Skip to main content
Book cover

Maize pp 331–343Cite as

Approaches for the Development of Cold Tolerance in Maize Through Regenerable Callus Cultures

  • Chapter
  • 528 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 25))

Abstract

Most maize genotypes require a temperature range of 10 to 30 °C for growth (Gilmore and Rogers 1958). This temperature range reflects the tropical origin of Zea mays L. (reviewed by Goodman 1988) and the fact that modern hybrid corn breeding developed in the warm climate of the central United States corn belt. At high altitude or high latitude the temperature may typically fall below the lower limits of this 10 to 30 °C range (Hardacre and Eagles 1986). In these areas, maize may experience late spring or early fall frosts, long cold and wet springs, or near-freezing night temperatures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker NR, East TM, Long SP (1983) Chilling damage to photosynthesis in young Zea mays II. Photochemical function of thylakoids in vivo. J Exp Bot 34: 189–197

    Article  CAS  Google Scholar 

  • Barlow PW, dam JS (1989) The response of the primary root meristem of Zea mays L. to various periods of cold. J Exp Bot 40: 81–88

    Article  Google Scholar 

  • Bocsi J (1989) Cold tolerance in maize (Zea mays L.) Novenytermeles 38: 267–273

    Google Scholar 

  • Bottacin S, Saccomani M, Ferrari G (1990) Sterol content and efficiency of ion uptake by roots of maize genotypes. Plant Soil 123: 181–183

    Article  CAS  Google Scholar 

  • Cal JP, Obendorf RL (1972) Imbibitional chilling injury in Zea mays L. altered by initial kernel moisture and maternal parent. Crop Sci 12: 369–373

    Article  Google Scholar 

  • Carey RW, Berry JA (1978) Effects of low temperature on respiration and uptake of rubidium ions by excised barley and corn roots. Plant Physiol 61: 858–860

    Article  PubMed  CAS  Google Scholar 

  • Chiu P-L, Bottino PJ, Patterson GW (1978) Sterol composition of nystatin and amphotericin B-resistant tobacco calluses. Lipids 15: 50–54

    Article  Google Scholar 

  • Christeller JT (1984) Seedling growth of Zea mays at 13 °C: Comparison of a corn belt dent Hybrid selected for rapid plumule emergence at cool temperatures. J Exp Bot 35: 955–964

    Article  Google Scholar 

  • Cohn MA, Obendorf RL (1978) Occurrence of a stelar lesion during imbibitional chilling of Zea mays L. Am J Bot 65: 50–56

    Article  Google Scholar 

  • Covello PS, Hayden DB, Baker NR (1988) The roles of low temperature and light in accumulation of a 31-kDa polypeptide in the light-harvesting apparatus of maize leaves. Plant Cell Environ 11: 481–486

    Article  CAS  Google Scholar 

  • Crawford RMM, Huxter TJ (1977) Root growth and carbohydrate metabolism at low temperatures. J Exp Bot 28: 917–925

    Article  CAS  Google Scholar 

  • Creencia RP, Bramlage WJ (1971) Reversibility of chilling injury to corn seedlings. Plant Physiol 47: 389–392

    Article  PubMed  CAS  Google Scholar 

  • Crevecoeur M, Deltour R, Bronchart R (1983) Effects of subminimal temperature on physiology and ultrastructure of Zea mays L. embryo during germination. Can J Bot 61: 1117–1125

    Article  Google Scholar 

  • Cutler AJ, Saleem M, Kendall E, Gusta LV, Georges F, Fletcher GL (1989) Winter flounder antifreeze protein improves the cold hardiness of plant tissue. J Plant Physiol 135: 351–354

    Article  CAS  Google Scholar 

  • Dolstra O, Jongmans MA, de Jong K (1988) Improvement and significance of resistance to lowtemperature damage in maize (Zea mays L.). I Chlorosis resistance. Euphytica S: 117–123

    Google Scholar 

  • Duncan DR, Widholm JM (1986) Cell selection for crop improvement. Plant Breed Rev 4: 153–173

    Google Scholar 

  • Duncan DR, Widholm JM (1987) Proline accumulation and its implications in cold tolerance of regenerable maize callus. Plant Physiol 83: 703–708

    Article  PubMed  CAS  Google Scholar 

  • Duncan DR, Widholm JM (1989) Differential response to potassium permanganate of regenerable and of non-regenerable tissue cell walls from maize callus cultures. Plant Sci 61: 91–103

    Article  CAS  Google Scholar 

  • Duncan DR, Widholm JM (1990) Techniques for selecting mutants from plant tissue culture. In: Pollard JW, Walker JM (eds) Methods in molecular biology, vol 6. Plant cell and tissue culture. The Humana Press, Clifton, pp 443–455

    Google Scholar 

  • Duncan DR, Widholm JM (1991) Proline is not the primary determinant of chilling tolerance induced by mannitol or abscisic acid in regenerable maize callus cultures. Plant Physiol 95: 1284–1287

    Article  PubMed  CAS  Google Scholar 

  • Duncan DR, Widholm JM (1993) Subculturing trauma and chilling sensitivity of regenerable maize callus cultures. Plant Physiol (in press)

    Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165: 322–332

    Article  CAS  Google Scholar 

  • Duncan DR, Kriz AL, Paiva R, Widholm J M (1991) Globulin-1 expression in regenerable maize callus. Plant Cell Rep (in pres

    Google Scholar 

  • Eagles HA, Brooking IR (1981) Populations of maize with more rapid and reliable seedling emergence than combelt dents at low temperatures. Euphytica 30: 755–763

    Article  Google Scholar 

  • Edwards R, Owen WJ (1988) Regulation of glutathione S-transferases of Zea mays in plants and cell cultures. Planta 175:99–106

    Article  CAS  Google Scholar 

  • Engels C., Marschner H (1990) Effect of sub-optimal root zone temperatures at varied nutrient supply and shoot meristem temperature on growth and nutrient concentrations in maize seedlings (Zea mays L.). Plant Soil 126: 215–225

    Article  CAS  Google Scholar 

  • Feller UK, Soong T-AT, Hageman RH (1977) Leaf proteolytic activities and senescence during grain development of field-grown corn (Zea mays L.). Plant Physiol 59: 290–294

    Article  PubMed  CAS  Google Scholar 

  • Gemel J, Ciesla E, Kaniuga Z (1989) Different response of two Zea mays inbreds to chilling stress measured by chloroplast galactolipase activity and free fatty acid levels. Acta Physiol Plant 11: 3–11

    CAS  Google Scholar 

  • Georges F, Saleem M, Cutler AJ (1990) Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cells. Gene 91: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Gilmore EC, Rogers JS (1958) Heat units as a method of measuring maturity in corn. Agron J 50: 611–615

    Article  Google Scholar 

  • Goodman MM (1988) The history and evolution of maize. CRC Crit Rev Plant Sci 7: 197–220

    Article  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams Jr. WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618

    PubMed  CAS  Google Scholar 

  • Guy MG (1988) Sterol composition in relation to chilling sensitivity in Phaseolus spp J Exp Bot 39: 1091–1096

    Article  Google Scholar 

  • Guy MG (1989) Phospholipid, sterol composition and ethylene production in relation to choline-induced chill tolerance in mung bean (Vigna radiata L. Wilcz) during a chill-warm cycle. J Exp Bot 40: 369–374

    Article  Google Scholar 

  • Hallgren J-E, Oquist G (1990) Adaptations to low temperature. In: Alschner RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 265–293

    Google Scholar 

  • Hardacre AK, Eagles HA (1986) Comparative temperature response of corn belt dent and corn belt dent × Pool 5 maize Hybrids. Crop Sci 26: 1009–1012

    Article  Google Scholar 

  • Hardacre AK, Eagles HA (1989) The temperature response of young hybrid maize plants adapted to different climates. N Z J Crop Hortic Sci 17: 9–17

    Article  Google Scholar 

  • Hardacre AK, Greer DH (1989) Differences in growth response to temperature of maize Hybrids varying in low temperature tolerance. Aust J Plant Physiol 16: 181–187

    Article  Google Scholar 

  • Hardacre AK, Eagles HA, Gardner CO (1990) Genetic variation for frost tolerance of maize (Zea mays L.) seedlings. Maydica 35: 215–219

    Google Scholar 

  • Hatzios KK (1983) Herbicide antidotes: development, chemistry, and mode of action. Adv Agron 36: 265–316

    Article  CAS  Google Scholar 

  • Heino P, Sandman G, Lang V, Nordin R, Palva ET (1990) Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 79: 801–806

    Article  CAS  Google Scholar 

  • Hoard KG, Crosbie TM (1986) Effects of recurrent selection for cold tolerance on genotype-environment interactions for cold tolerance and agronomic traits in two maize populations. Crop Sci 26: 238–242

    Article  Google Scholar 

  • Hoppe PE (1955) Cold testing seed corn by the rolled towel method. Wisconsin Agric Exp St Bull 507. Univ Wisconsin, Madison

    Google Scholar 

  • Hsing Y-I C (1988) Lipid metabolism in corn tissue culture and molecular biology of soybean seed maturation. PhD Thesis, University of Illinois, Urbana

    Google Scholar 

  • Jahnke LS, Hull MR, Long SP (1991) Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environ 14: 97–104

    Article  CAS  Google Scholar 

  • Lerma C., Bolanos J, Rhodes D, Hanson AD (1990) Betaine deficiency in maize; metabolic basis and relation to osmotic adjustment. Plant Physiol Suppl 93: 108

    Google Scholar 

  • Levitt J (1980) Chilling, freezing, and high temperature stress. In: Kotlowski TT (ed) Responses of plants to environmental stresses. Physiological Ecology Series. Academic Press, New York, pp 23–64

    Google Scholar 

  • Long SP, East TM, Baker NR (1983) Chilling damage to photosynthesis in young Zea mays I. Effects of light and temperature variation on photosynthetic CO2 assimilation. J Exp Bot 34: 139–177

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Ramdall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24: 445–166

    Article  CAS  Google Scholar 

  • Lyznik LA, Ryan RD, Ritchie SW, Hodges TK (1989) Stable co-transformation of maize protoplasts with gusA and neo genes. Plant Mol Biol 13: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Maillot-Vernier P, Schaller H, Benveniste P, Belliard G (1989) Biochemical characterization of a sterol mutant plant regenerated from a tobacco callus resistant to a triazole cytochrome-P-450-obtusi-foliol-14-demethylase inhibitor. Biochem Biophys Res Commun 165: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Matters GL, Scandalios JG (1986) Effect of elevated temperature on catalase and Superoxide dis-mutase during maize development. Differentiation 30: 190–196

    Article  PubMed  CAS  Google Scholar 

  • Miedema P (1982) The effects of low temperature on Zea mays. Adv Agron 35: 93–128

    Article  Google Scholar 

  • Mock JJ, Erbach DC (1977) Influence of conservation-tillage environments on growth and productivity of corn. Agron J 69:337–340

    Article  Google Scholar 

  • Mock JJ, McNeill MJ (1979) Cold tolerance of maize inbred lines adapted to various latitudes in North America. Crop Sci 19: 239–242

    Article  Google Scholar 

  • Moustafa RAK, Amer IM, Duncan DR, Widholm JM (1990) Effect of lowered N, P, K or Fe levels on the growth of regenerable maize and soybean callus cultures. J Plant Nutr 13: 631–649

    Article  CAS  Google Scholar 

  • Moutot F, Huet J-C, Wuilleme S, Lescure J-C, Baudet J, Pernollet J-C, Morot-Gaudry J-F (1987) Biochemical aspects of photoassimilated carbon partitioning at late kernel fill in maize under climatic stress. Biochimie 69: 563–567

    Article  PubMed  CAS  Google Scholar 

  • Mustardy LA, Sz-Rozsa Z, Faludi-Daniel A (1984) Chilling syndrome in light-exposed maize leaves and its easing by low doses of DCMU. Physiol Plant 60: 572–576

    Article  CAS  Google Scholar 

  • Pozzi GL, Gentinetta E, Salamini F, Mott M (1986) Genotypic variation for cold tolerance among 12 maize (Zea mays L.) populations. Plant Breed 97: 2–12

    Article  CAS  Google Scholar 

  • Pryor A (1990) A maize glutamic dehydrogenase null mutant is cold temperature sensitive. Maydica 35: 367–372

    Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240: 204–207

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Kunert KJ (1986) Lipid peroxidation in higher plants. Plant Physiol 82: 700–702

    Article  PubMed  CAS  Google Scholar 

  • Senaratna T, Mackay CE, McKersie BD, Fletcher RA (1988) Uniconazole-induced chilling tolerance in tomato and its relationship to antioxidant content. J Plant Physiol 133: 56–61

    Article  CAS  Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1988) Selection of variant maize callus cultures with elevated levels of free proline. 1988 Annu Meet American Society of Agronomy. Agron Abstr, p l74

    Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1990) Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J Exp Bot 41: 289–294

    Article  CAS  Google Scholar 

  • Sowinski P, Maleszewski S (1990) Chilling sensitivity in maize seedlings. II. Effect of low temperature on transport of 14C-assimilates from leaves to roots. Acta Physiol Plant 12: 35–40

    Google Scholar 

  • Stamp P, Thiraporn R, Geisler G (1984) Leaf anatomy of maize lines from different latitudes at sub-and supraoptimal temperatures. J Exp Bot 35: 384–388

    Article  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35: 543–584

    Article  CAS  Google Scholar 

  • Tanaka K, Furusawa I, Kondo N, Tanaka K (1988) SO2 tolerance of tobacco plants regenerated from paraquat-tolerant callus. Plant Cell Physiol 29: 743–746

    CAS  Google Scholar 

  • Teaf CM, Bishop JB, Harbison RD (1987) Depression of glutathione in male reproductive tissues and potentiation of EMS-induced germ cell mutagenesis by L-buthionine sulfoximine. Teratog Carcinog Mutagen 7: 497–513

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF, Gilmour SJ, Hajela R, Horvath D, Lin C., Guo W (1990) Studies on cold acclimation in Arabidopsis thaliana. In: Bennett AB, O’Neill SD (eds) Horticultural biotechnology, Wiley-Liss, New York, pp 305–314

    Google Scholar 

  • Ting CS, Owens TG, Wolfe DW (1991) Seedling growth and chilling stress effects on photosynthesis in chilling-sensitive and chilling-tolerant cultivars of Zea mays. J Plant Physiol 137: 559–564

    Article  Google Scholar 

  • Tseng M-J, Zhang C-L, Li PH (1986) Quantitative measurements of mefluidide protection of chilled corn plants. J Am Soc Hortic Sci 111: 409–412

    CAS  Google Scholar 

  • Van De Venter HA (1985) Cyanide-resistant respiration and cold resistance in seedlings of maize (Zea mays L.). Ann Bot 56: 561–563

    Google Scholar 

  • Van Huystee RB, Hodgins RRW (1989) Chlorophyll synthesis from protochlorophyll(ide) in chill-stressed maize (Zea mays L.). J Exp Bot 40: 431–435

    Article  Google Scholar 

  • Van Swaaij AC, Nijdam H, Jacobsen E, Feenstra WJ (1987) Increased frost tolerance and amino acid content in leaves, tubers and leaf callus of regenerated hydroxyproline resistant potato clones. Euphytica 36: 369–380

    Article  Google Scholar 

  • Wang M (1989) Effects of low temperature on the nucleic acid content and the nuclease activities in the leaves of maize seedlings. Acta Agric Boreali-Sin 4: 28–33

    Google Scholar 

  • Withers LA, King PJ (1979) Proline: a novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiol 64: 675–678

    Article  CAS  Google Scholar 

  • Zhang C-L, Li PH, Brenner ML (1986) Relationship between mefluidide treatment and abscisic acid metabolism in chilled corn leaves. Plant Physiol 81: 699-701699–701

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duncan, D.R., Widholm, J.M. (1994). Approaches for the Development of Cold Tolerance in Maize Through Regenerable Callus Cultures. In: Bajaj, Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57968-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57968-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63419-2

  • Online ISBN: 978-3-642-57968-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics