Skip to main content

The Metabolic Pathway of Tetrapyrrole Biosynthesis

  • Chapter
Peroxidizing Herbicides

Abstract

The aim of this chapter is to provide an overview of the metabolic pathway of tetrapyrrole biosynthesis. Tetrapyrroles play a pivotal role in many biochemical processes. They participate as prosthetic groups or chromophores in light harvesting (chlorophyll (Chl)-binding proteins), respiration or phosphorylation (cytochromes), removal of reactive oxygen species or detoxification (cytochrome P450, catalase, peroxidase), nitrogen fixation (leghemoglobin), oxygen transport (hemoglobin), storage (myoglobin) and light perception (phytochrome). All tetrapyrroles are synthesised in a branched pathway, in which various end products are formed in different amounts. The most abundant cyclic tetrapyrroles are Chl and heme which are characterised by a chelated magnesium and iron, respectively. Protoheme is an intermediate in the formation of the open chain and iron free phycobilins which are the chromophores of the phycobiliproteins in cyanobacteria and red algae, and of phytochromobilin for phytochrome in plants and algae. Uroporphyrinogen (Urogen) III, which is a metabolic intermediate in the main pathway leading to heme and chlorophyll synthesis, is also the precursor of a branch pathway leading to the synthesis of cobalt containing vitamin B12 (cobalamins), siroheme or the nickel chelating corrins (coenzyme F 430).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar M (1994) The modification of acetate and propionate side chains during the biogenesis of haem and chlorophylls: mechanistic and stereochemical studies. In: Chadwick DJ, Ackrill K (eds) The biosynthesis of the tetrapyrrole pigments. Ciba Foundation Symposium 180. Wiley, Chichester, pp 209–220.

    Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233.

    Article  CAS  Google Scholar 

  • Anandan S, Morishige DT, Thornber JP (1993) Light-induced biogenesis of light-harvesting complex I (LHCI) during chloroplast development in barley. Plant Physiol 101:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Andersen RV (1992) Characterization of a barley tRNA synthetase involved in chlorophyll biosynthesis. In: Murata N (ed) Research in photosynthesis, vol III. Kluwer Academic Publishers, Amsterdam, pp 27–30.

    Chapter  Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.): phytochrome induced decrease of translatable mRNA coding for the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 120:89–93.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517.

    Article  PubMed  CAS  Google Scholar 

  • Avissar YJ, Beale SI (1989a) Identification of the enzymatic basis for δ-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J Bacteriol 171:2919–2924.

    PubMed  CAS  Google Scholar 

  • Avissar YJ, Beale SI (1989b) Biosynthesis of tetrapyrrole pigment precursors: pyridoxal requirement of the aminotransferase step in the formation of δ-aminolevulinate from glutamate in extracts of Chlorella vulgaris. Plant Physiol 89:852–859.

    Article  PubMed  CAS  Google Scholar 

  • Avissar YJ, Beale SI (1990) Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol 172:1656–1659.

    PubMed  CAS  Google Scholar 

  • Avissar YJ, Ormerod JG, Beale SI (1989) Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151:513–519.

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1993) Biosynthesis of cyanobacterial tetrapyrrole pigments: hemes, chlorophylls and phycobilins. In: Bryant (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Amsterdam, pp 520–558.

    Google Scholar 

  • Beale SI, Gough SP, Granick S (1975) The biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acid Sci USA 72:2719–2723.

    Article  CAS  Google Scholar 

  • Becerril JM, Duke SO (1989) Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90:1175–1181.

    Article  PubMed  CAS  Google Scholar 

  • Berry-Lowe S (1987) The chloroplast glutamate tRNA gene required for δ-aminolevulinate synthesis. Carlsberg Res Commun 52:197–210.

    Article  CAS  Google Scholar 

  • Boese QF, Spano AJ, Li J, Timko MP (1991) Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem 266:17060–17066.

    PubMed  CAS  Google Scholar 

  • Bogorad L (1950) Factors associated with the synthesis of chlorophyll in the dark in seedlings of Pinus jeffreyi. Bot Gaz 111:221–241.

    Article  CAS  Google Scholar 

  • Bollivar DW, Beale SI (1995) Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosyn Res 43:113–124.

    Article  CAS  Google Scholar 

  • Bollivar DW, Jiang Z., Bauer CE, Beale SI (1994a) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol 176:5290–5296.

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Suzuki JK, Beatty JT, Dobrowolski JM, Bauer CE (1994b) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640.

    Article  PubMed  CAS  Google Scholar 

  • Bollivar DW, Wang S, Allen J, Bauer CE (1994c) Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis: characteriaztion of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Biochemistry 33:12763–12768.

    Article  PubMed  CAS  Google Scholar 

  • Bougri O, Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9:867–878.

    Article  PubMed  CAS  Google Scholar 

  • Bruyant P, Kannangara CG (1987) Biosynthesis of δ-aminolevulinate in greening barley leaves, VIII: purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Commun 52:99–109.

    Article  CAS  Google Scholar 

  • Burke DH, Alberti M, Hearst JE (1993) BchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. J Bacteriol 175:2414–2422.

    PubMed  CAS  Google Scholar 

  • Camadro J, Chambon H, Jolies J, Labbe P (1986) Purification and properties of coproporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Eur J Biochem 156:579–587.

    Article  PubMed  CAS  Google Scholar 

  • Castelfranco PA, Weinstein JD, Schwarcz S, Pardo AD, Wezelman BE (1979) The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys 192:592–598.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick DJ, Ackrill K (1994) The biosynthesis of the tetrapyrrole pigments. Wiley, Chichester (Ciba Foundation symposium 180).

    Google Scholar 

  • Chauhan S, O’Brian MR (1995) A mutant Bradyrhizobium japonicum δ-aminolevulinic acid dehydratase with an altered metal requirement in situ for tetrapyrrole biosynthesis in soybean root nodules. J Biol Chem 270:19823–19827.

    Article  PubMed  CAS  Google Scholar 

  • Chekunova EM, Shalygo NV, Yaronskaya EB, Averina NG, Chunaev AS (1993) Regulation of biosynthesis of chlorophyll precursors in mutants of the green algae Chlamydomonas reinhardtii. Biockhimiya (Russ) 58:1430–1436.

    CAS  Google Scholar 

  • Chen MW, Jahn D, Schön A, O’Neill GP, Söll D (1990) Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265:4058–4063.

    PubMed  CAS  Google Scholar 

  • Chen TC, Miller GW (1974) Purification and characterization of uroporphyrinogen decarboxylase from tobacco leaves. Plant Cell Physiol 15:993–1005.

    CAS  Google Scholar 

  • Chereskin BA, Wong YS, Castelfranco PA (1982) In vitro synthesis of the chlorophyll isocyclic ring: transformation of the magnesium-protoporphyrin IX and magnesium protoporphyrin IX monomethyl ester into magnesium-2,4-divinyl pheoporphyrin a5. Plant Physiol 70:987–993.

    Article  PubMed  CAS  Google Scholar 

  • Choquet Y, Rahire M, Girad-Bascou J, Erikson J, Rochaix JD (1992) A chloroplast is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11:1697–1704.

    PubMed  CAS  Google Scholar 

  • Chow KS, Singh DP, Roper JM, Smith AG (1998) A single precursor protein for ferrochelatase I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 272:27565–27571.

    Article  Google Scholar 

  • Crocket N, Alefounder PR, Battersby AR, Abell C (1991) Uroporphyrinogen III synthase: studies on its mechanism of action, molecular biology and biochemistry. Tetrahedron 47:6003–6014.

    Article  Google Scholar 

  • Darrah PM, Kay SA, Teakle GR, Griffiths WT (1990) Cloning and sequencing of protochlorophyllide reductase. Biochem J 265:789–798.

    PubMed  CAS  Google Scholar 

  • Dreyfuss BW, Thornber JP (1994) Organization of the light-harvesting complex of photosystem I and its assembly during plastid development. Plant Physiol 106:841–848.

    PubMed  CAS  Google Scholar 

  • Douglas SE, Reith M (1993) A bchI homolog, encoding a subunit of Mg chelatase, is located on the plastid genomes of red and cryptomonad algae. J Mar Biotechnol 1:135–141.

    CAS  Google Scholar 

  • Drechsler-Thielmann B, Dörnemann D, Senger H (1993) Synthesis of protoheme via both the C5 pathway and the Shemin pathway in the pigment mutant C-2A’ of Scenedesmus obliquus. Z Naturforsch C 48:584–589.

    CAS  Google Scholar 

  • Ebbon JG, Tait GH (1969) Studies on S-adenosyl-methionine-magnesium-protoporphyrinmethyl-transferase in Euglena gracilis strain Z. Biochem J 111:573–582.

    PubMed  CAS  Google Scholar 

  • Elder GH, Evans JO (1978) Evidence that coproporphyrinogen oxidase activity of rat liver is situated in the intermembrane space of mitochondria. Biochem J 172:345–347.

    PubMed  CAS  Google Scholar 

  • Ellsworth RK, Dullaghan JP, Pierre MES (1974) The reaction mechanism of S-adenosyl-L-methionine:Mg protoporphyrin methyltransferase of wheat. Photosynthetica 8:375–383.

    Google Scholar 

  • Fereirra GC, Andrew TL, Karr SW, Dailey HA (1988) Organization of the terminal two enzymes of the heme biosynthetic pathway. J Biol Chem 263:3839–3855.

    Google Scholar 

  • Fuesler TP, Hanamoto CM, Castelfranco PA (1982) Separation of Mg-pxotoporphyrin IX and Mg-protoporphyrin IX monomethyl ester synthesized de novo by developing cucumber etioplasts. Plant Physiol 69:421–423.

    Article  PubMed  CAS  Google Scholar 

  • Fuesler TP, Wong YS, Castelfranco PA (1984) Localization of Mg-chelatase and Mgprotoporphyrin IX monomethyl ester (oxidative) cyclase activities within isolated, developing cucumber chloroplasts. Plant Physiol 75:662–664.

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Takahashi Y, Chuganji M, Matsubara M (1992) The nif H-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant Cell Physiol 33:81–92.

    CAS  Google Scholar 

  • Gaubier P, Wu HJ, Laudie M, Delseny M, Grellet F (1995) A chlorophyll synthase gene from Arabidopsis thaliana. Mol Gen Genet 249:58–64.

    Article  PubMed  CAS  Google Scholar 

  • Gibson KD, Laver WG, Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. The formation of δ-aminolevulinic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J 70:71–81.

    PubMed  CAS  Google Scholar 

  • Gibson LCD, Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. FEBS Lett 352:127–130.

    Article  PubMed  CAS  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, von Wettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH,-I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92:1941–1944.

    Article  PubMed  CAS  Google Scholar 

  • Gibson LCD, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M, Hunter CN (1996) A putative Mg-chelatase subunit from Arabidopsis thaliana cv C24. Plant Physiol 111:61–71.

    Article  PubMed  CAS  Google Scholar 

  • Gorchein A (1972) Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides studies with whole cells. Biochem J 127:97–106.

    PubMed  CAS  Google Scholar 

  • Gough SP, Kannangara CG (1977) Synthesis of δ-aminolevulinate by a chloroplast stroma preparation from greening barley leaves. Carlsberg Res Commun 42:459–464.

    Article  CAS  Google Scholar 

  • Griffiths WT (1978) Preconstitution of chlorophyll formation by isolated etioplast membranes. Biochem J 174:681–692.

    PubMed  CAS  Google Scholar 

  • Grimm B (1990) Primary structure of a key enzyme in plant tetrapyrrole synthesis: glutamate-1-semialdehyde aminotransferase. Proc Natl Acad Sci USA 87:4169–4173.

    Article  PubMed  CAS  Google Scholar 

  • Grimm B, Bull A, Welinder KG, Gough SP, Kannangara CG (1989) Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Res Commun 54:67–79.

    Article  PubMed  CAS  Google Scholar 

  • Grimm B, Smith AJ, Kannangara GC, Smith M (1991) Gabaculine-resistant glutamate 1-semialdehyde aminotransferase of Synechococcus. J Biol Chem 266:12495–12501.

    PubMed  CAS  Google Scholar 

  • Grimm B, Smith MA, von Wettstein D (1992) The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate 1-semialdehyde aminotransferase. Eur J Biochem 206:579–585.

    Article  PubMed  CAS  Google Scholar 

  • Hansson M, Hederstedt L (1992) Cloning and characterization of the Bacillus subtilis hemEYH gene cluster which encodes protoheme IX biosynthetic enzymes. J Bacteriol 174:8081–8093.

    PubMed  CAS  Google Scholar 

  • Hart GJ, Battersby AR (1985) Purification and properties of uroporphyrinogen III synthase (co-synthase) from Euglena gracilis. Biochem J 232:151–160.

    PubMed  CAS  Google Scholar 

  • Hart GJ, Miller AD, Leeper FJ, Battersby AR (1987) Biosynthesis of the natural porphyrins: proof that hydroxymethylbilane synthase (porphobilinogen deaminase) uses a novel binding group in ist catalytic action. J Chem Soc Chem Commun 1987:1762–1765.

    Article  Google Scholar 

  • Härtel H, Grimm B (1998) Consequences of chlorophyll deficiency for leaf carotenoid composition in tobacco expressing glutamate 1-semialdehyde aminotransferase antisense RNA: dependence on developmental age and growth light. Exp Botany 49:535–546.

    Google Scholar 

  • Härtel H, Kruse E, Grimm B (1997) Restriction of chlorophyll synthesis due to expression of glutamate-1-semialdehyde aminotransferase antisense RNA does not reduce the light-harvesting antenna size in tobacco. Plant Physiol 113:1113–1124.

    PubMed  Google Scholar 

  • Hennig M, Grimm B, Contestabile R, John RA, Jansonius JN (1997) Crystal structure of glutamate 1-semialdehyde aminomutase. An alpha2-dimeric Vitamin B6 dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94:4866–4871.

    Article  PubMed  CAS  Google Scholar 

  • Henningsen KW, Boynton JE, von Wettstein D (1993) Mutants at xantha and albina loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.). Biologiske Skrifter 42: Munksgaard, Copenhagen.

    Google Scholar 

  • Herrin DL, Battey JF, Greer K, Schmidt GW (1992) Regulation of chlorophyll apoprotein expression and accumulation. J Biol Chem 267:8260–8269.

    PubMed  CAS  Google Scholar 

  • Higuchi M, Bogorad L (1975) The purification and properties of uroporphyrinogen I synthases and uroporphyrinogen II cosynthase: interactions between the enzymes. Ann N Y Acad Sci 244:401–418.

    Article  PubMed  CAS  Google Scholar 

  • Hill KL, Merchant S (1995) Coordinate expression of coproporphyrinogen oxidase and cytochrome c6 in the green alga Chlamydomonas reinhardtii in response to changes in copper availability. EMBO J 14:857–865.

    PubMed  CAS  Google Scholar 

  • Höfgen R, Axelsen KB, Kannangara CG, Schüttke I, Pohlenz HD, Willmitzer L, Grimm B, von Wettstein D (1994) A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci USA 91:1726–1730.

    Article  PubMed  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L). Proc Natl Acad Sci USA 92:3254–3258.

    Article  PubMed  CAS  Google Scholar 

  • Hsu WP, Miller GW (1970) Coproporphyrinogen oxidase in tobacco. Biochem J 117:215–220.

    PubMed  CAS  Google Scholar 

  • Huang L, Bonner BA, Castelfranco PA (1989) Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts. II. Regulation of ALA-synthesizing capacity by phytochrome. Plant Physiol 90:1003–1008.

    Article  PubMed  CAS  Google Scholar 

  • Hudson A, Carpenter R, Doyle R, Coen ES (1993) Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12:3711–3719.

    PubMed  CAS  Google Scholar 

  • Ilag LL, Kumar AM, Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275.

    PubMed  CAS  Google Scholar 

  • Im CZ, Matters GL, Heale SI (1996) Calcium and calmodulin are involved in blue light induction of the GSA gene for an early chlorophyll biosynthetic step in Chlamydomonas. Plant Cell 8:2245–2253.

    PubMed  CAS  Google Scholar 

  • Ito H, Tanaka Y, Tsuji H, Tanaka A (1993) Conversion of chlorophyll b to chlorophyll a in isolated cucumber etioplasts. Arch Biochem Biophys 306:148–151.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JM, Jacobs NJ (1987) Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis: purification and partial characterization of the enzyme from barley organelles. Biochem J 244:219–244.

    PubMed  CAS  Google Scholar 

  • Jaffe EK (1995) Porphobilinogen synthase, the first source of heme’s asymmetry. J Bioenerg Biomembr 27:169–179.

    Article  PubMed  CAS  Google Scholar 

  • Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314:77–80.

    Article  PubMed  CAS  Google Scholar 

  • Jahn D, Michelsen U, Söll D (1991) Two glutamyl-tRNA reductase activities in Escherichia coli. J Biol Chem 266:2542–2548.

    PubMed  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D, Henningsen KW (1996a) Structural genes for Mg-chelatase, subunits in barley: Xantha-f,-g and -h. Mol Gen Genet 250:383–394.

    PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW, Hunter CN (1996b) Expression of the ChlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271:16662–16667.

    Article  PubMed  CAS  Google Scholar 

  • Johanningmeier U, Howell SH (1984) Regulation of light-harvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardtii. J Biol Chem 259:12541–13549.

    Google Scholar 

  • Jordan PM (1994) Highlights in haem biosynthesis. Curr. Opin Struct Biol 4:902–911.

    Article  CAS  Google Scholar 

  • Jordan PM, Gibbs PNB (1985) Mechanism of action of 5-aminolevulinate dehydratase from human erythrocytes. Biochem J 227:1015–1020.

    PubMed  CAS  Google Scholar 

  • Jordan PM, Mgbeje IAB, Thomas SD, Alwan AF (1988) Nucleotide sequence for the hemD gene of Escherichia coli encoding uroporphyrinogen III synthase and initial evidence for hem operon. Biochem J 249:613–616.

    PubMed  CAS  Google Scholar 

  • Juknat AA, Seubert A, Seubert S, Ippen H (1989) Studies on uroporphyrinogen decarboxylase of etiolated Euglena gracilis Z. Eur J Biochem 179:423–428.

    Article  PubMed  CAS  Google Scholar 

  • Juknat AA, Dörnemann D, Senger H (1994) Purification and kinetic studies on a porphobilinogen deaminase from the unicellular green alga Scenedesmus obliquus. Planta 193:123–130.

    Article  CAS  Google Scholar 

  • Kannangara CG, Gough SP (1978a) Biosynthesis of δ-aminolevulinate in greening barley leaves:glutamate-1-semialdehyde aminotransferase. Carlsberg Res Commun 43:185–194.

    Article  CAS  Google Scholar 

  • Kannangara CG, Gough SP (1978b) Biosynthesis of δ-aminolevulinate in greening barley leaves: induction of enzyme synthesis in the light. Carlsberg Res Commun 44:11–20.

    Article  Google Scholar 

  • Kannangara CG, Gough SP, Oliver RP, Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves. VI: activation of glutamte by ligation to RNA. Carlsberg Res Commun 49:417–437.

    Article  CAS  Google Scholar 

  • Kannangara CG, Vothknecht UC, Hansson M, von Wettstein D (1997) Magnesium chelatase: association with ribosomes and mutant complementation studies identify subunit Xantha-G as a functional counterpart of the Rhodobacter subunit BchD. Mol Gen Genet 254:85–92.

    Article  PubMed  CAS  Google Scholar 

  • Kaczor C, Smith MW, Sangwan I, O’Brian MR (1994) Plant δ-aminolevulinic acid dehydratase. Expression in soybean root nodules and evidence for a bacterial lineage of the Alad gene. Plant Physiol 104:1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Kiel JAKW, Ten Berge AM, Venema G (1992) Nucleotide sequence of the Synechococcus sp. PCC7942 hemE gene encoding the homologue of mammalian uroporphyrinogen decarboxylase. J DNA Sequenc Mapping 2:415–418.

    CAS  Google Scholar 

  • Klemm DJ, Barton LL (1987) Purification and properties of protoporphyrinogen oxidase from an anaerobic bacterium Desulfovibrio gigas. J Bacteriol 169:5209–5215.

    PubMed  CAS  Google Scholar 

  • Koncz C, Meyerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9:1337–1346.

    PubMed  CAS  Google Scholar 

  • Knörzer OC, Durner J, Böger P (4996) Alteration in the antioxidative system of the suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant 97:388–396.

    Article  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995a) Coproporphyrinogen III oxidase from barley and tobacco — sequence analysis and initial expression studies. Planta 196:796–803.

    Article  PubMed  CAS  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995b) Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14:3712–3720.

    PubMed  CAS  Google Scholar 

  • Kruse E, Grimm B, Beator J, Kloppstech K (1997a) Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. Planta 202:235–241.

    Article  CAS  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1997b) Isolation and characterisation of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX. Plant Mol Biol 35:1053–1056.

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Ball MD, Parham R, Rebeiz CA (1992) Chloroplast biogenesis 65: enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99:1134–1140.

    Article  PubMed  CAS  Google Scholar 

  • Lehnen LP, Sherman TD, Becerril JM, Duke SO (1990) Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic Biochem Physiol 37:248–329.

    Article  Google Scholar 

  • Lermontova I, Kruse E, Mock HP, Grimm B (1997) Cloning and characterization of plastidal and mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94:8895–8900.

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Brathwaite O, Cosloy SD, Russel CS (1989) 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol 171:2547–2552.

    PubMed  CAS  Google Scholar 

  • Li J, Goldschmidt-Clermont M, Timko MP (1993) Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5:1817–1829.

    PubMed  CAS  Google Scholar 

  • Liedgens W, Grützmann R, Schneider HAW (1980) Highly efficient purification of the labile plant enzyme 5-aminolevuliante dehydratase by means of monoclonal antibodies. Z Naturforsch 35c:958–962.

    CAS  Google Scholar 

  • Little HN, Jones OTG (1976) The subcellular localization and properties of the ferrochelatase of etiolated barley. Biochem J 156:309–314.

    PubMed  CAS  Google Scholar 

  • Lopez J, Ryan S, Blankenship RE (1996) Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferase. J Bacteriol. 178:3369–3373.

    PubMed  CAS  Google Scholar 

  • Louie GV, Brownlie PD, Lambert R, Coooper JB, Blundell TL, Wood SP, Warren MJ, Woodcock SC, Jordan PM (1992) Structure of porphobilinogen deaminase reveals flexible multidomain polymerase with a single catalytic site. Nature 359:33–39.

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Lim K (1993) Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289:529–532.

    PubMed  CAS  Google Scholar 

  • Madsen O, Sandal L, Sandal NN, Marcker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Mascia P (1978) An analysis of precusors accumulated by several chlorophyll biosynthetic mutants of maize. Mol Gen Genet 161:237–244.

    Article  CAS  Google Scholar 

  • Masuda T, Ohta H, Shoi Y, Takamiya KI (1996) Light regulation of 5-aminolevulinic acid-synthesis in Cucumis sativus: light stimulates activity of glutamyl-tRNA reductase during greening. Plant Physiol Biochem 34:11–16.

    CAS  Google Scholar 

  • Matters GL, Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme glutamate-1-semialdehyde aminotransferase in Chlamydomonas reinhardtii. Plant Mol Biol 24:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Malters GL, Beale SI (1995) Structure and expression of the Chlamydomonas reonhardtii alad gene encoding the chlorophyll biosynthetic enzyme, δ-aminolevulinic acid dehydratase (porphobilinogen synthase). Plant Mol Biol 27:607–617.

    Article  Google Scholar 

  • Matringe M, Camadro JM, Labbe P, Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260:231–235.

    PubMed  CAS  Google Scholar 

  • Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P, Douce R (1992) Localization within the chloroplasts of protoporphyrinogen oxidase the target enzyme for diphenylether-like herbicides. J Biol Chem 267:4646–4651.

    PubMed  CAS  Google Scholar 

  • Matters GL, Beale SI (1995) Blue-light regulated expression of genes for two early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 109:471–479.

    PubMed  CAS  Google Scholar 

  • Mayer SM, Beale SI (1990) Light regulation of δ-aminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol 94:1365–1375.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Tanaka R, Teramoto H, Masuda T, Tsuji H, Inokuchi H (1994) Nucleotide sequences of the cDNA clones encoding ferrochelatase from barley and cucumber. Plant Physiol 105:769–770.

    Article  PubMed  CAS  Google Scholar 

  • Mock HP, Grimm B (1997) Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light-dependent necrosis. Plant Physiol 113:1101–1112.

    PubMed  CAS  Google Scholar 

  • Mock HP, Trainotti L, Kruse E, Grimm B (1995) Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol 28:245–256.

    Article  PubMed  CAS  Google Scholar 

  • Mock HP, Keetman U, Kruse E, Rank B, Grimm B (1998) Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity. Plant Physiol 116:107–116.

    Article  CAS  Google Scholar 

  • Nagy F, Kay SA, Chua NH (1988) A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev 2:376–382.

    Article  CAS  Google Scholar 

  • Nair SP, Harwood JL, John RA (1991) Direct identification and quantification of the cofactor in glutamate semialdehyde aminotransferase from pea leaves. FEBS Lett 2S3:4–6.

    Article  Google Scholar 

  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Shioi Y, Takamiya K (1995) Cloning, subcellular localization and expression of ChlI, a subunit of Mg-chelatase in soybean. Biochem Biophys Res Commun 215:422–428.

    Article  PubMed  CAS  Google Scholar 

  • Narita S, Tanaka R, Ito T, Okada K, Taketani S, Inokuchi H (1996) Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Nasrulhaq-Boyce A, Griffiths WT, Jones OTG (1987) The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring. Biochem J 243:23–29.

    PubMed  CAS  Google Scholar 

  • Nielsen OF (1974) Macromolecular physiology of plastids. Hereditas 76:269–304.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ito H, Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiol 113:137–147.

    PubMed  CAS  Google Scholar 

  • Oliver RP, Griffiths WT (1982) Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol 70:1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Orsat B, Monfort A, Chatellard P, Stutz E (1992) Mapping and sequencing of an actively transcribed Euglena gracilis chloroplast gene (ccsA) homologous to the Arabidopsis thaliana nuclear gene cs (ch-42). FEBS 303:181–184.

    Article  CAS  Google Scholar 

  • Oster U, Bauer CE, Rüdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272:9671–9676.

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Gräfe S, Kruse E, Hänel F, Grimm B (1997) Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J 12:981–990.

    Article  PubMed  CAS  Google Scholar 

  • Plumley FG, Schmidt GW (1995) Light-harvesting chlorophyll a/b complexes: interdependent pigment synthesis and protein assembly. Plant Cell 7:689–704.

    PubMed  CAS  Google Scholar 

  • Polking GF, Hannapel DJ, Gladon RJ (1995) Characterization of a cDNA encoding 5-aminolevulinic acid dehydratase in tomato (Lycopersicon esculentum Mill). Plant Cell Rep 14:366–369.

    Article  CAS  Google Scholar 

  • Pontoppidan B, Kannangara CG (1994) Purification and partial characterisation of barley glutamyl tRNAglu reductase. Eur J Biochem 225:529–537.

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ (1997) Recent progress in porphyrin and chlorophyll biosynthesis. Photochem Photobiol 65:492–516.

    Article  CAS  Google Scholar 

  • Porra RJ, Lascelles J (1968) Studies on ferrochelatase: the enzymic formation of haem in proplastids, chloroplasts and plant mitochondria. Biochem J 108:343–348.

    PubMed  CAS  Google Scholar 

  • Porra RJ, Schäfer W, Cmiel E, Katheder I, Scheer H (1993) Derivation of the formyl group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays). FEBS Lett 371:21–24.

    Article  Google Scholar 

  • Radmer RJ, Bogorad L (1967) S-adenosyl-L-methionine magnesium protoporphyrin methyltransferase, an enzyme in the biosynthetic pathway of chlorophyll in Zea mays. Plant Physiol 42:463–465.

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Lascelles J (1982) Biosynthesis of pigments in plants and bacteria. In: Govindjee (ed) Photosynthesis: energy conversion by plants and bacteria. vol 1. pp 699–780.

    Google Scholar 

  • Rebeiz CA, Wu SM, Kuhadja M, Daniell H, Perkins EJ (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity in plants. Mol Cell Biochem 57:97–125.

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237:323–342.

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Runge S, Reinbothe C, van Cleve B, Apel K (1995) Substrate dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7:161–172.

    PubMed  CAS  Google Scholar 

  • Reith M, Munholland J (1993) A high gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5:465–475.

    PubMed  CAS  Google Scholar 

  • Rieble S, Beale SI (1991) Purification of glutamyl tRNA reductase from Synechocystis sp. PCC6803. J Biol Chem 266:9740–9745.

    CAS  Google Scholar 

  • Roitgrund C, Mets LJ (1990) Localization of two novel chloroplast functions: trans-splicing of RNA and protochlorophyllide reduction. Curr Genet 17:147–153.

    Article  CAS  Google Scholar 

  • Rüdiger W, Benz J, Guthoff C (1980) Detection and partial characterozation of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109:193–200.

    Article  PubMed  Google Scholar 

  • Runge S, van Cleve B, Lebedev N, Armstrong G, Apel K (1995) Isolation and classification of chlorophyll deficient xantha mutants of Arabidopsis thaliana. Planta 197:490–500.

    Article  PubMed  CAS  Google Scholar 

  • Sangwan I, O’Brian MR (1993) Expression of the soybean glutamate 1-semialdehyde aminotrans-ferase gene in symbiotic root nodules. Plant Physiol 102:829–834.

    Article  PubMed  CAS  Google Scholar 

  • Schaumburg A, Schneider-Poetsch HAW, Eckerskorn C (1992) Characterization of plastid 5-aminolevulinate dehydratase (ALAD; EC 4.2.1.24) from spinach (Spinacia oleracea L.) by sequencing and comparison with non-plant ALAD enzymes. Z Naturforsch 47c:77–84.

    Google Scholar 

  • Schneegurt MA, Beale SI (1992) Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris. Biochemistry 31:11677–11683.

    Article  PubMed  CAS  Google Scholar 

  • Schoch S, Lempert U, Rüdiger W (1977) Über die letzten Stufen der Chlorophyll-Biosynthese. Zwischenprodukte zwischen Chlorophyllid und phytolhaltigem Chlorophyll. Z Pflanzenphysiol 83:427–436.

    CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284.

    Article  PubMed  Google Scholar 

  • Schultz R, Steinmüller K, Klaas M, Forreiter C, Rasmussen S, Hiller C, Apel K (1989) Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217:335–361.

    Google Scholar 

  • Sharif AL, Smith AG, Abell C (1989) Isolation and characterization of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis: the chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesized with a very long transit peptide in Euglena. Eur J Biochem 184:353–359.

    Article  PubMed  CAS  Google Scholar 

  • Smith AG (1988) Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J 249:423–428.

    PubMed  CAS  Google Scholar 

  • Smith AG, Griffiths WT (1993) Enzymes of chlorophyll and heme biosynthesis. In: Dey PM, Harborne JB (eds), Methods in plant biochemistry, vol 9. Academic Press, London, pp 299–343.

    Google Scholar 

  • Smith AG, Marsh O, Elder GH (1993) Investigation of the subcellular location of the tetrapyrrolebiosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem J 292:503–508.

    PubMed  CAS  Google Scholar 

  • Smith AG, Santana MA, Wallace-Cook ADM, Ropert JM, Labbe-Bois R (1994) Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem 269:13405–13413.

    PubMed  CAS  Google Scholar 

  • Smith MA, Grimm B, Kannangara CG, von Wettstein D (1991a) Spectral kinetics of glutamate 1-semialdehyde aminomutase of Synechococcus. Proc Natl Acad Sci USA 88:9775–9779.

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Kannangara CG, Grimm B, von Wettstein D (1991b) Characterization of glutamate-1-semialdehyde aminotransferase of Synechococcus. Eur J Biochem 202:49–757.

    Article  Google Scholar 

  • Soll J, Schultz G, Rüdiger W, Benz J (1983) Hydrogenation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71:849–854.

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ, Timko MP (1991) Isolation, characterization and partial amino acid sequence of a chloroplast-localized porphobilinogendeaminase from pea (Pisum sativum L.). Biochim Biophys Acta 1076:29–36.

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ, He ZH, Michel H, Hunt DF, Timko MP (1992a) Molecular cloning nuclear gene structure and developmental expression of NADPH-protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967–972.

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ, He ZH, Timko MP (1992b) NADPH-protochlorophyllide oxidoreductase in white pine (Pinus strobus) and loblolly pine (P. taeda)}. Mol Gen Genet 236:86–95.

    PubMed  CAS  Google Scholar 

  • Stange-Thomann N, Thomann HU, Lloyd AJ, Lyman H, Söll D (1994) A point mutation in Euglena gracilis chloroplast tRNAglu uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 91:7947–7951.

    Article  PubMed  CAS  Google Scholar 

  • Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–799.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY, Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4:929–940.

    PubMed  CAS  Google Scholar 

  • Tait GH (1972) Coproporphyrinogenase activities in extracts of Rhodopseudomonas shaeroides and Chromaticum strain D. Biochem J 128:1159–1169.

    PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110:1223–1230.

    Article  PubMed  CAS  Google Scholar 

  • Taylor WC (1989) Regulatory interaction between nuclear and plastid genomes. Annu Rev Plant Physiol Plant Mol Biol 40:211–233.

    Article  CAS  Google Scholar 

  • Teakle JR, Griffiths WT (1993) Cloning, characterization and import on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296:225–230.

    PubMed  CAS  Google Scholar 

  • Terry MJ (1997) Phytochrome chromophori-deficient mutants. Plant Cell Environm 20:740–745.

    Article  CAS  Google Scholar 

  • Terry MJ, Kendrick RE (1996) The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J Biol Chem 271:21681–21688.

    Article  PubMed  CAS  Google Scholar 

  • van Tuinen A, Hanhart CJ, Kerckhoffs LHJ, Nagatani A, Boylan MT, Quail PH, Kendrick RE, Koorneef M (1996) Analysis of the phytochrome deficient yellow-green-2 and aurea mutants of tomato. Plant J 9:173–182.

    Article  Google Scholar 

  • von Wettstein D, Henningsen KW, Boynton JE, Kannangara GC, Nielsen OF (1971) The genetic control of chloroplast development in barley. In: Boardman NH, Linnane AW, Smillie RM (eds). Autonomy and biogenesis of mitochondria and chloroplasts North Holland, Amsterdam, pp 205–223.

    Google Scholar 

  • von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057.

    Google Scholar 

  • Vothknecht UC, Kannangara CG, von Wettstein D (1996) Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Netl Acad Sci USA 93:9287–9291.

    Article  CAS  Google Scholar 

  • Walker CJ, Weinstein JB (1991a) In vitro assay of the chlorophyll biosynthetic enzyme Mgchelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci USA 88:5789–5793.

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1991b) Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts. Plant Physiol 95:1189–1196.

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1994) The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J 299:277–284.

    PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1995) Re-examination of the localization of Mg-chelatase within the chloroplast. Physiol Plant 94:419–424.

    Article  Google Scholar 

  • Walker CJ, Castelfranco PA, Whyte BJ (1991) Synthesis of the divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276:691–697.

    PubMed  CAS  Google Scholar 

  • Ward ER, Volrath S (1995) Manipulation of protoporphyrinogen oxidase enzyme activity in eucaryotic organisms. PCT patent WO 95/34659.

    Google Scholar 

  • Wang WY, Wang WL, Boynton JE, Gillham NW (1974) Genetic control of chlorophyll biosynthesis in Chlamydomonas. J Cell Biol 63:806–823.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JD, Beale SI (1983) Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Eiglena gracilis. J Biol Chem 258:6799–6807.

    PubMed  CAS  Google Scholar 

  • Weiler JL, Terry MJ, Rameau C, Reid JB, Kendrick RE (1996) The phytochrome-deficient pcd1 mutant is unable to convert heme to biliverdin IXα. Plant Cell 8:55–67.

    Google Scholar 

  • Weiler JL, Terry MJ, Reid JB, Kendrick RE (1997) The phytochrome-deficient pcd2 mutant is unable to convert biliverdin IXa to 3Z-phytochromobilin. Plant J 11:1177–1186.

    Article  Google Scholar 

  • Willows RD, Kannangara CG, Pontoppidan B (1995) Nucleotides of tRNAglu involved in recognition by barley chloroplast glutamyl-tRNA synthetase and glutamyl-tRNA reductase. Biochim Biophys Acta 1263:228–234.

    Article  PubMed  Google Scholar 

  • Willows RD, Gibson LCD, Kannangara CG, Hunter CN, von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235:438–443.

    Article  PubMed  CAS  Google Scholar 

  • Witty M, Wallace-Cook ADM, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP, Smith AG (1993) Structure and expression of the chloroplast-localized porphyobilinogen deaminase of pea (Pisum sativum L.) isolated by redundant polymerase chain reaction. Plant Physiol 103:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Witty M, Jones RM, Robb MS, Shoolingin Jordan PM, Smith AG (1996) Subcellular location of the tetrapyrrole synthesis enzyme porphyobilinogen deaminase in higher plants: an immunological investigation. Planta 199:557–664.

    Article  PubMed  CAS  Google Scholar 

  • Wong YS, Castelfranco (1984) Resolution and reconstitution of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, the enzyme system responsible for the formation of the chlorophyll isocyclic ring. Plant Physiol 75:658–661.

    Article  PubMed  CAS  Google Scholar 

  • Wong YS, Castelfranco (1985) Properties of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase system. Plant Physiol 79:730–733.

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172:5001–5010.

    PubMed  CAS  Google Scholar 

  • Zavgorodnyaya A, Papenbrock J, Grimm B (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic plants. Plant J 12:169–178.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grimm, B. (1999). The Metabolic Pathway of Tetrapyrrole Biosynthesis. In: Böger, P., Wakabayashi, K. (eds) Peroxidizing Herbicides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58633-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58633-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63674-5

  • Online ISBN: 978-3-642-58633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics