Skip to main content

Positron Emission Tomography and Magnetic Resonance Imaging in the Study of Cognitively Normal Persons at Differential Genetic Risk for Alzheimer’s Dementia

  • Conference paper
The Living Brain and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Patients with Alzheimer’s dementia (AD) have characteristic and progressive reductions in fluorodeoxyglucose positron emission tomography (PET) measurements of the cerebral metabolic rate for glucose and in magnetic resonance imaging (MRI) measurements of hippocampal and whole brain volume. We have been using PET and MRI to characterize and compare PET and MRI measurements in cognitively normal persons with two copies, one copy, and no copies of the apolipoprotein E ε4 allele, a common AD susceptibility gene. This article reviews and updates our previously published PET and MRI findings. It indicates how these imaging techniques could be used to help bridge existing gaps between ante-mortem and post-mortem studies of AD, non-demented persons at risk for AD, and relevant animal models. It suggests how they could provide clues about the earliest brain changes involved in the pathogenesis of AD and assist in the identification of new targets for the discovery of drugs in the treatment and prevention of this disorder. Finally, it describes a brain imaging strategy for the efficient evaluation of prevention therapies, without having to conduct studies in thousands of research subjects, restrict these studies to those who are older or are already symptomatic, or wait many years to determine whether or when treated individuals develop mild cognitive impairment or AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexander GE, Chen K, Reiman EM, Caselli RJ, Lewis D, Frost J, Bandy D (2001). Effects of apolipoprotein E (APOE) e4 on regional brain atrophy in cognitively normal homozygotes (HMZ) and heterozygotes, (HTZ) using voxel-based MRI morphometry. Society for Neuroscience Abstracts 27, 463.9

    Google Scholar 

  • Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM (2002a) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiat 159: 738–745

    PubMed  Google Scholar 

  • Alexander GE, Lewis D, Chen K, Reiman EM, Bandy D, Prouty A, Caselli R (2002b) Longitudinal declines of gray matter in cognitively normal apolipoprotein E ε4 homozygotes and heterozygotes evaluated by voxel based MRI Morphometry. Presented at the 8th International Conference on AD and Related Diseases, Stockholm [abstract] Neurobiol Aging 23: S363

    Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders. Fourth edition Washington, DC: American Psychiatric Association

    Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. Neuroimage 11: 805–821.

    PubMed  CAS  Google Scholar 

  • Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52: 81–88

    PubMed  CAS  Google Scholar 

  • Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, Saint Louis LA, Wisniewski HM (1999) MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 353: 38–40

    PubMed  CAS  Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358: 461–467

    PubMed  CAS  Google Scholar 

  • Chen K, Reiman EM, Alexander GE, Crum WR, Fox NC, Rossor MN (2001) Automated method using iterative principle component analysis for detecting brain atrophy rates from sequential MRI in persons with Alzheimer’s disease. Soc Neurosci Abstr [abstract]. 27: 1261

    Google Scholar 

  • Chen K, Reiman EM, Domb B, Bandy D, Alexander G, Caselli R, Crum W, Rossor M, Fox N (2002a) Whole brain atrophy rates in cognitively normal persons at genetic risk for Alzheimer’s Disease. Presented at the 8th International Conference on AD and Related Diseases, Stockholm [abstract] 23: S349

    Google Scholar 

  • Chen K, Reiman EM, He T, Alexander G, Galons JP, Stevenson G, Hauss-Wegrzyniak B, Trouard T, Wenk G, Valla J (2002b) Evaluation of an iterative principal component analysis for detecting whole brain volume change in small animal magnetic resonance imaging. Presented at the 8th International Conference on AD and Related Diseases, Stockholm [abstract] Neurobiol Aging 23: S353

    Google Scholar 

  • Chen K, Reiman E, Alexander G, Bandy D, Renaut R, Fox N, Rossor M. (2004) An automated algorithm for the computation of brain volume change from sequential MRIS using an Iterative Principle Component Analysis and its avaluation for the assesment of whole brain atrophy rates in patients with probable Alzheimer’s Disease. Neuroimage, 22/I pp 134–143

    PubMed  Google Scholar 

  • Coffey CE, Wilkinson WE, Parashos IA (1992) Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology 42: 527–536.

    PubMed  CAS  Google Scholar 

  • Cohen D, Eisdorfer C (1988) Depression in family members caring for a relative with Alzheimer’s disease. J Am Geriatr Soc 36: 885–889

    PubMed  CAS  Google Scholar 

  • Convit A, de Leon MJ, Tarshish C, De Santi S, Kluger A, Rusinek H, George AE (1995) Hippocampal volume losses in minimally impaired elderly. Lancet 345: 266

    PubMed  CAS  Google Scholar 

  • Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997) Specific hippocampal volume reduction in individuals at risk for Alzheimer’s disease. Neurobiol Aging 18: 131–138

    PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–924

    PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genet 7: 180–184

    PubMed  CAS  Google Scholar 

  • Corder EH, Jelic V, Basun H, Lannfelt L, Valind S, Winblad B, Nordberg A (1997) No difference in cerebral glucose metabolism in patients with Alzheimer disease and differing apolipoprotein E genotypes. Arch Neurol 54: 273–277

    PubMed  CAS  Google Scholar 

  • Csernansky JG, Wang L, Joshi S, Miller JP, Gado M, Kido D, McKeel D, Morris JC, Miller MI (2000) Early DAT is distinguished from aging by high-dimensional mapping of the hippo-campus. Dementia of the Alzheimer type. Neurology 55: 1636–1643

    PubMed  CAS  Google Scholar 

  • de Leon MJ, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 391–394

    PubMed  Google Scholar 

  • de Leon MJ, George AE, Stylopoulos LA, Smith G, Miller DC (1989) Early marker for Alzheimer’s disease: the atrophic hippocampus. Lancet 672–673

    Google Scholar 

  • de Leon MJ, Golomb J, George AE, Convit A, Tarshish CY, McRae T, De Santi S, Smith G, Ferris SH, Noz M (1993) The radiologic prediction of Alzheimer’s disease: the atrophic hippocampal formation. Am J Neuroradiol 14: 897–906

    PubMed  Google Scholar 

  • Deweer B, Lehericy S, Pillon B, Baulac M, Chiras J, Marsault C, Agid Y, Dubois B (1995) Memory disorders in probable Alzheimer’s disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiat 58: 590–597

    PubMed  CAS  Google Scholar 

  • Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, Yaffe K, Kramer JH, Reed B, Norman D, Chui HC, Weiner MW (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiat 71: 441–447

    PubMed  CAS  Google Scholar 

  • Du AT, Schuff N, Zhu XP, Jagust WJ, Miller BL, Reed BR, Kramer JH, Mungas D, Yaffe K, Chui HC, Weiner MW (2003) Atrophy rates of entorhinal cortex in AD and normal aging. Neurology 60: 481–486

    PubMed  CAS  Google Scholar 

  • Du AT, Schuff N, Kramer JH, Ganzer S, Zhu XP, Jagust WJ, Miller BL, Reed BR, Mungas D, Yaffe K, Chui HC, Weiner MW (2004) Higher atrophy rate of entorhinal cortex than hippocampus in Alzheimer’s disease. Neurology, 62: 422–427

    PubMed  CAS  Google Scholar 

  • Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36: 879–887

    PubMed  CAS  Google Scholar 

  • Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported. JAMA 262: 2551–2556

    PubMed  CAS  Google Scholar 

  • Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278: 1349–1356

    PubMed  CAS  Google Scholar 

  • Fleming TR, DeMets D (1996). Surrogate end points in clinical trials: are we being misled? Ann Intern Med 125: 605–613

    PubMed  CAS  Google Scholar 

  • Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, Di Chiro G (1983) Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology 33: 961–965

    PubMed  CAS  Google Scholar 

  • Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI. J Magn Reson Imaging 7: 1069–1075

    PubMed  CAS  Google Scholar 

  • Fox NC, Freeborough PA, Rossor MN (1996a) Visualization and quantification of rates of atrophy in Alzheimer’s disease. Lancet 348: 94–97

    PubMed  CAS  Google Scholar 

  • Fox NC, Warrington EK, Stevens JM, Rossor MN (1996b) Atrophy of the hippocampal formation in early familial Alzheimer’s disease. A longitudinal MRI study of at-risk members of a family with an amyloid precursor protein 717Val-Glymutation. Ann NY Acad Sci 777: 226–232

    PubMed  CAS  Google Scholar 

  • Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, Rossor MN (1996c) Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain 119: 2001–2007

    PubMed  Google Scholar 

  • Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN (2000) Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 57: 333–444

    Google Scholar 

  • Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358: 201–205

    PubMed  CAS  Google Scholar 

  • Freebourough PA, Fox NC (1997) The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging 16: 623–629

    Google Scholar 

  • Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, Trabucchi M (1999) Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 52: 91–100

    PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Kahn K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F â-amyloid precursor protein. Nature 373: 523–527

    PubMed  CAS  Google Scholar 

  • Golomb J, de Leon MJ, Kluger A, George AE, Tarshish C, Ferris SH (1993) Hippocampal atrophy in normal aging–an association with recent memory impairment. Arch Neurol 50: 967–973

    PubMed  CAS  Google Scholar 

  • Gonzalez-Lima F, Berndt JD, Valla J, Games D, Reiman EM (2001) Reduced corpus callosum, fornix and hippocampus in PDAPP transgenic mouse model of Alzheimer’s disease. NeuroReport 12: 2375–2379

    PubMed  CAS  Google Scholar 

  • Hauss-Wegrzyniak B, Galons JP, Stevenson G, Wenk G, Chen K, Reiman E, Valla J, Alexander J (2002) Detecting an experimentally induced reduction in mouse brain volume using sequential high-resolution MRI’s and the iterative PCA method. Presented at the 8th International Conference on AD and Related Diseases, Stockholm [abstract] Neurobiol Aging 23: S361

    Google Scholar 

  • Haxby JV, Grady CL, Koss E, Horwitz B, Heston L, Schapiro M, Friedland RP, Rapoport SI (1990) Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 47: 753–760

    PubMed  CAS  Google Scholar 

  • Higuchi M, Arai H, Nakagawa T, Higuchi S, Muramatsu T, Matsushita S, Kosaka Y, Itoh M, Sasaki H (1997) Regional cerebral glucose utilization is modulated by the dosage of apolipoprotein E type 4 allele and alphal-antichymotrypsin type A allele in Alzheimer’s disease. Neuroreport 8: 2639–2643

    PubMed  CAS  Google Scholar 

  • Hirono N, Mori E, Yasuda M, Ishii K, Ikejiri Y, Imamura T, Shimomura T, Hashimoto M, Yamashita H, Sasaki M (1998) Lack of association of apolipoprotein E epsilon 4 allele dose with cerebral glucose metabolism in Alzheimer disease. Alzheimer Dis Assoc Disord 12: 362–367

    PubMed  CAS  Google Scholar 

  • Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C, Earl N, Coleman RE (2000) FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 41: 1920–1928

    PubMed  CAS  Google Scholar 

  • Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Med 4: 97–100

    PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, A 3 elevation, and amyloid plaques in transgenic mice. Science 274: 99–102

    PubMed  CAS  Google Scholar 

  • Jack CR, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42: 183–188

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49: 786–794

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RI, Tangalos EG, Kokmen E (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51: 993–999

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52: 1397–1403

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55: 484–489

    PubMed  Google Scholar 

  • Jagust WJ, Friedland RP, Budinger TF, Koss E, Ober B (1988) Longitudinal studies of regional cerebral metabolism in Alzheimer’s disease. Neurology 38: 909–912

    PubMed  CAS  Google Scholar 

  • Juottonen K, Laakso MP, Insausti R, Lehtovirta M, Pitkanen A, Partanen K, Soininen H (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 19: 15–22

    PubMed  CAS  Google Scholar 

  • Juottonen K, Laakso MP, Partanen K, Soininen H (1999) Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. Am J Neuroradiol 20: 139–144

    PubMed  CAS  Google Scholar 

  • Katzman R, Kawas C (1994) The epidemiology of dementia and Alzheimer disease. In: Terry RD, Katzman R, and Bick KL (eds) Alzheimer disease. New York: Raven Press, pp. 105–122

    Google Scholar 

  • Kaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, Camicioli R, Ball M, Oken B, Sexton G (1997) Volume loss of the hippocampus and temporal lobe in the healthy elderly persons destined to develop dementia. Neurology 48: 1297–1304

    PubMed  CAS  Google Scholar 

  • Kesslak J, Nalcioglu O, Cotman C (1991) Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41: 51–54

    PubMed  CAS  Google Scholar 

  • Khachaturian, ZS (1992) The five-five, ten-ten plan for Alzheimer’s disease (editorial). Neurobiol Aging 13: 197–198

    PubMed  CAS  Google Scholar 

  • Killiany R, Moss M, Albert M, Tamas S (1993) Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer’s disease. Arch Neurol 50: 949–954

    PubMed  CAS  Google Scholar 

  • Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, Tanzi R, Jones K, Hyman BT, Albert MS (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 47: 430–439

    PubMed  CAS  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang G-F, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti J, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s diesease with Pittsburgh Compound-B. Neurology 55: 306–319

    CAS  Google Scholar 

  • Krasuski JS, Alexander GE, Horwitz B, Daly EM, Murphy DG, Rapoport SI, Schapiro MB (1998) Volumes of medial temporal lobe structure in patients with Alzheimer’s disease and mild cognitive impairment (and in healthy controls). Biol Psychiat 43: 60–69

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Metter EJ, Riege WH, Phelps ME (1982) Effects of human aging on patterns of local cerebral glucose utilization determined by the 18F-fluorodeoxyglucose method. J Cereb Blood Flow Metab 2: 163–171

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR (1999) In vivo maping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52: 691–699

    PubMed  CAS  Google Scholar 

  • Laakso MP, Soininen H, Partanen K, Helkala EL, Hartikainen P, Vainio P, Hallikainen M, Hanninen T, Riekkinen PJ Sr. (1995) Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer’s disease: correlation with memory functions. J Neural Transm Park Dis Dement Sect 9: 73–86

    PubMed  CAS  Google Scholar 

  • Laakso MP, Partanen K, Riekkinen P, Lehtovirta M, Helkala EL, Hallikainen M, Hanninen T, Vainio P, Soininen H (1996) Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology 46: 678–681

    PubMed  CAS  Google Scholar 

  • Lehericy S, Baulac M, Chiras J, Pierot L, Martin N, Pillon B, Deweer B, Dubois B, Marsault C (1994) Amygdalohippocampal MR volume measurements in the early states of Alzheimer disease. Am J Neuroradiol 15: 927–937

    Google Scholar 

  • Loessner A, Alavi A, Lewandrowski K, Mozley D, Souder E, Gur RE (1995) Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 36: 1141–1149

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1996) Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes. Cereb Cortex 6: 50–61

    PubMed  CAS  Google Scholar 

  • Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240: 622–630

    PubMed  CAS  Google Scholar 

  • Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP (1997) Amyloid â-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 17: 1046–1054

    PubMed  CAS  Google Scholar 

  • Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, Holt DP, Wang Y, Huang GF, Debnath ML, Klunk WE (2002) A lipophilic thioflavin-T derivative for positron emission tomography ( PET) imaging of amyloid in brain. Biorg Med Chem Lett 12: 295–298

    CAS  Google Scholar 

  • McGeer EG, Peppard RP, McGeer PL, Tuokko H, Crockett D, Parks R, Akiyama H, Calne DB, Beattie BL, Harrop R (1990)18 Fluorodeoxyglucose positron emission tomography studies in presumed Alzheimer cases, including 13 serial scans. Can J Neurol Sci 17: 1–11

    PubMed  CAS  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34: 939–944

    PubMed  CAS  Google Scholar 

  • Mega MS, Chen SS, Thompson PM, Woods RP, Karaca TJ, Tiwari A, Vinters HV, Small GW, Toga AW (1997) Mapping histology to metabolism: coregistration of stained whole-brain sections to premortem PET in Alzheimer’s disease. Neuroimage 5: 147–153

    PubMed  CAS  Google Scholar 

  • Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C (1999) Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 122: 1519–1531

    PubMed  Google Scholar 

  • Mielke R, Herholz K, Grond M (1994) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5: 36–41

    PubMed  CAS  Google Scholar 

  • Mielke R, Zerres K, Uhlhaas S, Kessler J, Heiss WD (1998) Apolipoprotein E polymorphism influences the cerebral metabolic pattern in Alzheimer’s disease. Neurosci Lett 254: 49–52

    PubMed  CAS  Google Scholar 

  • Minoshima S, Foster NL, Kuhl DE (1994) Posterior cingulate cortex in Alzheimer’s disease. Lancet 344: 895

    PubMed  CAS  Google Scholar 

  • Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18FDG PET. J Nucl Med 36: 1238–1248

    PubMed  CAS  Google Scholar 

  • Miyata M, Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and bamyloid peptides. Nature Genet 14: 55–61

    PubMed  CAS  Google Scholar 

  • Morris JC, Storandt M, McKeel DW Jr, Rubin EH, Price JL, Grant EA, Berg L (1996) Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46: 707–719

    PubMed  CAS  Google Scholar 

  • Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58: 397–405

    PubMed  CAS  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik, RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56: 303–308

    PubMed  CAS  Google Scholar 

  • Piert M, Koeppe RA, Giordani B, Minoshima S, Kuhl DE (1996) Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET. J Nucl Med 37: 201–208

    PubMed  CAS  Google Scholar 

  • Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, Rapoport SI, Schapiro MB, Horwitz B (1998) Abnormal metabolic patterns in Alzheimer’s disease after correction for partial volume effects. Neurology 50: 1585–1593

    PubMed  CAS  Google Scholar 

  • Reiman EM, Caselli RJ (1999) Alzheimer’s disease. Maturitas 31: 185–200

    PubMed  CAS  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of a genetic risk factor for Alzheimer’s disease in apolipoprotein E type 4 homozygotes using positron emission tomography. N Engl J Med 334: 752–758

    PubMed  CAS  Google Scholar 

  • Reiman EM, Uecker A, Caselli RJ, Lewis S, Bandy D, de Leon MJ, De Santi S, Convit A, Osborne D, Weaver A, Thibodeau SN (1998) Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer’s disease. Ann Neurol 44: 288–291

    PubMed  CAS  Google Scholar 

  • Reiman EM, Uecker A, Gonzalez-Lima F, Minear D, Chen K, Callaway NL, Berndt JD, Games D (2000) Tracking Alzheimer’s disease in transgenic mice using fluorodeoxyglucose autoradiography. NeuroReport 11: 987–991

    PubMed  CAS  Google Scholar 

  • Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J (200la) Declining brain activity in cognitively normal apolipoprotein E ε4 heterozygotes: a foundation for testing Alzheimer’s prevention therapies. Proc Natl Acad Sci USA 98: 3334–3339

    CAS  Google Scholar 

  • Reiman EM, Caselli RJ, Alexander GE, Chen, K (2001b) Tracking the decline in cerebral glucose metabolism in persons and laboratory animals at genetic risk for Alzheimer’s disease. Clin Neurosci Res 1: 194–206

    CAS  Google Scholar 

  • Reiman EM, Chen K, Bandy D, Prouty A, Burns C, Alexander G, Caselli R (2002a) Effects of age on cerebral glucose metabolism in APOE E ε4 carriers and noncarriers. Presented at the 8th Internatiomal Conference on AD and Related Diseases, Stockholm [abstract]. Neurobiol Aging 23: S351–S352

    Google Scholar 

  • Reiman EM, Chen K, Bandy D, Prouty A, Burns C, Alexander G, Caselli R (2002b) Abnormalities in regional brain activity in young adults at genetic risk for late-onset Alzheimer’s disease Presented at the 8th International Conference on AD and Related Diseases, Stockholm [abstract]. Neurobiol Aging 23: S421

    Google Scholar 

  • Reiman EM, Chen K, Alexander GE, Caselli RJ (2003) Positron emission tomography studies of cognitively normal persons at genetic risk for Alzheimer’s disease. Presented at the IPSEN Foundation Conference on the Living Brain and Alzheimer’s Disease, Paris

    Google Scholar 

  • Rusinek H, de Leon MJ, George AE, Stylopoulos LA, Chandra R, Smith G, Rand T, Mourino M, Kowalski H (1991) Alzeimer disease: measuring loss of cerebral gray matter with MRI imaging. Radiology 178: 109–114

    PubMed  CAS  Google Scholar 

  • Salmon E, Sadzot B, Magnet P, Dive D, Franck G (1991) Decrease of frontal metabolism demonstrated by positron emission tomography in a population of healthy elderly volunteers. Acta Neurol Belg 91: 288–295

    PubMed  CAS  Google Scholar 

  • Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ (1993) Association of apolipoprotein E allele 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472

    PubMed  CAS  Google Scholar 

  • Saunders AM, Hulette O, Welsh-Bohmer KA, Schmechel DE, Crain B, Burke JR, Alberts MJ, Strittmatter WJ, Breitner JC, Rosenberg C (1996) Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 348: 90–93

    PubMed  CAS  Google Scholar 

  • Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzhiemer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 99: 4703–4707

    PubMed  CAS  Google Scholar 

  • Schott JM, Fox NC, Frost C, Scahill RI, Janssen JC, Chan D, Jenkins R, Rossor MN (2003) Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol 53: 181–188

    PubMed  Google Scholar 

  • Schuff N, Amend D, Ezekiel F, Steinman SK, Tanabe J, Norman D, Jagust W, Kramer JH, Mastrianni JA, Fein G, Weiner MW (1997) Change of hippocampal N-acetyl aspartate and volume in Alzheimer’s disease. Neurology 49: 1513–1521

    PubMed  CAS  Google Scholar 

  • Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H (1979) Metabolic mapping of functional activity in the hypothalamic neurohypophysial system of the rat. Science 205: 723–725

    PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. New Engl J Med 346: 476–483

    PubMed  CAS  Google Scholar 

  • Seab JP, Jagust WJ, Wong ST, Roos MS, Reed BR, Budinger TF (1988) Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med; 8: 200–208

    PubMed  CAS  Google Scholar 

  • Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles (NFTs) and beta-amyloid placques (APs) in the brains of living patients with Alzheimer’s disease. Am J Geriatr Psychiat 10: 24–35

    Google Scholar 

  • Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME. (2001) Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 286: 2120–2127

    PubMed  CAS  Google Scholar 

  • Small GW, Mazziotta JC, Collins MT, Baxter LR, Phelps ME, Mandelkern MA, Kaplan A, La Rue A, Adamson CF, Chang L, et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. J Am Med Assoc 273: 942–947

    CAS  Google Scholar 

  • Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97: 6037–6042

    PubMed  CAS  Google Scholar 

  • Smith GS, de Leon MJ, George AE, Kluger A, Volkow ND, McRae T, Golomb J, Ferris SH, Reisberg B, Ciaravino J (1992) Topography of crosssectional and longitudinal glucose metabolic defecits in Alzheimer’s disease. Pathophysiologic implications. Arch Neurol 49: 1142–1150

    PubMed  CAS  Google Scholar 

  • Snowdon DA, Tully CL, Smith CD, Riley KP, Markesbery WR (2000) Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the nun study. Am J Clin Nutr 71: 993–998

    PubMed  CAS  Google Scholar 

  • Soininen H, Partanen K, Pitkanen A, Hallikainen M, Hanninen T, Helisalmi S, Mannermaa A, Ryynanen M, Koivisto K, Riekkinen P Sr (1995) Decreased hippocampal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein ε4 allele. Neurology 45: 391–392

    PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid â peptide isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 98–8102

    Google Scholar 

  • Strittmatter WJ, Weisgraber KH, Goedert M, Saunders AM, Huang D, Corder EH, Dong LM, Jakes R, Alberts MJ, Gilbert JR, Hans S, Hulette C, Einstein G, Schmechel DE, Pericak-Vance MA, Roses AD (1994) Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol 125: 163–171

    PubMed  CAS  Google Scholar 

  • Temple R (1995) A regulatory authority’s opinion about surrogate endpoints. In: Nimmo WS, Tucker GT (eds) Clinical measurement in drug evaluation. New York, NY, John Wiley & Sons, Ltd, pp. 3–22

    Google Scholar 

  • Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21: 530–539

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580

    PubMed  CAS  Google Scholar 

  • Terry RD, Maskiah E, Hansen LA (1999) The neuropathology of Alzheimer disease and the structural basis of its cognitive alterations. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease. Second edition. Philadelphia: Lippincott Williams & Wilkins, pp. 187–206

    Google Scholar 

  • Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW (2001) Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11: 1–16

    PubMed  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23: 994–1005

    PubMed  CAS  Google Scholar 

  • United States Food and Drug Administration. Division of Neuropharmacological Drug Products (2002) Background Document for Joint Advisory Committee Meeting of November 18, 2002: Issues related to the role of brain imaging as an outcome measure in Phase III trials of putative drugs for Alzheimer’s Disease.

    Google Scholar 

  • Valla J, Berndt JD, Gonzalez-Lima F (2001) Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J Neurosci. 21: 4923–4930

    PubMed  CAS  Google Scholar 

  • Valla J, Chen K, Berndt JD, Gonzalez-Lima F, Cherry SR, Games D, Reiman EM (2002a) Effects of image resolution on autoradiographic measurements of posterior cingulate activity in PDAPP mice: Implications for functional brain imaging studies in transgenic mouse models of Alzheimer’s disease. Neurolmage 16: 1–6

    CAS  Google Scholar 

  • Valla J, Lewandowski L, Duff K, Reiman EM (2002b) No evidence of significant white matter disruption in the TG2576 mouse model of Alzheimer’s disease: implications for in vivo microimaging. Presented at the 8th International Conference on AD and Related Disorders, Stockholm, [abstract] Neurobiol Aging 23: S251

    Google Scholar 

  • Visser PJ, Scheltens P, Verhey FR, Schmand B, Launer LJ, Jones J, Jonker C (1999) Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 246: 477–485

    PubMed  CAS  Google Scholar 

  • Wisniewski T, Castano EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145: 1030–1035

    PubMed  CAS  Google Scholar 

  • Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, Boeve BF, Tangalos RG, Petersen RC (2000) Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54: 1760–1767

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reiman, E.M., Caselli, R.J., Chen, K., Alexander, G.E. (2004). Positron Emission Tomography and Magnetic Resonance Imaging in the Study of Cognitively Normal Persons at Differential Genetic Risk for Alzheimer’s Dementia. In: Hyman, B.T., Demonet, JF., Christen, Y. (eds) The Living Brain and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59300-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59300-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63927-2

  • Online ISBN: 978-3-642-59300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics