Skip to main content

Co-Translational Protein Folding in Prokaryotic and Eukaryotic Cell-Free Translation Systems

  • Chapter
Cell-Free Translation Systems

Abstract

Native structure formation of newly synthesized proteins is a key problem relating to the cell-free translation technology that is aimed at the synthesis of biologically active products. At the same time, a lot of experimental data indicate that the folding of newly synthesized proteins differs significantly from the in vitro process observed by Anfinsen in his classical experiments on the refolding of ribonuclease (Anfinsen 1973) and studied in detail by many other workers. The difference results mainly from (i) the contribution of multiple cellular components, such as protein disulphide isomerase, peptidylprolyl isomerase, and molecular chaperones that catalyze or assist the folding of synthesized proteins (Gething and Sambrook 1992; Georgopoulos and Welch 1993; Ellis 1994; Hartl 1996; Fink 1999), and (ii) the co-translational mode of the folding, implying that the N-terminal part of a nascent peptide starts its folding as soon as it is synthesized and emerges from the ribosome prior to the formation of the entire polypeptide chain (see refs below). The existence of stepwise protein folding starting from the N-terminal section of a growing polypeptide and progressively proceeding towards the C-terminus was first proposed by Phillips et al. (1967) from theoretical analysis of the folding pattern of hen egg lysozyme. Later, several experimental approaches demonstrated co-translational formation of native or native-like structure of nascent polypeptides, both in vitro and in vivo. It was shown that growing polypeptides are able to interact with free sub-units of the same protein, thus being involved in the assembly of quaternary structures on ribosomes (Kiho and Rich 1964; Gilmore et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–230

    Article  CAS  Google Scholar 

  • Bergman LW, Kuehl WM (1979) Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J Biol Chem 254: 8869–8876

    CAS  Google Scholar 

  • Buchberger A, Schröder H, Hesterkamp T, Schönfeld H-J, Bukau B (1996) Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol 261: 328–333

    Article  CAS  Google Scholar 

  • Chen W, Helenius J, Braakman I, Helenius A (1995) Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc Natl Acad Sci USA 92: 6229–6233

    Article  CAS  Google Scholar 

  • Ellis RG (1994) Role of molecular chaperones in protein folding. Curr Opin Struct Biol 4: 117–122

    Article  CAS  Google Scholar 

  • Fedorov AN, Baldwin TO (1995) Contribution of cotranslational folding to the rate of formation of native protein structure. Proc Natl Acad Sci USA 92: 1227–1231

    Article  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79: 425–449

    CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111–117

    Article  CAS  Google Scholar 

  • Frydman J, Erdjument-Bromage H, Tempst R, Hartl FU (1999) Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nature Struct Biol, 6: 697–705

    Article  CAS  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Ann Rev Cell Biol 9: 601–634

    Article  CAS  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355: 33–45

    Article  CAS  Google Scholar 

  • Gilmore R, Coffey MC, Leone G, McLure K, Lee PWK (1996) Co-translational trimerization of the reovirus cell attachment protein. EMBO J 15: 2651–2658

    CAS  Google Scholar 

  • Hanes J, Plckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94: 4937–4942

    Article  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–580

    Article  CAS  Google Scholar 

  • Kiho Y, Rich A (1964) Induced enzyme formed on bacterial polyribosomes. Proc Natl Acad Sci USA 51: 111–118

    Article  CAS  Google Scholar 

  • Kim J, Klein PG, Mullet JE (1991) Ribosome pause at specific sites during synthesis of membrane-bound chloroplast reaction centre protein D1. J Biol Chem 266: 14931–14938

    CAS  Google Scholar 

  • Kolb VA, Makeyev EV, Spirin AS (1994) Folding of firefly luciferase during translation in a cell-free system. EMBO J 13: 3631–3637

    CAS  Google Scholar 

  • Kolb VA, Makeyev EV, Kommer A, Spirin AS (1995) Cotranslational folding of proteins. Biochem Cell Biol 73: 1217–1220

    Article  CAS  Google Scholar 

  • Kolb VA, Makeyev EV, Spirin AS (2000) Cotranslational of an eukaryotic multidomain protein in a prokaryotic translation system. J Biol Chem 275: 16597–16601

    Article  CAS  Google Scholar 

  • Komar AA, Kommer A, Krasheninnikov IA, Spirin AS (1997) Cotranslational folding of globin. J Biol Chem 272: 10646–10651

    Article  CAS  Google Scholar 

  • Kudlicki W, Chirgwin J, Kramer G, Hardesty B (1995) Folding of an enzyme into an active conformation while bound as peptidyl-tRNA to the ribosome. Biochemistry 34: 14284–14287

    Article  CAS  Google Scholar 

  • Lewis SA, Tian G, Vainberg IE, Cowan NJ (1996) Chaperonin-mediated folding of actin and tubulin. J. Cell Biol 132: 1–4

    Article  CAS  Google Scholar 

  • Lin L, DeMartino GN, Greene WC (1998) Cotranslational biogenesis of NF-kB p50 by the 26S proteasome. Cell 92: 819–828

    Article  CAS  Google Scholar 

  • Makeyev EV, Kolb VA, Spirin AS (1996) Enzymatic activity of the ribosome-bound nascent polypeptide. FEBS Lett 378: 166–170

    Article  CAS  Google Scholar 

  • Mullet JE, Klein PG, Klein RR (1990) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoprotein CP43 and D1 by increasing apoprotein stability. Proc Natl Acad Sci USA 87: 4038–4042

    Article  CAS  Google Scholar 

  • Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388: 343–349

    Article  CAS  Google Scholar 

  • Nicola AV, Chen W, Helenius A (1999) Co-translational folding of an alphavirus capsid protein in the cytosol of living cell. Nat Cell Biol 1: 341–345

    Article  CAS  Google Scholar 

  • Peters T, Davidson LK (1982) The biosynthesis of rat serum albumin. J Biol Chem 257: 8847–8853

    CAS  Google Scholar 

  • Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci USA, 57: 484–495

    Article  CAS  Google Scholar 

  • Ryabova LA, Desplancq D, Spirin AS, Plückthun A (1997) Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nature Biotechnol 15: 79–84

    Article  CAS  Google Scholar 

  • Schröder H, Langer T, Hartl FU, Bukau B (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12: 4137–4144

    Google Scholar 

  • Srikakulam R, Winkelmann D (1999) Myosin II folding is mediated by a molecular chaperonin. J Biol Chem 274: 27265–27273

    Article  CAS  Google Scholar 

  • Vysokanov AV (1995) Synthesis of chloramphenicol acetyltransferase in a coupled transcription-translation in vitro system lacking the chaperones DnaK and DnaJ. FEBS Lett 375: 211–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelbreg

About this chapter

Cite this chapter

Kolb, V.A., Kommer, A., Spirin, A.S. (2002). Co-Translational Protein Folding in Prokaryotic and Eukaryotic Cell-Free Translation Systems. In: Spirin, A.S. (eds) Cell-Free Translation Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59379-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59379-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63956-2

  • Online ISBN: 978-3-642-59379-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics