Skip to main content

Functional Properties of the Feeding Musculature

  • Chapter
Biomechanics of Feeding in Vertebrates

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 18))

Abstract

The focus of this review is on the characteristics of the individual fibers that compose the feeding muscles. The literature on muscle biochemistry and physiology is extensive and has been reviewed many times. Among the most useful recent contributions are Hoyle’s (1983) comparison of muscle cells across animal phyla, the summaries of vertebrate muscle structure and molecular diversity by Ogata (1988) and Pette and Staron (1990), respectively, and the discussion of slow fibers by Morgan and Proske (1984). With few exceptions (notably the excellent review of Rowlerson 1990), these compendia reflect the primary literature in that they deal almost exclusively with muscles of the locomotor system. It is common to hear feeding apparatus researchers complain that the field of muscle physiology concentrates too much on locomotor muscles (especially cat hindlimb muscles), and that the unique feeding system does not receive adequate attention. Actually, these reviews make it clear that cat hindlimb muscles are not even representative of postcranial musculature in general. Skeletal muscles are extremely diverse, not only between groups of muscles but also among species. As will become clear below, a dichotomous view of locomotor vs feeding muscles is probably just as misleading as an extrapolation from cat hindlimbs to cranial muscles. Muscle properties vary and depend on many factors, ranging from metabolism to behavior; at this stage in our understanding it seems prudent to avoid categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akster HA (1981) Ultrastructure of muscle fibres in head and axial muscles of the perch (Percafluviatilis L.). A quantitative study. Cell Tissue Res 219: 111–131

    Article  PubMed  CAS  Google Scholar 

  • Akster HA (1983) A comparative study of fibre type characteristics and terminal innervation in head and axial muscle of the carp (Cyprinus carpio L.): a histochemical and electronmicroscopical study. Neth J Zool 33: 164–188

    Article  Google Scholar 

  • Akster HA, Osse JWM (1978) Muscle fibre types in head muscles of the perch Perca fluviatilis (L), Teleostei. A histochemical and electromyographical study. Neth J Zool 28: 94–110

    Article  CAS  Google Scholar 

  • Alley KE, Reiser PS (1991) Molecular and contractile features of frog jaw myofibers. J Dent Res 70: 420

    Google Scholar 

  • Alley KE, Omerza FF, Reiser PS (1992) Cellular aspects of neuromuscular accommodation during rapid craniofacial morphogenesis. In: Davidovitch Z (ed) The biological mechanisms of tooth movement and craniofacial adaptation. Ohio State Univ, Columbus, pp 531–540.

    Google Scholar 

  • Altringham JD, Johnston IA (1988) The mechanical properties of polyneuronally innervated, myotomal muscle fibres isolated from a teleost fish (Myoxocephalus scorpius). Pflügers Arch Eur J Physiol 412: 524–529

    Article  CAS  Google Scholar 

  • Anapol FC (1985) Electromyographic and histochemical diversity within pig masseter muscle. Am Zool 25: 121A.

    Google Scholar 

  • Anapol FC, Herring SW (1989) Length-tension relationships of masseter and digastric muscles of miniature swine during ontogeny. J Exp Biol 143: 1–16

    PubMed  CAS  Google Scholar 

  • Anapol FC, Muhl ZF, Fuller JH (1987) The force-velocity relation of the rabbit digastric muscle. Arch Oral Biol 32: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Bárány M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50: 197–218

    Article  PubMed  Google Scholar 

  • Barends PMG (1979) The relation between fiber type composition and function in the jaw adductor muscle of the perch (Percafluviatilis, L.). A histochemical study. Proc K Ned Akad Wet Ser C 82: 147–164

    Google Scholar 

  • Barends PMG, van Leeuwen JL, Taverne-Thiele AJ (1983) Differentiation of the jaw adductor muscle of the rosy barb, Barbus conchonius (Teleostei, Cyprinidae, L.), during development. Neth J Zool 33: 1–20

    Article  Google Scholar 

  • Bewick GS, Rowlerson A, Tonge DA, Holder N (1991) Organization of motor units in the axolotl: a continuously growing animal. J Comp Neurol 303: 551–562

    Article  PubMed  CAS  Google Scholar 

  • Blanton PL, Biggs NL, Perkins RC (1970) Electromyographic analysis of the buccinator muscle. J Dent Res 49: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Bone Q (1964) Patterns of muscular innervation in the lower chordates. Int Rev Neurobiol 6: 99–147

    Article  PubMed  CAS  Google Scholar 

  • Bone Q, Johnston IA, Pulsford A, Ryan KP (1986) Contractile properties and ultrastructure of three types of muscle fibre in the dogfish myotome. J Muscle Res Cell Motil 7: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Braund KG, Mehta JR, Amling KA (1991) Fibre type proportions of the buccinator muscle in clinically normal adult dogs. Res Vet Sci 50: 371–373

    Article  PubMed  CAS  Google Scholar 

  • Bredman JJ, Weijs WA, Moorman AFM (1990) Expression of‘cardiac-specific’ myosin heavy chain in rabbit cranial muscles. In: Maréchal G, Carraro U (eds) Muscle and motility, vol 2 Proc XlXth Eur Conf, Brussels. Intercept, Hampshire, pp 329–335.

    Google Scholar 

  • Bredman JJ, Wessels A, Weijs WA, Korfage JAM, Soffers CAS (1991) Demonstration of ‘cardiac-specific’ myosin heavy chain in masticatory muscles of human and rabbit. Histochem J 23: 160–170

    Article  PubMed  CAS  Google Scholar 

  • Brooke MH, Kaiser KK (1974) The use and abuse of muscle histochemistry. Ann N Y Acad Sci 228: 121–144

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Levine DN, Zajac FE III, Tsairis P, Engel WK (1971) Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174: 709–712

    Article  PubMed  CAS  Google Scholar 

  • Busbey AB III (1989) Form and function of the feeding apparatus of Alligator mississippiensis. J Morphol 202: 99–127

    Article  PubMed  Google Scholar 

  • Butler-Browne GS, Eriksson P-O, Laurent C, Thorneil L-E (1988) Adult human masseter muscle fibres express myosin isozymes characteristic of development. Muscle Nerve 11: 610–620

    Article  PubMed  CAS  Google Scholar 

  • Carlson DS, Poznanski A (1982) Experimental models of surgical intervention in the growing face: histochemical analysis of neuromuscular adaptation to altered muscle length. In: McNamara JA Jr, Carlson DS, Ribbens KA (eds) The effect of surgical intervention on craniofacial growth. Univ of Mich Craniofacial Growth Series Monogr 12, Ann Arbor, pp 73-98.

    Google Scholar 

  • Clark GT, Carter MC, Beemsterboer PL (1988) Analysis of electromyographic signals in human jaw closing muscles at various isometric force levels. Arch Oral Biol 33: 833–837

    Article  PubMed  CAS  Google Scholar 

  • Clark RW, Luschei ES (1981) Histochemical characteristics of mandibular muscles of monkeys. Exp Neurol 74: 654–672

    Article  PubMed  CAS  Google Scholar 

  • Clark RW, Luschei ES, Hoffman DS (1978) Recruitment order, contractile characteristics, and firing patterns of motor units in the temporalis muscle of monkeys. Exp Neurol 61; 31–52

    Article  PubMed  CAS  Google Scholar 

  • Collins JH (1991) Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons. J Muscle Res Cell Motil 12: 3–25

    Article  PubMed  CAS  Google Scholar 

  • Condon KW (1987) A study of cranial kinesis in the Nile Monitor, Voranus niloticus. PhD Thesis, Univ of Illinois, Chicago.

    Google Scholar 

  • d’Albis A, Janmot C, Bechet J-J (1986) Comparison of myosins from the masseter muscle of adult rat, mouse and guinea-pig. Eur J Biochem 156: 291–296

    Article  CAS  Google Scholar 

  • De Gueldre G, De Vree F (1991) Fibre composition of the masticatory muscles of Pteropus giganteus (Brunnich, 1782) (Megachiroptera). Belg J Zool 121: 279–294

    Google Scholar 

  • Dick TE, van Lunteren E (1990) Fiber subtype distribution of pharyngeal dilator muscles and diaphragm in the cat. J Appl Physiol 68: 2237–2240

    PubMed  CAS  Google Scholar 

  • Dubale MS, Muralidharan P (1970) Histochemical studies on the fiber types in the developing jaw-muscles of domestic fowl (Gallus domesticus). Life Sci 9: 949–959

    Article  CAS  Google Scholar 

  • Dubose L, Schelhorn TB, Clamann HP (1987) Changes in contractile speed of cat motor units during activity. Muscle Nerve 10: 744–752

    Article  PubMed  CAS  Google Scholar 

  • Easton JW, Carlson DS (1990) Adaptation of the lateral pterygoid and superfical masseter muscles to mandibular protrusion in the rat. Am J Orthod Dentofac Orthop 97: 149–158

    Article  CAS  Google Scholar 

  • Edström L, Lindquist C (1973) Histochemical fiber composition of some facial muscles in the cat in relation to their contraction properties. Acta Physiol Scand 89: 491–503

    Article  PubMed  Google Scholar 

  • Ellis E III, Dechow PC, Carlsori DS (1988) A comparison of stimulated bite force after mandibular advancement using rigid and non-rigid fixation. J Oral Maxillofac Surg 46: 26–32

    Article  PubMed  Google Scholar 

  • Eriksson P-O, Thornell L-E (1983) Histochemical and morphological muscle-fibre characteristics of the human masseter, the medial pterygoid and the temporal muscles. Arch Oral Biol 28: 781–795

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P-O, Eriksson A, Ringqvist M, Thornell L-E (1981) Special histochemical musclefibre characteristics of the human lateral pterygoid muscle. Arch Oral Biol 26: 495–507

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P-O, Eriksson A, Ringqvist M, Thornell L-E (1982) Histochemical fibre composition of the human digastric muscle. Arch Oral Biol 27: 207–215

    Article  PubMed  CAS  Google Scholar 

  • Faulkner JA, McCully KK, Carlson DS, McNamara JA Jr (1982) Contractile properties of the muscles of mastication of rhesus monkeys (Macaca mulatto) following increase in muscle length. Arch Oral Biol 27: 841–845

    Article  PubMed  CAS  Google Scholar 

  • Fields HW, Proffit WR, Case JC, Vig KWL (1986) Variables affecting measurements of vertical occlusal force. J Dent Res 65: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Flitney FW, Johnston IA (1979) Mechanical properties of isolated fish red and white muscle fibres. J Physiol 295: 49P–50P

    PubMed  CAS  Google Scholar 

  • Floyd K, Morrison JFB (1975) The mechanical properties of oesophageal striated muscle in the cat and sheep. J Physiol 248: 717–724

    PubMed  CAS  Google Scholar 

  • Flynn JJ, Neff NA, Tedford RH (1988) Phylogeny of the Carnivora. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, vol 2. Clarendon Press, Oxford, pp 73–115.

    Google Scholar 

  • Gans C, De Vree F (1987) Functional bases of fiber length and angulation in muscle. J Morphol 192: 63–85

    Article  PubMed  CAS  Google Scholar 

  • Gleeson TT, Johnston IA (1987) Reptilian skeletal muscle: contractile properties of identified, single-twitch and slow fibers from the lizard Dipsosaurus dor salis. J Exp Zool 242: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Goldberg LJ, Derfler B (1977) Relationship among recruitment order, spike amplitude, and twitch tension of single motor units in human masseter muscle. J Neurophysiol 40: 879–890

    PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184: 170–192

    PubMed  CAS  Google Scholar 

  • Gorniak GC (1985) Trends in the actions of mammalian masticatory muscles. Am Zool 25: 331–337

    Google Scholar 

  • Gorniak GC (1986) Correlation between histochemistry and muscle activity of jaw muscles in cats. J Appl Physiol 60: 1393–1400

    PubMed  CAS  Google Scholar 

  • Gradwell N, Walcott B (1971) Dual functional and structural properties of the interhyoideus muscle of the bullfrog tadpole (Rana catesbeiana). J Exp Zool 176: 193–218

    Article  PubMed  CAS  Google Scholar 

  • Granzier HLM, Wiersma J, Akster HA, Osse JWM (1983) Contractile properties of a white and a red-fibre type of the m. hyohyoideus of the carp (Cyprinus carpio L.). J Comp Physiol 149: 441–449

    Google Scholar 

  • Grobecker DB, Pietsch TW (1979) High-speed cinematographic evidence for ultrafast feeding in antennariid anglerfishes. Science 205: 1161–1162

    Article  PubMed  CAS  Google Scholar 

  • Grove BK (1989) Muscle differentiation and the origin of muscle fiber diversity. CRC Crit Rev Neurobiol 4: 201–234

    CAS  Google Scholar 

  • Guelinckx P, Dechow PC, Vanrusselt R, Carlson DS (1986) Adaptations in the temporalis muscles of rabbits after masseter muscle removal. J Dent Res 65: 1294–1299

    Article  PubMed  CAS  Google Scholar 

  • Hellstrand E (1980) Morphological and histochemical properties of tongue muscles in cat. Acta Physiol Scand 110: 187–198

    Article  PubMed  CAS  Google Scholar 

  • Herring SW (1992) Muscles of mastication: architecture and functional organization. In: Davidovitch Z (ed) The biological mechanisms of tooth movement and craniofacial adaptation. Ohio State Univ, Columbus, pp 541–548

    Google Scholar 

  • Herring SW, Grimm AF, Grimm BR (1979) Functional heterogeneity in a multipinnate muscle. Am J Anat 154: 563–576

    Article  PubMed  CAS  Google Scholar 

  • Herring SW, Grimm AF, Grimm BR (1984) Regulation of sarcomere number in skeletal muscle: a comparison of hypotheses. Muscle Nerve 7: 161–173

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg SR, Muhl ZF, Begole EA (1980) Muscle sarcomere length following passive jaw opening in the rabbit. Anat Rec 197: 435–440

    Article  PubMed  CAS  Google Scholar 

  • Hill MA, Ecob-Prince MS, Hoh JFY (1989) Regeneration of cat posterior temporalis muscle in culture. Cell Diff Dev 28: 145–152

    Article  CAS  Google Scholar 

  • Hiraiwa T (1977) The effects of motortrigeminal denucleation on rat masticatory muscles. Jpn J Physiol 27: 617–641

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY, Hughes S (1988) Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds. J Muscle Res Cell Motil 9: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY, Hughes S (1989) Immunocytochemical analysis of the perinatal development of cat masseter muscle using anti-myosin antibodies. J Muscle Res Cell Motil 10: 312–325

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY, Hughes S (1991) Expression of superfast myosin in aneural regenerates of cat jaw muscle. Muscle Nerve 14: 316–325

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY, Hughes S, Chow C, Hale PT, Fitzsimons RB (1988) Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat posterior temporalis muscle during postnatal development. J Muscle Res Cell Motil 9: 48–58

    Article  PubMed  CAS  Google Scholar 

  • Horák V (1988) Histochemical fiber type composition in 12 skeletal muscles of miniature pigs. Anat Anz 167: 231–238

    PubMed  Google Scholar 

  • Hoyle G (1983) Muscles and their neural control. Wiley, New York.

    Google Scholar 

  • Katsura S, Ishizuka H, Matsumoto H, Nakae Y (1981) Histochemical studies on the histogenesis of rat masseter muscle. Jpn J Oral Biol 23: 677–684

    Article  Google Scholar 

  • Katsura S, Ishizuka H, Matsumoto H, Nakae Y (1982) Histochemical studies on the histogenesis of rat medial pterygoid muscle. Acta Histochem Cytochem 15: 701–709

    Article  Google Scholar 

  • Kiliaridis S, Shyu BC (1988) Isometric muscle tension generated by masseter stimulation after prolonged alteration of the consistency of the diet fed to growing rats. Arch Oral Biol 33: 467–472

    Article  PubMed  CAS  Google Scholar 

  • Kiliaridis S, Engström C, Thilander B (1988) Histochemical analysis of masticatory muscle in the growing rat after prolonged alteration in the consistency of the diet. Arch Oral Biol 33: 187–193

    Article  PubMed  CAS  Google Scholar 

  • Kogo M, Inoue K, Matsuya T, Nishio J, Hamamura Y, Yasui Y, Miyazaki T (1991) Mechanical contraction property of the levator veli palatini muscle. Cleft Pal J 28: 221–225

    Article  CAS  Google Scholar 

  • Lindman R, Eriksson P-O, Thorneil L-E (1986) Histochemical enzyme profile of the masseter, temporal and lateral pterygoid muscles of the European hedgehog (Erinaceus europaeus). Arch Oral Biol 31: 51–55

    Article  PubMed  CAS  Google Scholar 

  • Lindquist C (1973) Contraction properties of cat facial muscles. Acta Physiol Scand 89: 482–490

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, Gans C (1986) Electromyography for experimentalists. Univ Chicago Press, Chicago

    Google Scholar 

  • Mabuchi K, Pinter K, Mabuchi Y, Sreter F, Gergely J (1984) Characterization of rabbit masseter muscle fibers. Muscle Nerve 7: 431–438

    Article  PubMed  CAS  Google Scholar 

  • Mackenna BR, Türker KS (1978) Twitch tension in the jaw muscles of the cat at various degrees of mouth opening. Arch Oral Biol 23: 917–920

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Hanai H, Kumegawa M (1981) Postnatal development of masticatory organs in rats. III. Effect of mastication on the postnatal development of the M. masseter superficialis. Anat Anz 150: 424–427

    PubMed  CAS  Google Scholar 

  • Manns A, Miralles R, Palazzi C (1979) EMG, bite force, and elongation of the masseter muscle under isometric voluntary contractions and variations of vertical dimension. J Prosthet Dent 42: 674–682

    Article  PubMed  CAS  Google Scholar 

  • Marsh RL (1988) Ontogenesis of contractile properties of skeletal muscle and sprint performance in the lizard Dipsosaurus dorsalis. J Exp Biol 137: 119–139

    PubMed  CAS  Google Scholar 

  • Mascarello F, Aureli G, Veggetti A (1979) Muscoli masticatori. Determinazione istochimica dei tipi di fibre muscolari in mammiferi. Quad Anat Prat 35: 193–211

    Google Scholar 

  • Mascarello F, Rowlerson A, Scapolo PA (1984) The fibre type composition of the striated muscle of the oesophagus in ruminants and carnivores. Histochemistry 80: 277–288

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Takahashi S, Kuriyama H (1974) Studies on the fibre types of the guinea pig masticatory muscles. Comp Biochem Physiol 47A: 1171–1184.

    Google Scholar 

  • Matthews B, Smith BH (1972) An investigation into the presence of slow-graded fibres in the anterior belly of the rat digastric muscle. Arch Oral Biol 17: 473–478

    Article  PubMed  CAS  Google Scholar 

  • Maxwell LC, Carlson DS, McNamara JA Jr, Faulkner JA (1979) Histochemical characteristics of the masseter and temporalis muscles of the rhesus monkey (Macaca mulatto): Anat Rec 193: 389–402

    Article  PubMed  CAS  Google Scholar 

  • Maxwell LC, Carlson DS, Brangwyn CE (1980) Lack of ‘acid reversal’ of myofibrillar adenosine triphosphatase in masticatory muscle fibres of rhesus monkeys. Histochem J 12: 209–219

    Article  PubMed  CAS  Google Scholar 

  • Maxwell LC, Carlson DC, McNamara JA Jr, Faulkner JA (1981) Adaptation of the masseter and temporalis muscles following alteration in length, with or without surgical detachment. Anat Rec 200: 127–137

    Article  PubMed  CAS  Google Scholar 

  • McMillan AS, Sasaki K, Hannam AG (1990) The estimation of motor unit twitch tensions in the human masseter muscle by spike-triggered averaging. Muscle Nerve 13: 697–703

    Article  PubMed  CAS  Google Scholar 

  • Miledi R, Uchitel OD (1984) A study of the submaxillaris muscle of the frog. J Physiol 350: 279–291

    PubMed  CAS  Google Scholar 

  • Miller AJ, Farias M (1988) Histochemical and electromyographic analysis of craniomandibular muscles in the rhesus monkey, Macaca mulatta. J Oral Maxillofac Surg 46: 767–776

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL, Proske U (1984) Vertebrate slow muscle: its structure, pattern of innervation, and mechanical properties. Physiol Rev 64: 103–169

    PubMed  CAS  Google Scholar 

  • Muhl ZF, Newton JH (1982) Change of digastric muscle length in feeding rabbits. J Morphol 171: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Muhl ZF, Grimm AF, Glick PL (1978) Physiologic and histologic measurements of the rabbit digastric muscle. Arch Oral Biol 23: 1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Müntener M, Gottschall J, Neuhuber W, Mysicka A, Zenker W (1980) The ansa cervicalis and the infrahyoid muscles of the rat. I. Anatomy; distribution, number and diameter of fiber types; motor units. Anat Embryol 159: 49–57

    Article  PubMed  Google Scholar 

  • Nakaji S, Oota I (1978) Histochemical observation on soft palate muscle of cat. Sapporo Med J 47: 525–533

    Google Scholar 

  • Nakata S (1981) Relationship between the development and growth of cranial bones and masticatory muscles in postnatal mice. J Dent Res 60: 1440–1450

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168: 257–276

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom MA, Miles TS (1990) Fatigue of single motor units in human masseter. J Appl Physiol 68: 26–34

    PubMed  CAS  Google Scholar 

  • Nordstrom SH, Yemm R (1972) Sarcomere length in the masseter muscle of the rat. Arch Oral Biol 19: 895–902

    Article  Google Scholar 

  • Nordstrom SH, Yemm R (1974) The relationship between jaw position and isometric active tension produced by direct stimulation of the rat masseter muscle. Arch Oral Biol 19: 353–359

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom SH, Bishop M, Yemm R (1974) The effect of jaw opening on the sarcomere length of the masseter and temporal muscles of the rat. Arch Oral Biol 19: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Novacek MJ, Wyss AR, McKenna MC (1988) The major groups of eutherian mammals. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, vol 2. Clarendon Press, Oxford, pp 31–71.

    Google Scholar 

  • Ogata T (1988) Morphological and cytochemical features of fiber types in vertebrate skeletal muscle. CRC Crit Rev Anat Cell Biol 1: 229–275

    Google Scholar 

  • Orvis JS, Cardinet GH III (1981) Canine muscle fiber types and susceptibility of masticatory muscles to myositis. Muscle Nerve 4: 354–359

    Article  PubMed  CAS  Google Scholar 

  • Otten E (1988) Concepts and models of functional architecture in skeletal muscle. In: Pandolf KB (ed) Exercise and sport sciences reviews, vol 16. MacMillan, New York, pp 89–137.

    Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116: 1–76

    PubMed  CAS  Google Scholar 

  • Pollack GH (1983) The cross-bridge theory. Physiol Rev 63: 1049–1113

    PubMed  CAS  Google Scholar 

  • Rayne J, Crawford GNC (1972) The relationship between fibre length, muscle excursion and jaw movements in the rat. Arch Oral Biol 17: 859–872

    Article  PubMed  CAS  Google Scholar 

  • Reger JF, Holbrook JR (1974) The fine structure of tongue muscle in the bat, Myotis grisescens, with particular reference to twitch and slow muscle fiber morphology. J Submicrosc Cytol 6: 1–13

    Google Scholar 

  • Ringqvist M (1974) A histochemical study of temporal muscle fibers in denture wearers and subjects with natural dentition. Scand J Dent Res 82: 28–39

    PubMed  CAS  Google Scholar 

  • Ringqvist M, Ringqvist I, Eriksson PO, Thorneil L-E (1982) Histochemical fibre-type profile in the human masseter muscle. J Neurol Sci 53: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Roberts JL, Reed WR, Thach BT (1984) Pharyngeal airway-stabilizing function of sternohyoid and sternothyroid muscles in the rabbit. J Appl Physiol 57: 1790–1795

    PubMed  CAS  Google Scholar 

  • Rokx JTM, van Willigen JD, Jansen HWB (1984) Muscle fibre types and muscle spindles in the jaw musculature of the rat. Arch Oral Biol 29: 25–31

    Article  PubMed  CAS  Google Scholar 

  • Rome LC, Funke RP, Alexander RM, Lutz G, Aldridge H, Scott F, Freadman M (1988) Why animals have different muscle fibre types. Nature 335: 824–827

    Article  PubMed  CAS  Google Scholar 

  • Rowlerson AM (1990) Specialization of mammalian jaw muscles: fibre type compositions and the distribution of muscle spindles. In: Taylor A (ed) Neurophysiology of the jaws and teeth. Macmillan, London, pp 1–51.

    Google Scholar 

  • Rowlerson A, Pope B, Murray J, Whalen B, Weeds AG (1981) A novel myosin present in cat jaw-closing muscles. J Muscle Res Cell Motil 2: 415–438

    Article  CAS  Google Scholar 

  • Rowlerson A, Mascarello F, Veggetti A, Carpene E (1983) The fiber-type composition of the first branchial arch muscles in Carnivora and Primates. J Muscle Res Cell Motil 4: 443–472

    Article  PubMed  CAS  Google Scholar 

  • Rowlerson A, Mascarello F, Barker D, Saed H (1988) Muscle-spindle distribution in relation to the fibre-type composition of masseter in mammals. J Anat 161: 37–60

    PubMed  CAS  Google Scholar 

  • Sato I, Shimada K, Sato T, Kitagawa T (1992) Histochemical study of jaw muscle fibers in the American alligator (Alligator mississippiensis). J Morphol 211: 187–199

    Article  Google Scholar 

  • Scapolo PA, Mascarello F, Veggetti A, Carpene E (1981) Caratterizzazione istochimica ed immunoistochimica del muscola digastrica. Atti Soc It Sci Vet 35: 331–332

    Google Scholar 

  • Scapolo PA, Rowlerson A, Mascarello F, Veggetti A (1991) Neonatal myosin in bovine and pig tensor tympani muscle fibres. J Anat 178: 255–263

    PubMed  CAS  Google Scholar 

  • Schiaffino S (1974) Histochemical enzyme profile of the masseter muscle in different mammalian species. Anat Rec 180: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Schieppati M, DiFrancesco G, Nardone A (1989) Patterns of activity of perioral facial muscles during mastication in man. Exp Brain Res 77: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Schwarting S, Schröder M, Stennert E, Goebel HH (1982) Enzyme histochemical and histographic data on normal human facial muscles. J Otorhinolaryngol (Basel) 44: 51–59

    CAS  Google Scholar 

  • Sciote JJ (1991) Myosin heavy chain isoform and histochemical fiber type characteristics of masticatory and selective limb muscles in the American opossum. Eur Muscle Club, 1991, Proc

    Google Scholar 

  • Shelton GD, Cardinet GH III, Bandman E (1988) Expression of fiber type specific proteins during ontogeny of canine temporalis muscle. Muscle Nerve 11: 124–132

    Article  PubMed  CAS  Google Scholar 

  • Smith KK (1982) An electromyographic study of the function of the jaw adducting muscles in Varanus exanthematicus (Varanidae). J Morphol 173: 137–158

    Article  Google Scholar 

  • Soussi-Yanicostas N, Barbet JP, Laurent-Winter C, Barton P, Butler-Browne GS (1990a) Transition of myosin isozymes during development of human masseter muscle. Development 108: 239–249

    PubMed  CAS  Google Scholar 

  • Soussi-Yanicostas N, Breuer EM, Dang DC, Butler-Browne GS (1990b) The masseter, a very specialized muscle. In: Maréchal G, Carraro U (eds) Muscle and motility, vol 2. Proc XIX Eur Conf Brussels. Intercept, Hampshire, pp 63–70.

    Google Scholar 

  • Suzuki A (1977) A comparative histochemical study of the masseter muscle of the cattle, sheep, swine, dog, guinea pig, and rat. Histochemistry 51: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Tamari JW, Tomey GF, Ibrahim MZM, Baraka A, Jabbur SJ, Bahuth N (1973) Correlative study of the physiologic and morphologic characteristics of the temporal and masseter muscles of the cat. J Dent Res 52: 538–543

    Article  PubMed  CAS  Google Scholar 

  • Taylor A, Cody FWJ, Bosley MA (1973) Histochemical and mechanical properties of the jaw muscles of the cat. Exp Neurol 38: 99–109

    Article  PubMed  CAS  Google Scholar 

  • Thexton AJ, Hiiemae KM (1975) The twitch-contraction characteristics of opossum jaw musculature. Arch Oral Biol 20: 743–748

    Article  PubMed  CAS  Google Scholar 

  • Thexton AJ, Wake DB, Wake MH (1977) Tongue function in the salamander Bolitoglossa occidentalis. Arch Oral Biol 22: 361–366

    Article  PubMed  CAS  Google Scholar 

  • Throckmorton GS, Saubert CW IV (1982) Histochemical properties of some jaw muscles of the lizard Tupinambis nigropunctatus (Teiidae). Anat Rec 203: 345–352

    Article  PubMed  CAS  Google Scholar 

  • Tuxen A, Kirkeby S (1990) An animal model for human masseter muscle. J Oral Maxillofac Surg 48: 1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Ulrici V, Vogel A, Pieper K-S, Scharschmidt F, Schumacher G-H (1985) Veränderungen im feinstrukturellen Aufbau des M. masseter durch unilaterale Okklusionsstörungen. Anat Anz 160: 9–15

    PubMed  CAS  Google Scholar 

  • van Boxtel A, Goudswaard P, van der Molen GM, van den Bosch WEJ (1983) Changes in electromyogram power spectra of facial and jaw-elevator muscles during fatigue. J Appl Physiol 54: 51–58

    PubMed  Google Scholar 

  • van Lunteren E, Manubay P (1992) Contractile properties of feline genioglossus, sternohyoid, and sternothyroid muscles. J Appl Physiol 72: 1010–1015

    PubMed  Google Scholar 

  • van Lunteren E, Salomone RJ, Manubay P, Supinski GS, Dick TE (1990) Contractile and endurance properties of geniohyoid and diaphragm muscles. J Appl Physiol 69: 1992–1997

    PubMed  Google Scholar 

  • Veggetti A, Mascarello F, Carpenè E (1982) A comparative histochemical study of fibre types in middle ear muscles. J Anat 135: 333–352

    PubMed  CAS  Google Scholar 

  • Vignon C, Pellissier JF, Serratrice G (1980) Further histochemical studies on masticatory muscles. J Neurol Sci 45: 157–176

    Article  PubMed  CAS  Google Scholar 

  • Walker SM, Schrodt GR (1974) I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat Rec 178: 63–82

    Article  PubMed  CAS  Google Scholar 

  • Weijs WA, van der Wielen-Drent TK (1982) Sarcomere length and EMG activity in some jaw muscles of the rabbit. Acta Anat 113: 178–188

    Article  PubMed  CAS  Google Scholar 

  • Weijs WA, van der Wielen-Drent TK (1983) The relationship between sarcomere length and activation pattern in the rabbit masseter muscle. Arch Oral Biol 28: 307–315

    Article  PubMed  CAS  Google Scholar 

  • Wineski LE, Pitts SA, Weeks OI (1991) Histochemical profiles of the vibrissae-operating facial muscles in the golden hamster and guinea pig. Anat Rec 229: 93A.

    Google Scholar 

  • Yemm R (1976) The properties of their motor units, and length-tension relationships of the muscles. In: Anderson DJ, Matthews B (eds) Mastication. Wright, Bristol, pp 25–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herring, S.W. (1994). Functional Properties of the Feeding Musculature. In: Bels, V.L., Chardon, M., Vandewalle, P. (eds) Biomechanics of Feeding in Vertebrates. Advances in Comparative and Environmental Physiology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57906-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57906-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63399-7

  • Online ISBN: 978-3-642-57906-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics