mg2Si, Phys. Rev. 158 (3), 764–775 (1967).

    CAS  Google Scholar 

  9. P.M. Lee: Electronic structure of magnesium silicide and magnesium germanide, Phys. Rev. 135 (4A), A1110–A1114 (1964).

    Google Scholar 

  10. F. Aymerich, G. Mula: Pseudopotential band structure of Mg2Si, Mg2Ge, Mg2Sn, and of the solid solution Mg2(Ge, Sn), Phys. Stat. Sol. 42 (2), 697–704 (1970).

    CAS  Google Scholar 

  11. V.K. Bashenov, A.M. Mutal, V.V. Timofeenko: Valence-band density of states for Mg2Si from pseudopotential calculation, Phys. Stat. Sol. (b) 87 (1), K77–K79 (1978).

    CAS  Google Scholar 

  12. M.Y. Au-Yang, M.L. Cohen: Electronic structure and optical properties of Mg2Si, Mg2Ge, and Mg2Sn, Phys. Rev. 178 (3), 1358–1364 (1969).

    CAS  Google Scholar 

  13. A.J. Bevolo, H.R. Shanks: Valence band study of Mg2Si by Auger spectroscopy, J. Vac. Sci. Technol. A 1 (2), 574–577 (1983).

    CAS  Google Scholar 

  14. V.M. Glazov, V.B. Koltsov, V.A. Kurbatov: Investigation of the Hall-effect in Mg2Si, Mg2Ge, Mg2Sn compounds in solid and liquid state, Soviet Physics Semiconductors 20(5), 527–530 (1986) (in Russian).

    Google Scholar 

  15. R.G.Morris, R.D. Redin, G.C. Danielson: Semiconducting properties of Mg2Si single crystals, Phys. Rev. 109 (6), 1909–1915 (1958).

    CAS  Google Scholar 

  16. R.J. LaBotz, D.R.Mason, D.F. O’Kane: The thermoelectric properties of mixed crystals of Mg2GexSi1-x, J. Electrochem. Soc. 110(2), 127–34(1963).

    CAS  Google Scholar 

  17. J.E. Mahan, A. Vantomme, G. Langouche, J.P.Becker: Semiconducting Mg2Si thin films prepared by molecular-beam epitaxy, Phys. Rev. B 54 (23), 16965–16971 (1996).

    CAS  Google Scholar 

  18. V.M. Glazov, L.M.Pavlova, K.B. Poyarkov: Thermodynamics of semiconducting compounds Mg2BIV (BIV - Si, Ge, Sn, Pb), Obzory po electr. technike, Ser. 6, Mater. 9(917), 1–44 (1982) (in Russian).

    Google Scholar 

  19. J. Tejeda, M. Cardona: Valence bands of the Mg2X (X = Si, Ge, Sn) semiconducting compounds, Phys. Rev. B 14 (6), 2559–2568 (1976).

    CAS  Google Scholar 

  20. F. Vazquez, R.A. Forman, M. Cardona: Electroreflectance measurements on Mg2Si, Mg2Ge, and Mg2Sn, Phys. Rev. 176 (3), 905–908 (1968).

    CAS  Google Scholar 

  21. S.G. Kroitoru, V.V. Sobolev: Reflectance spectra of Mg2Si and Mg2Sn, Opt. Spectr. (USSR) 21 (1), 48–50 (1966).

    Google Scholar 

  22. A. Stella, D.W. Lynch: Photoconductivity in Mg2Si and Mg2Ge, J. Phys. Chem. Solids 25 (12), 1253–1259 (1964).

    CAS  Google Scholar 

  23. A. Stella, A.D. Brothers, R.H. Hopkins, D.W. Lynch: Pressure coefficient of the band gap in Mg2Si, Mg2Ge, and Mg2Sn, Phys. Stat. Sol. 23 (2), 697–702 (1967).

    CAS  Google Scholar 

  24. P. Koenig, D.W. Lynch, G.C. Danielson: Infrared absorption in magnesium silicide and magnesium germanide, J. Phys. Chem. Solids 20 (1/2), 122–126 (1961).

    CAS  Google Scholar 

  25. D. Panke, E. Wölfel: Die Verteilung der Valenzelektronen im Mg2Si, Z Kristallogr. 129 (1), 9–28 (1969).

    CAS  Google Scholar 

  26. W.B. Whitten, P.L. Chung, G.C.Danielson: Elastic constants and lattice vibration frequencies of Mg2Si, J. Phys. Chem. Solids 26 (1), 49–56 (1965).

    CAS  Google Scholar 

  27. J. Evers: Semiconductor-metal transition in BaSi2, J. Less-Common Met. 58 (1), 75–83 (1978).

    CAS  Google Scholar 

  28. J. Evers, A. Weiss: Electrical properties of alkaline earth disilicides and digermanides, Mater. Res. Bull. 9 (5), 549–554 (1974).

    CAS  Google Scholar 

  29. V.S. Neshpor, V.L. Upko: Investigation of formation conditions and some physical properties of barium disilicide, J. Appl. Chem. 36(5), 1139–1142 (1963) (in Russian).

    CAS  Google Scholar 

  30. A.B. Filonov, I.E. Tralle, N.N. Dorozhkin, D.B. Migas, V.L. Shaposhnikov, G.V. Petrov, A.M. Anishchik, V.E. Borisenko: Semiconducting properties of hexagonal chromium, molybdenum, tungsten disilicides, Phys. Stat. Sol. (b) 186(1), 209–215(1994).

    CAS  Google Scholar 

  31. M.P.C.M. Krijn, R. Eppenga: First-principles electronic structure and optical properties of CrSi2, Phys. Rev. B 44 (16), 9042–9044 (1991).

    CAS  Google Scholar 

  32. M.C. Bost, J.E. Mahan: An investigation of the optical constants and band gap of chromium disilicide, J. Appl. Phys. 63 (3), 839–844 (1988).

    CAS  Google Scholar 

  33. F. Nava, T. Tien, K.N. Tu: Temperature dependence of semiconducting and structural properties of Cr-Si thin films, J. Appl. Phys. 57 (6), 2018–2025 (1985).

    CAS  Google Scholar 

  34. V.E. Borisenko, L.I. Ivanenko, S.Yu. Nikitin: Semiconducting properties of chromium disilicide, Mikroelektronika 21(2), 61–77 (1992) (in Russian).

    Google Scholar 

  35. V.E. Borisenko, D.I. Zarovskii, G.V. Litvinovich, V.A. Samuilov: Optical spectroscopy of chromium silicide formed by a flash heat treatment of chromium films on silicon, Zurn. Prikl. Spectrosk. 44(2), 314–317 (1986) (in Russian).

    CAS  Google Scholar 

  36. E.N. Nikitin, V.I. Tarasov, V.K. Zaitsev: Electrical properties of some solid solutions of 3d-transition metal silicides, Fiz. Tverdogo Tela 15(4), 1254–1256 (1973) (in Russian).

    CAS  Google Scholar 

  37. S. Halilov, E. Kulatov: Electron and optical spectra in the indirect-gap semiconductor CrSi2, Semicond. Sci. Technol. 7 (3), 368–372 (1992).

    CAS  Google Scholar 

  38. I. Nishida, T. Sakata: Semiconducting properties of pure and Mn-doped chromium disilicides, J. Phys. Chem. Solids 39 (5), 499–505 (1978).

    CAS  Google Scholar 

  39. W. Henrion, H. Lange, E. Jahne, M. Giehler: Optical properties of chromium and iron disilicide layers, Appl. Surf. Sci. 70 /71, 569–572 (1993).

    Google Scholar 

  40. L.F. Mattheiss: Structural effects on the calculated semiconductor gap of CrSi2, Phys. Rev. B 43(2), 1863–1866(1991).

    CAS  Google Scholar 

  41. H. Lange, M. Giehler, W. Henrion, F. Fenske, I. Sieber, G. Oertel: Growth and optical characterization of CrSi2 thin films, Phys. Stat. Sol. (b) 171 (1), 63–76 (1992).

    CAS  Google Scholar 

  42. D. Shinoda, S. Asanabe, Y. Sasaki: Semiconducting properties of chromium disilicide, J. Phys. Soc. Jap. 19 (3), 269–272 (1964).

    CAS  Google Scholar 

  43. V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V.N. Antonov, Vl.N. Antonov, O. Jepsen, O.K. Andersen, V.V. Nemoshkalenko: Theory and experiment on the optical properties of CrSi2, Phys. Rev. B 46(15), 9380–9389(1992).

    CAS  Google Scholar 

  44. N.G. Galkin, T.V. Velitchko, S.V. Skripka, A.B. Khrustalev: Semiconducting and structural properties of CrSi2 A-type epitaxial films on Si(111), Thin Solid Films 280 (1-2), 211–220 (1996).

    CAS  Google Scholar 

  45. L.F. Mattheiss: Electronic structure of CrSi2 and related refractory disilicides, Phys. Rev. B 43 (15), 12549–12555 (1991).

    CAS  Google Scholar 

  46. S. Valeri, L. Grandi, C. Calandra: Two hole spectra and valence states in chromium and chromium silicides, J. Electron Spectrosc. Relat. Phenom. 43(2), 121–130(1987).

    CAS  Google Scholar 

  47. A. Franciosi, J.H. Weaver, D.G. O’Neill, F.A.Schmidt, O. Bisi, C. Calandra: Electronic structure of Cr silicides and Si-Cr interface reactions, Phys. Rev. B 28 (12), 7000–7008 (1983).

    CAS  Google Scholar 

  48. J.H. Weaver, A. Franciosi, V.L. Moruzzi: Bonding in metal disilicides CaSi2 through NiSi2: experiment and theory, Phys. Rev. B 29 (6), 3293–3302 (1984).

    CAS  Google Scholar 

  49. W. Speier, E.v. Leuken, J.C. Fuggle, D.D. Sarma, L. Kumar, B. Dauth, K.N. J. Buschow: Photoemission and inverse photoemission of transition-metal silicides, Phys. Rev. B 39 (9), 6008–6016 (1989).

    CAS  Google Scholar 

  50. P.J.W. Weijs, H. van Leuken, R.A. deGroot, J.C. Fuggle, S. Reiter, G. Wiech, K.H.J. Buschow: X-ray-emission studies of chemical bonding in transition-metal silicides, Phys. Rev. B 44 (15), 8195–8202 (1991).

    CAS  Google Scholar 

  51. C. Mariani, U.Del Pennino, S. Valeri: Electron energy loss spectroscopic investigation of Cr-L2,3 core levels in Cr and chromium silicides, Solid State Commun. 61 (1), 5–7 (1987).

    CAS  Google Scholar 

  52. C. Mariani, M.G. Betti, U. del Pennino, A.M. Fiorello, S. Nannarone: Photoabsorption spectroscopy of CrSi2: an investigation of unoccupied states, Europhys. Lett. 5 (3), 283–286 (1988).

    CAS  Google Scholar 

  53. F. Nava, B.Z. Weiss, K. Ahn, K.N. Tu: Tungsten disilicide formation in codeposite amorphous WSix alloy thin films, Le Vide, les Couches Minces 42 (1), 225–228 (1987).

    CAS  Google Scholar 

  54. F. Nava, B.Z. Weiss, K.Y. Ahn, D.A. Smith, K.N. Tu: Thermal stability and electrical conduction behavior of coevaporated WSi2±x thin films, J. Appl. Phys. 64 (1), 354–364 (1988).

    CAS  Google Scholar 

  55. F.M. d’Heurle, F.K. LeGoues, R. Joshi, I. Suni: Stacking faults in WSi2: Resistivity effects, Appl. Phys. Lett. 48 (5), 332–334 (1986).

    Google Scholar 

  56. C. Krontiras, I. Suni, F.M. d’Heurle, R. Joshi, F.K. Le Goues: Electronic transport properties of thin films of WSi2 and MoSi2, J. Phys. F: Met. Phys. 17 (9), 1953–1961 (1987).

    CAS  Google Scholar 

  57. I. Nishida: Semiconducting properties of nonstoichiometric manganese silicides, J. Mater. Sci. 7, 435–440 (1972).

    CAS  Google Scholar 

  58. M.C. Bost, J.E. Mahan: An optical determination on the bandgap of the most silicon-rich manganese silicide phase, J. Electron. Mater. 16 (6), 389–395 (1987).

    CAS  Google Scholar 

  59. L. Zhang, D.G. Ivey: Reaction kinetics and opticals properties of semiconducting MnSi1.73 grown on (001) oriented silicon, J. Mater. Sci. 2 (2), 116–123 (1991).

    CAS  Google Scholar 

  60. Ch. Krontiras, K. Pomoni, M. Roilos: Resistivity and the Hall effect for thin MnSi1.73films, J. Phys. D: Appl. Phys. 21 (3), 509–512 (1988).

    CAS  Google Scholar 

  61. I. Kawasumi, M. Sakata, I. Nishida, K. Masumoto: Crystal growth of manganese silicide, MnSi1.73 and semiconducting properties of Mn15Si26, J. Mater. Sci. 16(2), 355–366(1981).

    CAS  Google Scholar 

  62. V.S. Neshpor, G.V. Samsonov: Investigation of electrical conductance of transition metal silicides, Sov. Phys. - Solid State, 2 (9), 1966–1970 (1960).

    Google Scholar 

  63. T. Siegrist, F. Hulliger, G. Travaglini: The crystal structure and some properties of rhenium silicide (ReSi2), J. Less-Common Met. 92 (1), 119–129 (1983).

    CAS  Google Scholar 

  64. R.G. Long, M.C. Bost, J.E. Mahan: Optical and electrical properties of semiconducting rhenium disilicide thin films, Thin Solid Films 162 (1/2), 29–40 (1988).

    CAS  Google Scholar 

  65. C. Krontiras, L. Grönberg, I. Suni, F.M. d’Heurle, J. Tersoff, I. Engström, B. Karlsson, C.S. Petersson: Some properties of ReSi2, Thin Solid Films 161(1/2), 197–206(1988).

    CAS  Google Scholar 

  66. T.A. Nguyen Tan, J.Y. Veuillen, P. Muret: Semiconducting rhenium silicide thin films on Si(111), J. Appl. Phys. 77(6), 2514–2518 (1995).

    CAS  Google Scholar 

  67. B.K. Bhattacharyya, D.M. Bylander, L. Kleinman: Fully relativistic energy bands and cohesive energy of ReSi2, Phys. Rev. B 33 (6), 3947–3951 (1986).

    CAS  Google Scholar 

  68. S. Itoh: Electronic structure of refractory metal disilicides in CI lb structure, Mater. Sci. Eng. 6 (1), 37–41 (1990).

    Google Scholar 

  69. U. Gottlieb, B. Lambert-Andron, F. Nava, M. Affronte, O. Laborde, A. Rouault, R. Madar: Structural and electronic transport properties of ReSi2_δ single crystals, J. Appl. Phys. 78(6), 3902–3907 (1995).

    CAS  Google Scholar 

  70. U. Gottlieb, M. Affronte, F. Nava, O. Laborde, A. Sulpice, R. Madar: Some physical properties of ReSi1 75 single crystals, Appl. Surf. Sci. 91 (1), 82–86 (1995).

    CAS  Google Scholar 

  71. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, V.E. Borisenko, H. Lange, A. Heinrich: Electronic properties of semiconducting rhenium silicide, Europhys. Lett. 46 (3), 376–381 (1999).

    CAS  Google Scholar 

  72. I. Ali, P. Muret, T.A. Nguyen Tan: Properties of semiconducting rhenium silicide thin films grown epitaxially on silicon (111), Appl. Surf Sci. 102, 147–150 (1996).

    CAS  Google Scholar 

  73. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, G.V. Petrov, V.E. Borisenko, W. Henrion, H. Lange: Electronic and related properties of crystalline semiconducting iron disilicide, J. Appl. Phys. 79 (10), 7708–7712 (1996).

    CAS  Google Scholar 

  74. V.N. Antonov, O. Jepsen, W. Henrion, M. Rebien, P. Stauß, H. Lange: Electronic structure and optical properties of β-FeSi2, Phys. Rev. B 57 (15), 8934–8938 (1998).

    CAS  Google Scholar 

  75. H. Katsumata, Y. Makita, H. Takahashi, H. Shibata, N. Kobayashi, M. Hasegawa, S. Kimura, A. Obara, J. Tanabe, S. Uekusa: Optical, electrical and structural properties of polycrystalline β-FeSi2 thin films fabricated by electron beam evaporation of ferrosilicon, in: Proceedings of the 15 th International Conference on Thermoelectrics(IEEE, Inc., Piscataway, NJ, 1996 ), pp. 479–483.

    Google Scholar 

  76. J. van Ek, P.E.A. Turchi, P.A. Sterne: Fe, Ru, and Os disilicides: Electronic structure of ordered compounds, Phys. Rev. B 54 (11), 7897–7908 (1996).

    Google Scholar 

  77. C.H. Olk, S.M. Yalisove, G.L. Doll: Defect-induced absorption-band-edge values in β-FeSi2, Phys. Rev. B 52 (3), 1692–1697 (1995).

    CAS  Google Scholar 

  78. R. Eppenga: Ab initioband-structure calculation of the semiconductor β-FeSi2, J. Appl. Phys. 68 (6), 3027–3029 (1990).

    CAS  Google Scholar 

  79. H. Lange, W. Henrion, B. Seile, G.-U. Reinsperger, G. Oertel, H. von Känel: Optical properties of β-FeSi2 films grown on Si substrates with different degree of structural perfection, Appl. Surf. Sci. 102 (1), 169–172 (1996).

    CAS  Google Scholar 

  80. L. Miglio, G. Malegori: Origin and nature of the band gap in β-FeSi2, Phys. Rev. B 52 (3), 1448–1451 (1995).

    CAS  Google Scholar 

  81. H. von Känel, U. Kafader, P. Sutter, N. Onda, H. Sirringhaus, E. Müller, U. Kroll, C. Schwarz, S. Goncalves-Conto: Epitaxial semiconducting and metallic iron silicides, in: Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, K.N. Tu (MRS, Pittsburgh, Pennsylvania, 1994 ), pp. 73–84.

    Google Scholar 

  82. S.J. Clark, H.M. Al-Allak, S. Brand, R.A. Abram: Structure and electronic properties of FeSi2, Phys. Rev. B 58 (16), 10389–10393 (1998).

    CAS  Google Scholar 

  83. K. Radermacher, O. Skeide, R. Carius, J. Klomfaß, S. Mantl: Electrical and optical properties of FeSi2 layers, in: Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, K.N. Tu (MRS, Pittsburgh, Pennsylvania, 1994), pp. 115–120.

    Google Scholar 

  84. K. Radermacher, R. Carius, S. Mantl: Optical and electrical properties of buried semiconducting β-FeSi2, Nucl. Instrum. Met. Phys. Res. B 84 (1), 163–167 (1994).

    CAS  Google Scholar 

  85. J.L. Regolini, F. Trincat, I. Sagnes, Y. Shapira, G. Brémond, D. Bensahel: Characterization of semiconducting iron disilicide obtained by LRP/CVD, IEEE Trans. Electron Devices 39 (1), 200–201 (1992).

    CAS  Google Scholar 

  86. N.E. Christensen: Electronic structure of β-FeSi2, Phys. Rev. B 42 (11), 7148–7153 (1990).

    CAS  Google Scholar 

  87. D.H. Tassis, C.L. Mitsas, T.T. Zorba, M. Angelakeris, C.A. Dimitriadis, O. Valassiades, D.I. Siapkas, G. Kiriakidis: Optical and electrical characterization of high quality β-FeSi2 thin films grown by solid phase epitaxy, Appl. Surf. Sci. 102, 178–183 (1996).

    CAS  Google Scholar 

  88. D.H. Tassis, C.L. Mitsas, T.T. Zorba, C.A. Dimitriadis, O. Valassiades, D.I. Siapkas, M. Angelakeris, P. Poulopoulos, N.K. Flevaris, G. Kiriakidis: Infrared spectroscopic and electronic transport properties of polycrystalline semiconducting FeSi2 thin films, J. Appl. Phys. 80 (2), 962–968 (1996).

    CAS  Google Scholar 

  89. B.N.E. Rosen, D. Freundt, Ch. Dieker, D. Gerthsen, A. Rizzi, R. Carius, H. Ltith: Characterization of β-FeSi2/Si heterostructures grown by gas-source-MBE, in: Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, K.N. Tu (MRS, Pittsburgh, Pennsylvania, 1994), pp. 139–144.

    Google Scholar 

  90. H. Kakemoto, Y. Makita, A. Obara, Y. Tsai, S. Sakuragi, S. Ando, T. Tsukamoto: Structural and optical properties of β-FeSi2/Si(100) prepared by laser ablation method, in: Thermoelectric Materials - New Directions and Approaches, edited by T.M. Tritt, M.G. Kanatzidis, H.B.Lyon, G.D. Mahan (MRS, Pittsburgh, Pennsylvania, 1997), pp. 273–278.

    Google Scholar 

  91. H. Katsumata, Y. Makita, N. Kobayashi, M. Hasegawa, H. Shibata, S. Uekusa: Synthesis of β-FeSi2 for optical applications by Fe triple-energy ion implantation into Si(100) and Si(111) substrates, Thin Solid Films 281-282, 252–255 (1996).

    CAS  Google Scholar 

  92. S. Eisebitt, J.-E. Rubensson, M. Nicodemus, T. Böske, S. Blügel, W. Eberhardt, K. Radermacher, S. Mantl, G. Bihlmayer: Electronic structure of buried α-FeSi2 and β-FeSi2 layers: Soft-x-ray-emission and -absorption studies compared to band- structure calculations, Phys. Rev. B 50 (24), 18330–18340 (1994).

    CAS  Google Scholar 

  93. K. Lefki, P. Muret: Photoelectric study of β-FeSi2 on silicon: Optical threshold as a function of temperature, J. Appl. Phys. 74 (2), 1138–1142 (1993).

    CAS  Google Scholar 

  94. L. Miglio, V. Meregalli: Theory of FeSi2 direct gap semiconductor on Si(100), J. Vac. Sci. Technol. B 16 (3), 1604–1609 (1998).

    CAS  Google Scholar 

  95. H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, I. Aksenov, S. Kimura, A. Obara, S. Uekusa: Optical absorption and photoluminescence studies of β-FeSi2 prepared by heavy implantation of Fe+ ions into Si, J. Appl. Phys. 80 (10), 5955–5962 (1996).

    CAS  Google Scholar 

  96. H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, S. Uekusa: Effect of multiple-step annealing on the formation of semiconducting β-FeSi2 and metallic α-Fe2Si5 on Si (100) by ion beam synthesis, Jpn. J. Appl Phys. 36(5), 2802–2812(1997).

    CAS  Google Scholar 

  97. A. Valentini, E. Chimenti, A. Cola, G. Leo, F. Quaranta, L. Vasanelli: Triple ion beam sputtering deposition of β-FeSi2, Advances in crystal growth, Mater. ScL Forum 203, 173–178 (1996).

    CAS  Google Scholar 

  98. L. Wang, L. Qin, Y. Zheng, W. Shen, X. Chen, X. Lin, C. Lin, S. Zou: Optical transition properties of β-FeSi2 film, Appl. Phys. Lett. 65 (24), 3105–3107 (1994).

    CAS  Google Scholar 

  99. D. Panknin, W. Henrion, E. Wieser, M. Voelskow, W. Skorupa, H. Vohse: Electrical and optical properties of Co alloyed β-FeSi2 formed by ion beam synthesis, 4 th Int. Conf. Form. Sem., 14–18 June, (1993).

    Google Scholar 

  100. Z.Yang, K.P. Homewood, M.S.Finney, M.A.Harry, K.J. Reeson: Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2, J. Appl. Phys. 78 (3), 1958–1963 (1995).

    CAS  Google Scholar 

  101. W. Raunau, H. Niehus, T. Schilling, G. Comsa: Scanning tunneling microscopy and spectroscopy of iron silicide epitaxially grown on Si (111), Surf. Sci. 286 (3), 203–211 (1993).

    CAS  Google Scholar 

  102. C.A. Dimitriadis, J.H.Werner, S. Logothetidis, M. Stutzmann, J.Weber, R. Nesper: Electronic properties of semiconducting FeSi2 films, J. Appl. Phys. 68 (4), 1726–1734 (1990).

    CAS  Google Scholar 

  103. K. Lefki, P. Muret, N. Cherief, R.C. Cinti: Optical and electrical characterization of β-FeSi2 epitaxial thin films on silicon substrates, J. Appl. Phys. 69 (1), 352–357 (1991).

    CAS  Google Scholar 

  104. M. Powalla, K. Herz: Co-evaporated thin films of semiconducting β-FeSi2, Appl. Surf. Sci. 65/66, 482–488 (1993).

    Google Scholar 

  105. L.Wang, M. Östling, K.Yang, L. Qin, C.Lin, X.Chen, S. Zou, Y.Zheng, Y. Qian: Optical transition in β-FeSi2 films, Phys. Rev. B 54 (16), R11126–R11128 (1996).

    CAS  Google Scholar 

  106. M.S. Finney, Z. Yang, M.A. Harry, K.J. Reeson, K.P. Homewood, R.M. Gwilliam, B.J. Sealy: Effects of annealing and cobalt implantation on the optical properties of β-FeSi2, in: Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, K.N. Tu (MRS, Pittsburgh, Pennsylvania, 1994), pp. 173–178.

    Google Scholar 

  107. M. Ožvold, V. Boháč, V. Gašparik, G. Leggieri, Š. Luby, A. Luches, E. Majková, P. Mrafko: The optical band gap of semiconducting iron disilicide thin films, Thin Solid Films 263 (1), 92–98 (1995).

    Google Scholar 

  108. L.Wang, C.Lin, X.Chen, S. Zou, L. Qin, H.Shi, W.Z. Shen, M. Östling: A clarification of optical transition of β-FeSi2 thin film, Solid State Commun. 97(5), 385–388(1996).

    CAS  Google Scholar 

  109. M.C. Bost, J.E. Mahan: Optical properties of semiconducting iron disilicide thin films, J. Appl. Phys. 58 (7), 2696–2703 (1985).

    CAS  Google Scholar 

  110. N. Kobayashi, H. Katsumata, H.L. Shen, M. Hasegawa, Y. Makita, H. Shibata, S. Kimura, A. Obara, S. Uekusa, T. Hatano: Structural and optical characterization of β-FeSi2 layers on Si formed by ion beam synthesis, Thin Solid Films 270(1-2), 270–410(1995).

    Google Scholar 

  111. D.J. Oostra, C.W.T. Bulle-Lieuwma, D.E.W. Vandenhoudt, F. Felten, J.C.Jans: β-FeSi2 in (111) Si and in (001) Si formed by ion-beam synthesis, J. Appl. Phys. 74 (7), 4347–4353 (1993).

    CAS  Google Scholar 

  112. K. Lefki, P. Muret: Internal photoemission in metal/ β-FeSi2/Si heterojunctions, Appl. Surf. Sci. 65/66, 772–776 (1993).

    Google Scholar 

  113. E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, A. Siminel: Photoconductivity in «-type β-FeSi2 single crystals, Phys. Rev. B 52 (1), 20–23 (1995).

    CAS  Google Scholar 

  114. M.C. Bost, J.E. Mahan: A clarification of the index of refraction of beta-iron disilicide, J. Appl. Phys. 64 (4), 2034–2037 (1988).

    CAS  Google Scholar 

  115. M. De Crescenzi, G. Gaggiotti, N. Motta, F. Patella, A. Balzarotti, G. Mattogno, J. Derrien: Electronic structure of epitaxial β-FeSi2 on Si (111), Surf. Sci. 251 /252, 175–179 (1991).

    Google Scholar 

  116. M. Ožvold, V. Gasparik, M. Dubnicka: The temperature dependence of the direct gap of β-FeSi2 films, The Solid Films 295 (1-2), 147–150 (1997).

    Google Scholar 

  117. C. Giannini, S. Lagomarsino, F. Scarinci, P. Castrucci: Nature of the band gap of polycrystalline β-FeSi2 films, Phys. Rev. B 45 (15), 8822–8824 (1992).

    CAS  Google Scholar 

  118. Y. Isoda, M.A. Okamoto, T. Ohkoshi, I.A. Nishida: Semiconducting properties and thermal shock resistance of boron doped iron disilicide, in: Proceedings of the 12 th International Conference on Thermoelectrics (Yokohama, 1993), pp. 192–196.

    Google Scholar 

  119. R.M. Ware, D.J. McNeill: Iron disilicide as a thermoelectric generator material, Proc. IEE. 111 (1), 178–182 (1964).

    Google Scholar 

  120. T. Kojima: Semiconducting and thermoelectric properties of sintered iron disilicide, Phys. Stat. Sol. (a) 111 (1), 233–242 (1989).

    CAS  Google Scholar 

  121. L. Miglio, V. Meregalli, O. Jepsen: Strain dependent gap nature of epitaxial β-FeSi2 in silicon by first principles calculations, Appl. Phys. Lett. 75 (3), 385–387 (1999).

    CAS  Google Scholar 

  122. H.Chen, P.Han, X.D.Huang, L.Q. Hu, Y.Shi, Y.D.Zheng: Semiconducting Ge-Si-Fe alloy grown on Si(100) substrate by reactive deposition epitaxy, Appl. Phys. Lett. 69 (13), 1912–1914 (1996).

    CAS  Google Scholar 

  123. P. Pecheur, G. Toussaint: Electronic structure of Ru2Si3, Mater. Res. Soc. Symp. Proc. 234, 157–164 (1991).

    CAS  Google Scholar 

  124. W.B.Pearson: Phases with Nowotny chimney-ladder structures considered as ‘electron’ phases, Acta Cryst. B 26, 1044–1046 (1970).

    CAS  Google Scholar 

  125. H. Voellenkle: Die kristallstructur von Ru2Ge3, Monatsh. Chem. 105, 1217–1227 (1974).

    CAS  Google Scholar 

  126. C.P. Susz, J. Müller, K. Yvon, E. Parthe: Diffusionless phase transformations of Ru2Si3, Ru2Ge3 and Ru2Sn3, II: Electrical and magnetic properties, J. Less- Common Met. 71 (1), P1–P8 (1980).

    CAS  Google Scholar 

  127. W. Wolf, G. Bihlmayer, S. Blügel: Electronic structure of the Nowotny chimney- ladder silicide Ru2Si3, Phys. Rev. B 55 (11), 6918–6926 (1997).

    CAS  Google Scholar 

  128. W. Henrion, M. Rebien, V.N. Antonov, O. Jepsen, H. Lange: Optical characterization of Ru2Si3 by spectroscopic ellipsometry, UV-VIS-NIR spectroscopy and band structure calculations, Thin Solid Films 313 /314, 218–221 (1998).

    Google Scholar 

  129. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, V.E. Borisenko, A. Heinrich, H. Lange: Electronic properties of isostructural ruthenium and osmium silicides and germanides, (1999) (to be published).

    Google Scholar 

  130. C.B. Vining, C.E. Allevato: Intrinsic thermoelectric properties of single crystal Ru2Si3, in: Proceedings of the 10 th International Conference on Thermoelectrics, edited by D.M. Rowe ( Babrow Press, Cardiff, 1991 ), pp. 167–173.

    Google Scholar 

  131. T. Ohta, C.B. Vining, C.E. Allevato: Characteristics of a promising new thermoelectric material: ruthenium silicide, in: Proceedings of the 26 th Intersociety Energy Conversion Engineering Conference (American Nuclear Society, La Grange Park, IL, 1991), vol. 3, pp. 196–201.

    Google Scholar 

  132. L. Schellenberg, H.F. Braun, J. Müller: The osmium-silicon phase diagram, J. Less-Common Met. 144 (2), 341–350 (1988).

    CAS  Google Scholar 

  133. P. Pecheur, G. Toussaint: Electronic structure and bonding of the Nowotny chimney-ladder compound Ru2Si3, Phys. Lett. A 160 (2), 193–196 (1991).

    Google Scholar 

  134. K.Mason, G. Müller-Vogt: Osmium disilicide: preparation, crystal growth, and physical properties of a new semiconducting compound, J. Cryst. Growth 63(1), 34–38(1983).

    CAS  Google Scholar 

  135. A.B. Filonov, D.B. Migas, V.L. Shapohnikov, N.N. Dorozhkin, V.E. Borisenko, H. Lange: Electronic properties of osmium disilicide, Appl. Phys. Lett. 70 (8), 976–977 (1997).

    CAS  Google Scholar 

  136. C.E. Allevato, C.B. Vining: Phase diagram and electrical behavior of silicon-rich iridium silicide compounds, J. Alloys Comp. 200 (12), 99–105 (1993).

    CAS  Google Scholar 

  137. C.E. Allevato, C.B. Vining: Phase diagram and electrical behavior of silicon-rich iridium silicide compounds, in: Proceedings of the 27 th Intersociety Energy Conversion Engineering Conference (San Diego, CA, 1992), vol. 3, pp. 3.493–3.497.

    Google Scholar 

  138. W. Pitschke, R. Kurt, A. Heinrich, J. Schumann, J. Thomas, M. Mäder: Structure and phase formation in amorphous IrxSi1-x thin films at high temperatures, in: Proceedings of the 15 th International Conference on Thermoelectrics(IEEE, Inc., Piscataway, NJ, 1996 ), pp. 499–503.

    Google Scholar 

  139. S. Petersson, J.A.Reimer, M.H. Brodsky, D.R. Campbell, F.M. d’Heurle, B. Karlsson, P.A. Tove: IrSi1 75 a new semiconductor compound, J. Appl. Phys. 53 (4), 3342–3343 (1982).

    CAS  Google Scholar 

  140. C.E. Allevato, C.B. Vining: Thermoelectric properties of semiconducting iridium silicides, in: Proceedings of the 28 th Intersociety Energy Conversion Engineering Conference(Atlanta, Georgia, USA, 1993), vol. 1, pp. 1.239–1.243 (1993).

    Google Scholar 

  141. J.Schumann, D. Elefant, C. Gladun, A.Heinrich, W. Pitschke, H. Lange, W. Henrion, R. Grötzschel: Polycrystalline iridium silicide films. Phase formation, electrical and optical properties, Phys. Stat. Sol. (a) 145 (2), 429–439 (1994).

    CAS  Google Scholar 

  142. M. Wittmer, P. Oelhafen, K.N. Tu: Electronic structure of iridium silicides, Phys. Rev. B 33 (8), 5391–5400 (1986).

    CAS  Google Scholar 

  143. Y.M. Yarmoshenko, S.N. Shamin, L.V. Elokhina, V.E. Dolgih, E.Z. Kurmaev, S. Bartkowski, M. Neumann, D.L. Ederer, K. Göransson, B. Noläng, I. Engström: Valence band spectra of 4d and 5d silicides, J. Phys. 9 (43), 9403–9414 (1997).

    CAS  Google Scholar 

  144. S.R. Nishitani, S. Fujii, M. Mizuno, I.Tanaka, H. Adachi: Chemical bonding of 3d transition-metal disilicides, Phys. Rev.B 58(15), 9741–9745 (1998).

    CAS  Google Scholar 

  145. W.J. Scouler: Optical properties of Mg2Si, Mg2Ge, and Mg2Sn from 0.6 to 11.0 eV at 77K, Phys. Rev. 178 (3), 1353–1357 (1969).

    CAS  Google Scholar 

  146. W. Henrion, H. Lange, E. Jahne, M. Giehler: Optical properties of chromium and iron disilicide layers, Appl. Surf. Sci. 70 /71, 569–572 (1993).

    Google Scholar 

  147. H. Lange, W. Henrion, F. Fenske, T. Zettler, J.Schumann, S. Teichert: Optical interband properties of some semiconducting silicides, Phys. Stat. Sol. (b) 194(1), 231–240(1996).

    CAS  Google Scholar 

  148. H. Lange, E.Jahne, O.Günther, W. Henrion, M. Giehler, J. Schumann: Optical properties of semiconducting silicides, in: Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, K.N. Tu (MRS, Pittsburgh, Pennsylvania, 1994), pp. 479–484.

    Google Scholar 

  149. M. Tanaka, S. Kurita, M. Fujisawa, F. Levy: Dielectric properties of single-crystal TiSi2 from 0.6 to 20 eV, Phys. Rev. B 43 (11), 9133–9137 (1991).

    CAS  Google Scholar 

  150. M. Amiotti, A. Borghesi, F. Marabelli, A. Piaggi, G. Guizzetti, F. Nava: Optical and electronic properties of 5th-column transition metal disilicides, Appl. Surf. Sci. 53, 230–236 (1991).

    CAS  Google Scholar 

  151. L.F. Mattheiss, J.C. Hensel: Electronic structure of TiSi2, Phys. Rev. B 39(11), 7754–7759(1989).

    CAS  Google Scholar 

  152. A. Borghesi, A. Piaggi, G. Guizzetti, F. Nava, M.Bacchetta: Optical properties of vanadium silicide polyciystalline films, Phys. Rev. B 40 (5), 3249–3253 (1989).

    CAS  Google Scholar 

  153. J.C. Lasjaunias, U. Gottlieb, O. Laborde, O. Thomas, R. Madar: Transport and low temperature specific heat measurements of CrSi2 single crystals, in: Silicide Thin Films - Fabrication, Properties, and Applications, edited by R.T. Tung, K. Maex, P.W. Pellegrini, L.H. Allen (MRS, Pittsburgh, Pennsylvania, 1996), pp. 343–348.

    Google Scholar 

  154. W. Henrion, St. Brehme, I. Sieber, H. von Känel, Y. Tomm, H. Lange: Optical and electrical properties of iron disilicide with different degree of structural perfection, Solid State Phenom. 51/52, 341–346 (1996).

    Google Scholar 

  155. M. Fanciulli, C. Rosenblad, G. Weyer, H. vonKSnel, N. Onda: Conversion electron Mössbauer spectroscopy study of iron disilicide films grown by MBE, Thin Solid Films 275 (1), 8–11 (1996).

    CAS  Google Scholar 

  156. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, V.E. Borisenko, W. Henrion, M. Rebien, H. Lange, G. Behr: Theoretical and experimental study of interband optical transitions in semiconducting iron disilicides, J. Appl Phys. 83(8), 4410–4414(1998).

    CAS  Google Scholar 

  157. O.K. Andersen: Linear methods in band theory, Phys. Rev. B 12 (8), 3060–3083 (1975).

    CAS  Google Scholar 

  158. U. vonBarth, L. Hedin: A local exchange-correlation potential for the spin polarized case, J. Phys. C5 (13) 1629–1642 (1972).

    Google Scholar 

  159. W. Henrion, M. Rebien, V.N. Antonov, O. Jepsen: Optical characterization of Ru2Si3 and Ru2Ge3 by various spectroscopic methods and by band structure calculations, Solid State Phenom. 67/68, 471–477 (1999).

    Google Scholar 

  160. G. Guizzetti, F. Marabelli, M. Patrini, P. Pellegrino, B. Pivac, L. Miglio, V. Meregalli, H. Lange, W. Hemrion, V. Tomm: Measurement and simulation of anisotropy in the infrared and Raman spectra of β-FeSi2 single crystals, Phys. Rev. B 55 (21), 14290–14297 (1997).

    CAS  Google Scholar 

  161. M. Rebien, W. Henrion, U. Müller, S. Gramlich: Exiton absorption in β-FeSi2 epitaxial films, Appl Phys. Lett. 74 (7) 970–972 (1999).

    CAS  Google Scholar 

  162. D. Panknin, E. Wieser, W. Skorupa, W. Henrion, H. Lange: Buried (Fei_JCCoJC)Si2 layers with variable band gap formed by ion beam synthesis, Appl. Phys. A 62(2), 155–162(1996).

    Google Scholar 

  163. N.G. Galkin, A.M. Maslov, A.V. Konchenko: Optical and photospectral properties of CrSi2 A-type epitaxial films on Si(111), Thin Solid Films 311 (1-2), 230–238 (1997).

    CAS  Google Scholar 

  164. V.K. Zaitsev, S.V. Ordin, V.I. Tarassov, M.I. Fedorov: Optical properties of high manganese silicides, Sov. Phys. - Solid State 21 (8), 1454–1455 (1979).

    Google Scholar 

  165. D. Leong, M. Harry, K.J. Reeson, K.P. Homewood: A silicon/iron-disilicide light- emitting diode operating at a wavelength of 1.5 μim, Nature 387 (12), 686–688 (1997).

    CAS  Google Scholar 

  166. D.N. Leong, M.A.Harry, K.J. Reeson, K.P. Homewood: On the origin of the 1.5 μm luminescence in ion beam synthesized β-FeSi2, Appl Phys. Lett. 68(12), 1649–1650(1996).

    CAS  Google Scholar 

  167. H. Lange: Electronic properties of semiconducting silicides, Phys. Stat. Sol. (b) 201(1), 3–65(1997).

    CAS  Google Scholar 

  168. T. Ruf: Phonon Raman Scattering in Semiconductors, Quantum Wells and Superlattices, ( Springer, Berlin, 1998 ).

    Google Scholar 

  169. G. Guizzetti, F. Marabelli, M. Patrini, Y. Mo, N. Ondo, H. von Känel: Phonon spectra dependence on growth and sample treatment in β-FeSi2, in: Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, K.N. Tu (MRS, Pittsburgh, Pennsylvania, 1994), pp. 127–132.

    Google Scholar 

  170. A. Borghesi, A. Piaggi, A. Franchini, G. Guizzetti, F. Nava, G. Santoro: Far- infrared vibrational spectroscopy in CrSi2, Europhys. Lett. 11 (1), 61–65 (1990).

    CAS  Google Scholar 

  171. F. Fenske, H. Lange, G. Oertel, G.-U. Reinsperger, J.Schumann, B. Selle: Characterization of semiconducting silicide films by infrared vibrational spectroscopy, Mater. Chem. Phys. 43 (3), 238–242 (1996).

    CAS  Google Scholar 

  172. U. Birkholz, H. Finkenrath, J. Naegele, N. Uhle: Infrared reflectivity of semiconducting FeSi2, Phys. Stat. Sol. 30 (1), K81–K85 (1968).

    CAS  Google Scholar 

  173. K. Lefki, P. Muret, E. Bustarret, N. Boutarek, R. Madar, J. Chevrier, J. Derrien: Infrared and Raman characterization of beta iron silicide, Solid State Commun. 80 (10), 791–795 (1991).

    CAS  Google Scholar 

  174. O. Chaix-Pluchery, G. Lucazeau: Vibrational study of transition metal disilicides, MnSi2 (M = Nb, Ta, V, Cr), J. Raman Spectrosc. 29 (2), 159–164 (1998).

    CAS  Google Scholar 

  175. L. Hedin: New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev. 139 (3A), A796–A823 (1965).

    Google Scholar 

  176. M. Rohlflng, P. Krüger, J. Pollmann: Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets, Phys. Rev. B 48(24), 17791–17805(1993).

    Google Scholar 

  177. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais: Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671–6687(1992).

    CAS  Google Scholar 

  178. J.P. Perdew, K.Burke, M. Ernzerhof: Generalized gradient approximation made simple, Phys. Rev. Lett. 11(18), 3865–3868 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shaposhnikov, V.L., Borisenko, V.E. (2000). Fundamental Electronic and Optical Properties. In: Semiconducting Silicides. Springer Series in Materials Science, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59649-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59649-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64069-8

  • Online ISBN: 978-3-642-59649-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics