Skip to main content

Biomechanics of the Hyolingual System in Squamata

  • Chapter

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 18))

Abstract

The hyolingual system of Squamata is a highly versatile system used in different feeding, drinking, chemoreception, and social behaviors. In each of these activities, either the entire hyolingual system or one of its elements is used. For instance, in the majority of lizards, the tongue acts as the main element for liquid uptake, intraoral food and liquid transport, and in chemoreception, whereas the hyoid apparatus plays a major role during social interactions by acting on the ventral floor of the throat. In varanids, the hyoid apparatus is involved in both deglutition of foods and liquids, and during social displays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altevogt R, Altevogt R (1954) Studien zur Kinematik der Chamäleonenzunge. Z Vergl Physiol 36: 66–77

    Google Scholar 

  • Auffenberg W (1972) Komodo dragons. Nat Hist 81: 52–59

    Google Scholar 

  • Auffenberg W (1978) Social and feeding behavior in Varanus komodoensis. In: Greenberg N, Mac Lean PD (eds) Behavior and neurology of lizards. Nimh, Bethesda, pp 301–331

    Google Scholar 

  • Auffenberg W (1981) The behavioral ecology of the Komodo monitor. University of Florida Press, Gainesville

    Google Scholar 

  • Avery DF, Tanner WW (1971) Evolution of the iguanine lizards (Sauria, Iguandiae) as determined by osteological and myological characters. Brigham Young Univ Sci Bull 3: 1–71

    Google Scholar 

  • Avery DF, Tanner WW (1982) Buccal floor of reptiles, a summary. Great Basin Nat 42: 273–349

    Google Scholar 

  • Bell D (1984) Tongue use and prey capture in chameleons. Am Zool 24: 108A

    Google Scholar 

  • Bell D (1987) Identification of perikarya in the chameleon tongue. Proc Ord Gen Meet Soc Eur Herpetol Nijmegen 4: 63–66

    Google Scholar 

  • Bell D (1989) Functional anatomy of the chameleon tongue. Zool Jahrb Anat 119: 313–336

    Google Scholar 

  • Bell D (1990) Kinematics of prey capture in the chameleon. Zool Jahrb Physiol 94: 247–260

    Google Scholar 

  • Bell T (1826) Observation sur la structure du gosier du genre Anolis. Ann Sci Nat 7: 191–195

    Google Scholar 

  • Bels VL (1990a) Quantitative analysis of prey-capture kinematics in Anolis equestris (Reptilia: Iguanidae). Can J Zool 68: 2192–2198

    Google Scholar 

  • Bels VL (1990b) The mechanism of dewlap extension in Anolis carolinensis (Reptilia; Iguaniade) with histological analysis of the hyoid apparatus. J Morphol 206: 225–244

    Google Scholar 

  • Bels VL (1992) Functional analysis of the ritualized behaviuoral motor pattern in lizards: evolution of behavior and the concept of ritualization. Zool Jahrb 122: 2141–2159

    Google Scholar 

  • Bels VL, Baltus I (1987) First analysis of the feeding sequence of Chameleo dilepis. Proc Ord Gen Meet Soc Eur Herpetol Nijmegen 4: 67–70

    Google Scholar 

  • Bels VL, Baltus I (1989) First analysis of feeding in Anolis lizards. In: Splechtna H, Hilgers H (eds) Fortschritte der Zoologie/Progress in Zoology, Band/vol 35. Trends in vertebrate morphology. Fischer, Stuttgart, pp 141–145

    Google Scholar 

  • Bels VL, Goosse V (1989) A first report of relative movements within the hyoid apparatus during feeding in Anolis equestris (Reptilia: Iguanidae). Experientia 45: 1088–1091

    Google Scholar 

  • Bels VL, Goosse V (1990) Comparative kinematic analysis of prey capture in Anolis carolinensis 1 (Iguania) and Lacerta viridis (Scleroglossa). J Exp Zool 255: 120–124

    Google Scholar 

  • Bels VL, Goosse V, Kardong K (1992) Kinematic analysis of drinking by the lacertid lizard, Lacerta viridis (Squamates, Scleroglossa). J Zool Lond 229: 659–682

    Google Scholar 

  • Brücke E (1872) Über de Zunge des Chameleonen. Sitzungsber Math-Nat Kl Akad Wiss Wien 8: 62–70

    Google Scholar 

  • Burghardt GM (1970) Chemical perception in reptiles. In: Johnson JW, Moulton DG, Turk A (eds) Advances in chemoreeeption. Communication by chemical signals, vol 1. Appleton-Century-Cropts, New York, pp 241–308

    Google Scholar 

  • Burghardt GM (1990) Chemically mediated predation in vertebrates: diversity, ontogeny, and information. In: Macdonald DW, Müller-Schwarze D, Natynczuk S (eds) Chemical signals in vertebrates. Oxford University Press, New York, pp 475–499

    Google Scholar 

  • Camp CL (1923) Classification of the lizards. Bull Am Mus Nat Hist 48: 289–481

    Google Scholar 

  • Carpenter CC (1978) Ritualistic social behaviors in lizards. In: Greenberg N, Mac Lean (eds) Behavior and neurology of lizards. Nimh, Rockville, pp 253–267

    Google Scholar 

  • Carpenter CC, Ferguson GW (1977) Variation and evolution of stereotyped behavior in reptiles. In: Gans C, Tinkle DW (eds) Biology of Reptilia, vol 7. Ecology and behavior A. Academic Press, London, pp 335–554

    Google Scholar 

  • Chemin A (1899) L’appareil hyoïdien et son fonctionnement chez Calotes versicolor. Note pour servir à l’étude de l’anatomie comparée de l’os hyoïde. Bibl Anat 7: 114–123

    Google Scholar 

  • Chiszar D, Scudder K, Kinght L (1976) Rate of tongue flicking by garter snakes (Thamnophis radix haydeni) and rattlesnakes (Crotalus v. viridis, Sistrurus catenatus tergeminus, and Sistrurus catenatus edwardsi) during prolonged exposure to food odors. Behave Biol 18: 273–283

    CAS  Google Scholar 

  • Chiszar D, Radcliffe CW, Scudder KM (1977) Analysis of the behavioral sequence emitted by rattlesnakes during feeding episodes. I. Striking and chemosensory searching. Behav Biol 21: 418–425

    Google Scholar 

  • Chiszar D, Radcliffe DW, Scudder KM, Duvall D (1983) Strike-induced chemosensory searching by rattlesnakes: the role of envenomation-related chemical cues in the post-strike environment. In: Müller-Schwarze D, Silverstein RM (eds) Chemical signals III. Plenum Press, New York, pp 1–24

    Google Scholar 

  • Chiszar D, Melcer T, Lee R, Radcliffe CW, Duvale D (1990) Chemical cues used by prairie rattlesnakes (Crotalus viridis) as they follow the trail of rodent prey. J Chem Ecol 16: 79–86

    Google Scholar 

  • Cooper WE (1989) Strike-induced chemosensory searching occurs in lizards. J. Chem Ecol 15(4): 1311–1320

    Google Scholar 

  • Cooper WE (1990a) Prey odour discrimination by lizards and snakes. In: Macdonald DW, Müller-Schwarze D, Natynczuk SE (eds) Chemical signals in vertebrates. Oxford University Press, New York, pp 533–538

    Google Scholar 

  • Cooper WE (1990b) Prey odor detection by teiid and lacertid lizards and the relationship of prey odor detection to foraging mode in lizard families. Copeia 1990: 237–242

    Google Scholar 

  • Cooper WE, Burghardt GM (1990) Vomerolfaction and vomodor. J Chem Ecol 16: 103–105

    Google Scholar 

  • Cundall D (1987) Functional morphology. In: Seigel RA, Collins JT, Novak SS (eds) Snakesecology and evolutionary biology. Macmillan, New York, pp 106–142

    Google Scholar 

  • Cundall D, Gans C (1979) Feeding in water snakes: an electromyographic study. J Exp Zool 209: 189–208

    Google Scholar 

  • Delheusy V, Bels VL (1992) Kinematics of feeding behaviour in Opiums cuvieri (Reptilia: Iguanidae). J Exp Biol 170: 155–186

    Google Scholar 

  • Duvall D, Chiszar D (1990) Behavioural and chemical ecology of vernal migration and pre and post-strike predatory activity in prairie rattlesnakes: field and laboratory experiments. In: Macdonald DW, Müller-Schwarz D, Natynczuk SE (eds) Chemical signals in vertebrates 5. Oxford University Press, New York, pp 539–554

    Google Scholar 

  • Duvall D, Müller-Schwarze D, Silverstein RM (1986) Chemical signals in vertebrates 4: ecology, evolution and comparative biology. Plenum Press, New York

    Google Scholar 

  • Duvernoy GL (1836) Sur les mouvements du la langue de chameleon. C R Hebd Séanc Acad Sci Paris 2: 349–351

    Google Scholar 

  • El-Toubi MR (1947) Some observations on the osteology of Uromastix aegyptia (Forskai). Bull Fac Sci Cairo Fouas I Univ 25: 1–10

    Google Scholar 

  • Estes R, Pregill G (1988) Phylogenetic relationships of the lizard families. Stanford Univ Press, Stanford

    Google Scholar 

  • Font E, Kramer M (1989) A multivariate clustering approach to display repertoire analysis: head-bobbing in Anolis equestris (Sauria, Iguanidae). Amphib-Reptilia 10: 331–344

    Google Scholar 

  • Font E, Rome LC (1990) Functional morphology of dewlap extension in the lizard Anolis equestris (Iguanidae). J Morphol 206 (1990): 245–258

    PubMed  CAS  Google Scholar 

  • Frazzetta TH (1966) Studies on the morphology and function of the skull in the Boidae (Serpentes). Part II. Morphology and function of the jaw apparatus in Python sebae and Python molurus. J Morphol 118: 217–296

    PubMed  CAS  Google Scholar 

  • Gandolfi H (1908) Der Zunge der Agamidae und Iguanidae. Zool Anz 32: 56

    Google Scholar 

  • Gans C (1967) The chameleon. Nat Hist 76: 52–59

    Google Scholar 

  • Gillingham JC, Clark: DL (1981a) Snake tongue-flicking: transfer mechanism to Jacobson’s organ. Can J Zool 59: 1651–1657

    Google Scholar 

  • Gillingham JC, Clark DL (1981b) An analysis of prey-searching behavior in the western diamondback rattlesnake, Crotalus atrox. Behav Neural Biol 32: 235–240

    Google Scholar 

  • Gnanamuthu CP (1930a) The anatomy and mechanism of the tongue of Chamaeleon cararatus. Proc Zool Soc Lond Part II: 467–486

    Google Scholar 

  • Gnanamuthu CP (1930b) The mechanism of the throat-fan in a ground lizards, Sitana ponticeriana. Cuv Rec Ind Mus 32: 149–159

    Google Scholar 

  • Gnanamuthu CP (1937) Comparative study of the hyoid and tongue of some typical genera of reptiles. Proc Zool Soc B: 1–66

    Google Scholar 

  • Graves BM, Halpern M (1990) Roles of vomeronasal organ chemoreception in tongue flicking exploratory and feeding behaviour of the lizard, Chalcides ocellatus. Anim Behav 39: 692–698

    Google Scholar 

  • Goosse V, Bels VL (1990) Analyse comportementale et fonctionnelle des touchers linguaux lors de l’exploration et de la prise de nourriture chez le lézard vert (Lacerta viridis Laurenti 1768). Bull Soc Herp Fr 53: 31–33

    Google Scholar 

  • Goosse V, Bels VL (1992a) Kinematic and functional analysis of feeding behaviour in Lacerta viridis (Reptilia: Lacertidae). Zool Jahrb 122: 187–202

    Google Scholar 

  • Goosse V, Bels VL (1992b) Tongue movements during chemosensory behavior in the European green lizard Lacerta viridis. Can J Zool 70: 1886–1896

    Google Scholar 

  • Gorniak GC, Rosenberg HI, Gans C (1982) Mastication in the tuatara Sphenodon punctatus (Reptilia: Rhynchocephalia): structure and activity of the motor system. J Morphol 171: 321–353

    Google Scholar 

  • Gorman GC (1968) The relationships of Anolis of the roquet species group (Sauria: Iguanidae): Comparative study of display behavior. Breviora 284: 1–31

    Google Scholar 

  • Gove D (1979) A comparative study of snake and lizard tongue-flicking with an evolutionary hypothesis. Z Tierpsychol 51: 58–76

    Google Scholar 

  • Graves BM, Halpern M (1989) Chemical access to the vomeronasal organs of the lizard Chalcides ocellatus. J Exp Zool 249: 150–157

    PubMed  CAS  Google Scholar 

  • Greenberg N (1977) A neuroethological study of the display behavior in the lizard Anolis carolinensis (Sauria Iguanidae). Am Zool 17: 191–201

    Google Scholar 

  • Greene HW (1982) Dietary and phenotypic diversity in lizards: why are some organisms specialized? In: Mossakowski D, Roth G (eds) Environmental adaptation and evolution. Fischer, New York, pp 107–128

    Google Scholar 

  • Greene HW (1983) Dietary correlates of the origin and radiation of snakes. Am Zool 23: 431–441

    Google Scholar 

  • Halpern M (1983) Nasal chemical senses in snakes. In: Ewert JP, Carpina RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 141–176

    Google Scholar 

  • Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10: 325–362

    PubMed  CAS  Google Scholar 

  • Halpern M, Furmin N (1979) Roles of the vomeronasal and olfactory systems in prey attack and feeding in adult garter snakes. Physiol Behav 22: 1183–1189

    PubMed  CAS  Google Scholar 

  • Halpern M, Kubie JL (1984) The role of the ophidian vomeronasal system in species-typical behavior. Trends Neurosci 7(12): 472–477

    Google Scholar 

  • Heidweiller J, Zweers GA (1990) Drinking mechanisms in the zebra finch and the Bengalese finch. Condor 92: 1–28

    Google Scholar 

  • Houston J (1828) On the structure and mechanism of the tongue of the chameleon. Trans R Ir Acad 15: 177–201

    Google Scholar 

  • Iverson JB (1982) Adaptations to herbivory in iguanine lizards. In: Burghardt GM, Rand AS (eds) Iguanas of the world; their behavior ecology and conservation. Noyes, Park Ridge, pp 60–76

    Google Scholar 

  • Iwasaki S (1990) Fine structure of the dorsal lingual epithelium of the lizard Gekko japonicus (Lacertilia Gekkonidae). Am J Anat 187: 12–20

    PubMed  CAS  Google Scholar 

  • Kamal AM, Hammouda HG (1965a) The chondrocranium of the snake Eryx jaculus. Acta Zool 46: 167–208

    Google Scholar 

  • Kamal AM, Hammouda HG (1965b) The development of the skull of Psammophis sibilans. J Morphol 116: 197–246

    Google Scholar 

  • Kardong KV (1974) Kinesis of the jaw apparatus during the strike in the cottonmouth snake, Agkistrodon piscivorous. Forma Functio 7: 327–354

    Google Scholar 

  • Kardong KV (1977) Kinesis of the jaw apparatus during swallowing in the cottonmouth snake, Agkistrodon piscivorous. Copeia 1977: 338–348

    Google Scholar 

  • Kardong KV, Dullemeijer P, Fransen JAM (1986) Feeding mechanism in the rattlesnake Crotalus durissus. Amphib-Reptilia 7: 271–302

    Google Scholar 

  • Kardong KV, Haverly J (1993) Drinking by the common boa, C. Boa constrictor. Copeia 1993: 808–818

    Google Scholar 

  • Kathariner L (1894) Anatomie und Mechanismus der Zunge des Vermiliguer. Jena Z Naturwise 29: 247–270.

    Google Scholar 

  • Kent WS (1895) Observations on the frilled lizard Chlamydosaurus kingii. Proc Zool Soc Lond 46: 712–719

    Google Scholar 

  • Kestevelen HL (1944) The evolution of the skull and cephalic muscles: a comparative study of their development and adult morphology. Part III. The Sauria (Reptilia). Aust Mus Sid Mem VIII 3: 237–269

    Google Scholar 

  • Kier WM (1982) The functional morphology of the musculature of squid (Loliginidae) arms and tentacles. J Morphol 172: 179–192

    Google Scholar 

  • Kier WM, Smith KK (1985) Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats. Zool J Linn Soc 83: 307–324

    Google Scholar 

  • Kraklau DM (1991) Kinematics of prey capture and chewing in the lizard Agama agama. J Morphol 210: 195–212

    Google Scholar 

  • Kubie JL, Halpern M (1979) Chemical senses involved in garter-snake prey trailing. J Comp Physiol Psychol 93(4): 648–667

    Google Scholar 

  • Kubie JL, Vagvolgyi A, Halpern M (1978) The roles of the vomeronasal and olfactory systems in the courtship behavior of male garter snakes. J Comp Physiol Psychol 92: 627–641

    Google Scholar 

  • Langebartel DA (1968) The hyoid and its associated muscles in snakes. III Biol Monogr 38: 1–156

    Google Scholar 

  • List JC (1966) Comparative osteology of the snake families Typhlopidae and Leptopyphlopidae. III Biol Monogr 36: 1–112

    Google Scholar 

  • Losos J (1985) Male aggressive behavior in a pair of sympatric sibling species. Breviora 484: 1–30

    Google Scholar 

  • McDowell SB (1972) The evolution of the tongue of snakes and its bearing in snake origins. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology, vol 6. Meredith, New York, pp 192–273

    Google Scholar 

  • Meredith M, Burghardt GM (1978) Electrophysiological studies of the tongue and accessory olfactory bulb in garter snakes. Physiol Behav 21: 1001–1008

    PubMed  CAS  Google Scholar 

  • Mivart SG (1870) On the myology of Chameleo parsonii. Proc Sci Meet Zool Soc Lond 57: 850–890

    Google Scholar 

  • Murphy JB, Mitchell LA (1974) Ritualized combat behavior of the pygmy monitor lizard Varanus gilleni (Sauria: Varanidae). Herpetologica 30: 90–97

    Google Scholar 

  • Oelrich TM (1956) The anatomy of the head of Ctenosaura pectinata. Misc Publ Mus Zool Univ Mich 94: 1–122

    Google Scholar 

  • Owasa G (1898) Beiträge zur Anatomie der Hatteria punctata. Arch Mikrosk Anat 51: 481–691

    Google Scholar 

  • Presch W (1974) A survey of the dentition of the macroteiid lizards (Teiidae: Lacertilia). Herpetologica 30: 344–349

    Google Scholar 

  • Rabinowitz T, Tandler B (1986) Papillary morphology of the tongue of the American chameleon: Anolis carolinensis. Anat Rec 216: 483–489

    PubMed  CAS  Google Scholar 

  • Richter H (1933) Das Zungenbein und seine Muskulatur bei den Lacertilia vera. Jena Z Naturwiss 66: 395–480

    Google Scholar 

  • Rieppel O (1981) The hyobranchial skeleton in some little known lizards and snakes. J Herpetol 15: 433–440

    Google Scholar 

  • Rieppel O, Labhardt L (1979) Mandibular mechanics in Varanus niloticus (Reptilia: Lacertilia). Herpetologica 35: 158–163

    Google Scholar 

  • Romer AS (1956) Osteology of the reptiles. University Chicago Press, Chicago

    Google Scholar 

  • Schwenk K (1982) Lizard tongue morphology: disparate functions and comprehensive designs. Am Zool 22: 923

    Google Scholar 

  • Schwenk K (1985) Occurrence, distribution and functional significance of taste buds in lizards. Copeia 1985: 91–101

    Google Scholar 

  • Schwenk K (1986) Morphology of the tongue in the Tuatara Sphenodon punctatus (Reptilia: Lepidosauria) with comments on function and phylogeny. J Morphol 188: 129–156

    Google Scholar 

  • Schwenk K (1987) Evolutionary determinants of cranial form and function in lizards. Am Zool 27: 105A

    Google Scholar 

  • Schwenk K (1988) Comparative morphology of the Lepidosaur tongue and its relevance to squamate phylogeny. In: Estes R, Pregill G (eds) Phylogenetic relationships of the lizard families, Essays commemorating C.L. Camp. Stanford Univ Press, Stanford, pp 569–598

    Google Scholar 

  • Schwenk K, Bell DA (1988) A cryptic intermediate in the evolution of chameleon tongue projection. Experientia 44: 697–700

    PubMed  CAS  Google Scholar 

  • Schwenk K, Greene HW (1987) Water collection and drinking in Phrynocephalus helioscopus: a possible condensation mechanism. J Herpetol 21: 134–139

    Google Scholar 

  • Schwenk K, Throckmorton GS (1989) Functional and evolutionary morphology of lingual feeding in squamate reptiles: phylogenetics and kinematics. J Zool (Lond) 219: 153–176

    Google Scholar 

  • Shine R (1990) Function and evolution of the frill of the frillneck lizard Chlamydosaurus kingii (Sauria: Agamidae). Biol J Linn Soc 40: 11–20

    Google Scholar 

  • Smith KK (1984) The use of the tongue and hyoid apparatus during feeding in lizards (Ctenosaura similis and Tupinambis nigropunctatus). J Zool (Lond) 202: 115–143

    Google Scholar 

  • Smith KK (1986) Morphology and function of the tongue and hyoid apparatus in Varanus (Varanidae Lacertilia). J Morphol 187: 261–287

    PubMed  CAS  Google Scholar 

  • Smith KK (1988) Form and function of the tongue in agamid lizards with comments on its phylogenetic significance. J Morphol 196: 157–171

    PubMed  CAS  Google Scholar 

  • Smith KK, Kier WM (1989) Trunks, tongues and tentacles: moving with skeletons of muscle. Am Sci 77: 28–35

    Google Scholar 

  • Smith K, Mackay M (1990) The morphology of the intrinsic tongue musculature in snakes (Reptilia Ophidia): functional and phylogenetic implications. J Morphol 205: 307–324

    Google Scholar 

  • So KK, Wainwright PC, Bennett AF (1992) Kinematics of prey processing in Chamaelo jacksonii: conservation of function with morphological specialization. J Zool Lond 226: 47–64

    Google Scholar 

  • Sondhi KC (1958) The hyoid and associated structures in some Indian reptiles. Ann Zool 2: 157–227

    Google Scholar 

  • Throckmorton G, De Bavay SJ, Chaffey W, Merrotsy B, Noske BS, Noske R (1985) The mechanism of frill erection in the bearded dragon Amphibolurus barbatus with comments on the jacky lizard A. muricatus (Agamidae). J Morphol 183: 285–292

    Google Scholar 

  • Tilak R (1964) The hyoid apparatus of Uromastix hardwickii Gray. Sci Cult 30: 244–246

    Google Scholar 

  • Ulinski PS (1972) Tongue movements in the common boa (Constrictor constrictor). Anim Behav 20: 373–383

    PubMed  CAS  Google Scholar 

  • Underwood G (1971) A modern appreciation of Camp’s “classification of the lizards”. Introduction to reprint by SSAR

    Google Scholar 

  • Von Geldern CE (1919) Mechanism in the production of throat-fan in the chameleon Anolis carolinensis. Proc Calif Acad Sci 9: 313–329

    Google Scholar 

  • Wainwright PC, Bennett AF (1992a) The mechanism of tongue projection. I Electromyographic tests of functional hypotheses. J Exp Biol 168: 1–21

    Google Scholar 

  • Wainwright PC, Bennett AF (1992b) The mechanism of tongue projection. II. Role of shape in muscular hydrostat. J Exp Biol 168: 23–40

    Google Scholar 

  • Wainwright PC, Kraklau DM, Bennett AF (1991) Kinematics of tongue projection in Chamaeleo oustaleti. J Exp Biol 159: 109–133

    Google Scholar 

  • Willard WA (1915) The cranial nerves of Anolis carolinensis. Bull Mus Comp Zool 59: 1–134

    Google Scholar 

  • Young BA (1990) Is there a direct link between the ophidian tongue and Jacobson’s organ? Amphib-Reptilia 11: 263–276

    Google Scholar 

  • Zavattari E (1911) I muscoli ioidei dei sauri in rapporto con i muscoli ioidei degli altri vertebrati. Mem Acad Sci Torino 60: 351–392

    Google Scholar 

  • Zoond A (1933) The mechanism of projection of the chameleon’s tongue. J Exp Biol 10: 174–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bels, V.L., Chardon, M., Kardong, K.V. (1994). Biomechanics of the Hyolingual System in Squamata. In: Bels, V.L., Chardon, M., Vandewalle, P. (eds) Biomechanics of Feeding in Vertebrates. Advances in Comparative and Environmental Physiology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57906-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57906-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63399-7

  • Online ISBN: 978-3-642-57906-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics