Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Invasive interstitial heating techniques offer a number of advantages over external heating approaches for localizing heat into small tumors at depth. Over the past two decades, nine distinctly different interstitial heating modalities have emerged in response to changes in surgical implant techniques, clinical treatment protocols, and brachytherapy hardware. They consist of: (1) implantable microwave (MW) antennas operating between 0.4 and 2.5 GHz, (2) resistively coupled RF electrodes driven at 0.3-3 MHz for local current field (LCF) heating, (3) capacitively coupled RF electrodes (CC-RF) driven at 8-27 MHz, (4) internal LCF-type electrodes coupled inductively to external 6-to 13-MHz power sources via receiving loop antennas implanted under the skin (IC-RF), (5) 5-to 12-MHz tubular ultrasound (US) radiators, (6) laser illuminated, fiberoptic coupled crystal diffusers (Laser), and three “Hot Source” techniques: (7) hot water tubes (HW), (8) DC voltage driven resistance wires (RW), and (9) inductively coupled, thermoregulating ferromagnetic implants (Ferroseeds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astrahan MA, George FW (1980) A temperature regulating circuit for experimental localized current field hyperthermia systems. Med Phys 7: 362–364

    Article  PubMed  CAS  Google Scholar 

  • Astrahan MA, Norman A (1982) A localized current field hyperthermia system for use with 192-iridium interstitial implants. Med Phys 9: 419–424

    Article  PubMed  CAS  Google Scholar 

  • Astrahan MA, Luxton G, Sapoznik MD, Petrovich Z (1988) The accuracy of temperature measurement from within an interstitial microwave antenna. Int J Hyperthermia 4: 593–608

    Article  PubMed  CAS  Google Scholar 

  • Astrahan MA, Imanaka K, Josef G et al. (1991) Heating characteristics of a helical coil microwave applicator for transurethral hyperthermia of benign prostatic hyperplasia. Int J Hyperthermia 7: 141–155

    Article  PubMed  CAS  Google Scholar 

  • Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 31: 70–75

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF, Fearnot NE, Marchosky JA, Moran CJ, Jones JT, Plantenga TD (1990) Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy. IEEE Trans Biomed Eng 37: 662–672

    Article  PubMed  CAS  Google Scholar 

  • Babij TM, Hagmann JJ, Gottlieb CF et al. (1991) Evaluation of heating patterns of microwave interstitial applicators using miniature electric field and fluoroptic temperature probes. Int J Hyperthermia 7: 485–492

    Article  PubMed  CAS  Google Scholar 

  • Baumann CK, Zumwalt CB (1989) Volumetric interstitial hyperthermia. Assoc Op Rm Nurses J 50: 258–274

    CAS  Google Scholar 

  • Bown SG (1983a) Phototherapy of tumors. World J Surg 7: 700–709

    Article  PubMed  CAS  Google Scholar 

  • Bown SG (1983b) Tumour therapy with the Nd: YAG laser. In: Joffe S, Muckerheide M, Goldman L (eds) Neodymium-YAG lasers in medicine and surgery. Elsevier, New York, pp 51–59

    Google Scholar 

  • Brezovich IA, Young JH (1981) Hyperthermia with implanted electrodes. Med Phys 8: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Brezovich IA, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Brezovich IA, Meredith RF, Henderson RA, Brawner W, Weppelmann B, Salter M (1988) Hyperthermia with water-perfused catheters. In: Sugahara T, Saito M (eds) Proceedings of 5th Intl. Symposium on Hyperthermic Oncology, 1988. Kyoto, vol 1, Taylor and Francis, London, pp 809–810

    Google Scholar 

  • Brezovich IA, Lilly MB, Meredith RF et al. (1990) Hyperthermia of pet animal tumours with self — regulating feromagnetic thermoseeds. Int J Hyperthermia 6: 117–130

    Article  PubMed  CAS  Google Scholar 

  • Burton CV, Mozley JM, Walker AE, Braitman HE (1966) Induction thermocoagulation of the brain: a new neurosurgical tool. IEEE Trans Biomed Eng 13: 114–120

    Article  PubMed  CAS  Google Scholar 

  • Burton CV, Hill M, Walker AE (1971) The RF thermoseed-a thermally self-regulating implant for the production of brain lesions. IEEE Trans Biomed Eng 18: 104–109

    Article  PubMed  CAS  Google Scholar 

  • Camart JC, Fabre JJ, Prévost FB, Pribetich J, Chive M (1992) Coaxial antenna array for 915 MHz interstitial hyperthermia: design and modelization — power deposition and heating pattern — phased array. IEEE Trans Microwave Theory Tech 40: 2243–2249

    Article  Google Scholar 

  • Camart JC, Dubois L, Fabre JJ, Vanloot D, Chive M (1993) 915 MHz microwave interstitial hyperthermia. II. Array of phase-monitored antennas. Int J Hyperthermia 9:445–454

    Article  PubMed  CAS  Google Scholar 

  • Casey JP, Bansal R (1986) The near field of an insulated dipole in a dissipative dielectric medium. IEEE Trans Microwave Theory Tech 34: 459–463

    Article  Google Scholar 

  • Casey JP, Bansal R (1988) Finite length helical sheath antenna in a general homogeneous medium. Radio Sci 23: 1141–1151

    Article  Google Scholar 

  • Cerri G, DeLeo R, Primiani VM (1993) Thermic End-Fire interstitial applicator for microwave hyperthermia. IEEE Trans Microwave Theory Tech 41: 1135

    Article  Google Scholar 

  • Cetas TC, Connor WG, Manning MR (1980) Monitoring of tissue temperature during hyperthermia. Ann NY Acad Sci 335: 281–297

    Article  PubMed  CAS  Google Scholar 

  • Cetas TC (1990) Thermometry. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 423–477

    Google Scholar 

  • Chan KW, Chou CK, McDougall JA, Luk KH, Vora NL, Forell BW (1989) Changes in heating pattern of interstitial microwave antenna arrays at different insertion depths. Int J Hyperthermia 5: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Chan DCF, Kirpotin DB, Bunn PA (1993) Synthesis and evaluation of colloidal magnetic iron oxides for the sitespecific radiofrequency-induced hyperthermia of cancer. J Magnetism Magnetic Materials 122: 374–378

    Article  CAS  Google Scholar 

  • Chen JS, Poirier DR, Damento MA, Demer LJ, Biencaniello F, Cetas TC (1988) Development of Ni-4 Wt. Prct. Si thermoseeds for hyperthermia cancer treatment. J Biomat Res 22: 303–319

    Article  Google Scholar 

  • Chen ZP, Roemer RB, Cetas TC (1992) Three-dimensional simulations of ferromagnetic implant hyperthermia. Med Phys 19: 989–997

    Article  PubMed  CAS  Google Scholar 

  • Chin RB, Stauffer PR (1991) Treatment planning for ferromagnetic seed heating. Int J Radiat Oncol Biol Phys 21: 431–439

    Article  PubMed  CAS  Google Scholar 

  • Clibbon KL, McCowen A, Hand JW (1993) SAR distri butions in interstitial microwave antenna arrays with a single dipole displacement. IEEE Trans Biomed Eng 40: 925–932

    Article  PubMed  CAS  Google Scholar 

  • Corry PM, Martinez A, Armour EP, Edmundson G (1989) Simultaneous hyperthermia and brachytherapy with remote afterloading. In: Martinez AA, Orton CG, Mould RF (eds) Brachytherapy HDR and LDR. Nucletron, Dearborn, MI, pp 193–204

    Google Scholar 

  • Cosset JM, Dutreix J, Dufour J et al. (1984) Combined interstitial hyperthermia and brachytherapy: Intitut Gustave Roussy technique and preliminary results. Int J Radiat Oncol Biol Phys 10: 307–312

    Article  PubMed  CAS  Google Scholar 

  • Cosset JM, Dutreix J, Haie C, Gerbaulet A, Janoray P, Dewar JA (1985) Interstitial thermoradiotherapy: a technical and clinical study of 29 implantations performed at the Institute Gustave-Roussy. Int J Hyperthermia 1: 3–13

    Article  PubMed  CAS  Google Scholar 

  • Daikuzono N, Joffe SN, Tajiri H, Suzuki S, Tsunekawa H, Ohyama M (1987) Laserthermia: a computer-controlled contact Nd:YAG system for interstitial local hyperthermia. Med Instrum 21: 275–277

    PubMed  CAS  Google Scholar 

  • Davies J, Simpson P (1979) Induction heating handbook. McGraw-Hill, London, pp 307–340

    Google Scholar 

  • de Sieyes DC, Douple EB, Strohbehn JW, Trembly BS (1981) Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer. Med Phys 8: 174–183

    Article  PubMed  Google Scholar 

  • DeFord JA, Babbs CF, Patel UH, Fearnot NE, Marchosky JA, Moran CJ (1990) Accuracy and precision of computer-simulated tissue temperatures in individual human intracranial tumors treated with interstitial hyperthermia. Int J Hyperthermia 6: 755–770

    Article  PubMed  CAS  Google Scholar 

  • Deford JA, Babbs CF, Patel UH, Bleyer MW, Marchosky JA, Moran CJ (1991a) Effective estimation and computer control of minimum tumor temperature during conductive interstitial hyperthermia. Int J Hyperthermia 7: 411–453

    Article  Google Scholar 

  • DeFord JA, Babbs CF, Patel UH, Fearnot NE, Marchosky JA, Moran CJ (1991b) Design and evaluation of closed-loop feedback control of minimum temperatures in human intracranial tumors treated with interstitial hyperthermia. Med Biol Eng Comput 29: 197–206

    Article  PubMed  CAS  Google Scholar 

  • DeFord JA, Babbs CF, Patel UH (1992) Droop: a rapidly computable descriptor of local minimum tissue tem perature during conductive interstitial hyperthermia. Med Biol Eng Comput 30: 333–342

    Article  PubMed  CAS  Google Scholar 

  • Demer LJ, Chen JS, Buechler DN, Damento MA, Poirier DR, Cetas TC (1986) Ferromagnetic thermoseed materials for tumor hyperthermia. In: Robinson CJ, Kondraske GV (eds) Proceedings of IEEE Eng Med Biol Society Meeting. Fort Worth, TX, vol 2. IEEE Press, Piscataway, NJ, pp 1148–1153

    Google Scholar 

  • Denman DL, Foster AE, Lewis GC et al. (1988) The distribution of power and heat produced by interstitial microwave antenna arrays. II. The role of antenna spacing and insertion depth. Int J Radiat Oncol Biol Phys 14: 537–545

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh R, Damento M, Demer L et al. (1984) Ferromagnetic alloys with curie temperatures near 50°C for use in hyperthermic therapy. In: Overgaard J (ed) Proceedings of 4th Int Symposium on Hyperthermic Oncology 1984, Arrhus, Denmark Taylor and Francis, London, pp 599–602

    Google Scholar 

  • Deurloo IKK, Visser AG, Morawska M, van Geel CAJF, van Rhoon GC, Levendag PC (1991) Application of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations. Phys Med Biol 36: 119–132

    Article  PubMed  CAS  Google Scholar 

  • Dickinson MR, Charlton A, King TA, Freemont AJ, Bramley R (1991) Studies of er-YAG interactions with soft tissue. Lasers Med Sci 6: 125–132

    Article  Google Scholar 

  • Diederich CJ, Hynynen KH (1989) Induction of hyperthermia using an intracavitary multi-element ultrasonic applicator. IEEE Trans Biomed Eng 36: 432–438

    Article  PubMed  CAS  Google Scholar 

  • Diederich CJ, Hynynen KH (1990) The development of intracavitary ultrasonic applicators for interstitial hyperthermia. Med Phys 17: 626–634

    Article  PubMed  CAS  Google Scholar 

  • Diederich CJ, Hynynen KH (1993) Ultrasound technology for interstitial hyperthemia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Berlin Heidelberg New York, pp 55–61

    Chapter  Google Scholar 

  • Diederich CJ, Stauffer PR (1993) Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. Int J Hyperthermia 9: 227–246

    Article  PubMed  CAS  Google Scholar 

  • Diederich CJ, Stauffer PR, Sneed PK, Phillips TL (1993) The design of ultrasound applicators for interstitial hyperthermia. 1993 IEEE Ultrasonics Symposium Proceedings, IEEE Press, Piscataway NJ, pp 1215–1219

    Google Scholar 

  • Diederich CJ, Khalil IS, Stauffer PR, Sneed PK, Phillips TL (1995) Interstitial ultrasound applicators for simultaneous thermo-radiotherapy. Int J Hyperthermia, in press

    Google Scholar 

  • Diederich CJ (1995) Ultrasound applicators for interstitial hyperthermia. Int J Hyperthermia, in press

    Google Scholar 

  • Doss JD, McCabe CW (1976) A technique for localized heating in tissue: an adjunct to tumor therapy. Med Instrum 10: 16–21

    PubMed  CAS  Google Scholar 

  • Doss JD, McCabe CW (1986) Completely implantable hyperthermia applicator with externalized temperature monitoring: tests in conductive gel. Med Phys 13: 876–881

    Article  PubMed  CAS  Google Scholar 

  • Doss JD, McCabe CW (1988) Total implants for hyperthermia application and thermometry. Int J Hyperthermia 4: 617–625

    Article  PubMed  CAS  Google Scholar 

  • Elliott R, Harrison W, Storm F (1982) Hyperthermia: electromagnetic heating of deep-seated tumors. IEEE Trans Biomed Eng 29: 61–64

    Article  PubMed  CAS  Google Scholar 

  • Emami B, Stauffer PR, Dewhirst MW et al. (1991) RTOG quality assurance guidelines for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 20: 1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Engler MS, Dewhirst MW, Winget J, Oleson JR (1987) Automated temperature scanning for hyperthermia treatment planning. Int J Radiat Oncol Biol Phys 13: 1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Eppert V, Trembly BS, Richter HJ (1991) Air cooling for an interstitial microwave hyperthermia antenna: theory and experiment. IEEE Trans Biomed Eng 38: 450–460

    Article  PubMed  CAS  Google Scholar 

  • ESHO (1993) Interstitial and intracavitary hyperthermia: a task group report of the European Society for Hyperthermia Oncology. In: Franconi C (ed) Tor Vergata Medical Physics Monograph Series, University of Rome, Rome

    Google Scholar 

  • Fabre JJ, Chive M, Dubois L et al. (1993) 915 MHz microwave interstitial hyperthermia. I. Theoretical and experimental aspects with temperature control by multifrequency radiometry. Int J Hyperthermia 9: 433–444

    Article  PubMed  CAS  Google Scholar 

  • Fearnot N, Marchosky J, Moran C, DeFord J, Babbs C, Sisken R (1990) A catheter for coincident interstitial hyperthermia and interstitial radiation. In: Proceedings of Tenth Annual Meeting of North American Hyperthermia Group. New Orleans, p 44

    Google Scholar 

  • Fenn AJ, Diederich CJ, Stauffer PR (1993) An adaptivefocusing algorithm for a microwave planar phased-array hyperthermia system. Lincoln Lab J 6: 269–288

    Google Scholar 

  • Gentili GB, Gori F, Lachi L, Leoncini M (1991) A watercooled EM applicator radiating in a phantom equivalent tissue-experiments and numerical analysis. IEEE Trans Biomed Eng 38: 924–928

    Article  PubMed  CAS  Google Scholar 

  • Goffinet DR, Prionas SD, Kapp DS et al. (1990) Interstitial 192-Ir flexible catheter radiofrequency hyperthermia treatment of head and neck and recurrent pelvic carcinomas. Int J Radiat Oncol Biol Phys 18: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 64: 423–457

    Article  PubMed  CAS  Google Scholar 

  • Grady MS, Howard MA III, Malloy JA, Ritter RC, Quate EG, Gillies GT (1989) Preliminary experimental investigations of in vivo magnetic manipulation: results and potential application in hyperthermia. Med Phys 16: 263–272

    Article  PubMed  CAS  Google Scholar 

  • Grady MS, Howard MA III, Broaddus WC et al. (1990a) Magnetic stereotaxis: a technique to deliver sterotactic hyperthermia. Neurosurgery 27: 1010–1015

    Article  PubMed  CAS  Google Scholar 

  • Grady MS, Howard MA III, Malloy JA, Ritter RC, Quate EG, Gillies GT (1990b) Nonlinear magnetic stereotaxis: three-dimensional, in vivo remote magnetic manipulation of a small object in canine brain. Med Phys 17: 405–415

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DR, Nori D, Tankenbaum A, Brenner H, Anderson LL, Hilaris BS (1987) New brachytherapy techniques using 1-125 seeds for tumor bed implants. Endocurie/Hyp Oncol 3: 73–80

    Google Scholar 

  • Guy AW, Lehmann JF, Stonebridge JB (1974) Therapeutic applications of electromagnetic power. Proc IEEE 62: 55–75

    Article  Google Scholar 

  • Haider SA, Chen ZP, Cetas TC, Roemer RB (1987) Interstitial ferromagnetic implant heating: practical guidelines for use. In: Leinberger J (ed) Proceedings of 9th Annual Conference of the Eng in Med and Biology Society, Boston, MA, vol 3. IEEE Press, Piscataway NJ, pp 1626–1628

    Google Scholar 

  • Haider SA, Cetas TC, Wait JR, Chen JS (1991) Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization. IEEE Trans Microwave Theory Tech 39: 1817–1827

    Article  Google Scholar 

  • Haider SA, Cetas TC, Roemer RB (1993) Temperature distribution in tissues from a regular array of hot source implants: an analytical approximation. IEEE Trans Biomed Eng 40: 408–417

    Article  PubMed  CAS  Google Scholar 

  • Hand JW (1993) Invasive thermometry practice for interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Berlin Heidelberg New York, pp 832–87

    Google Scholar 

  • Hand JW, Trembly BS, Prior MV (1991) Physics of interstitial hyperthermia: radiofrequency and hot water tube techniques. In: Urano M, Douple E (eds) Hyperthermia and oncology. VSP, Zeist, pp 99–134

    Google Scholar 

  • Handl-Zeller L (ed) (1992) Interstitial hyperthermia. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Handl-Zeller L (1993) Clinical experience of interstitial thermo-radiotherapy using hot-water-perfusion techniques. In: Gerner EW, Cetas TC (eds) Proceedings of 6th Intl. Congress on Hyperthermic Oncology, vol 2. Arizona Board of Regents, Tucson, AZ, pp 311–314

    Google Scholar 

  • Handl-Zeller L, Handl O (1991) Combination of interstitial high and low dose rate irradiation with simultaneous hyperthermia. Endocurie/Hyp Oncol 7: 67–70

    Google Scholar 

  • Handl-Zeller L, Handl O (1992) Simultaneous application of combined interstitial high-or low-dose rate irradiation with hot water hyperthermia. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer, Berlin Heidelberg New York, pp 165–170

    Chapter  Google Scholar 

  • Handl-Zeller L, Schreier K, Darcher K, Budihna M, Lesnicar H (1988) First clinical experience with the Viennese interstitial two zone hyperthermia system. In: Sugahara T, Saito M (eds) Proceedings of 5th Intl. Symposium on Hyperthermic Oncology, 1988, Kyoto, vol 1. Taylor and Francis, London, pp 814–816

    Google Scholar 

  • Hashimoto D, Yabe K, Uedera Y (1988) Ultrasonic guided laser therapy for liver cancers — experimental temperature measurements and clinical application. In: Waidelich W, Waidelich R (eds) Proceedings of 7th International Society for Laser Surgery and Medicine 1987. Springer Berlin Heidelberg New York, pp 168–171

    Google Scholar 

  • Howard III MA, Grady MS, Ritter RC, Gillies GT, Ouate EG, Malloy JA (1989) Magnetic movement of a brain thermoceptor. Neurosurgery 24: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Hurter W, Reinbold F, Lorenz WJ (1991) A dipole antenna for interstitial microwave hyperthermia. IEEE Trans Microwave Theory Tech 39: 1048–1054

    Article  Google Scholar 

  • Hynynen K (1992) The feasibility of interstitial ultrasound hyperthermia. Med Phys 19: 979–987

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, Davis KL (1993) Small cylindrical ultrasound sources for induction of hyperthermia via body cavities. Int J Hyperthermia 9: 263–274

    Article  PubMed  CAS  Google Scholar 

  • Ibbott GS, Brezovich IA, Fessenden P et al. (1989) Performance evaluation of hyperthermia equipment, #26 AR. American Institute of Physics, New York

    Google Scholar 

  • Iskander MF, Tumeh AM (1989) Design optimization of interstitial antennas. IEEE Trans Biomed Eng 36: 238–246

    Article  PubMed  CAS  Google Scholar 

  • James BJ, Strohbehn JW, Mechling JA, Trembly BS (1989) The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5: 733–747

    Article  PubMed  CAS  Google Scholar 

  • Jarosz BJ (1990) Rate of heating in tissue in vitro by interstitial ultrasound. In: Pedersen PC, Onaral B (eds) Proceedings of IEEE Engineering in Medicine and Biology Society Meeting. IEEE Press, Piscataway, NJ, pp 274–275

    Google Scholar 

  • Jarosz BJ (1991) Temperature distribution in interstitial ultrasound hyperthermia. In: Nagel JH, Smith W (eds) Proceedings of IEEE Engineering in Medicine and Biology Society Meeting. IEEE Press, Piscataway, NJ, pp 179–180

    Google Scholar 

  • Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1988) SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy. IEEE Trans Biomed Eng 35: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1989) Theoretical and experimental SAR distributions for interstitial dipole antenna arrays used in hyperthermia. IEEE Trans Microwave Theory Tech 37: 1200–1209

    Article  Google Scholar 

  • Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 9: 51–68

    Article  PubMed  CAS  Google Scholar 

  • Kaminishi K, Nawata S (1981) Practical method of improving the uniformity of magnetic fields generated by single and double Helmholtz coils. Rev Sci Instr 52: 447–453

    Article  Google Scholar 

  • Kanemaki N, Tsunekawa H, Brunger C et al. (1988) Endoscopic Nd-YAG laserthermia: experimental study on carcinoma bearing BDF1 mice. In: Waidelich W, Waidelich R (eds) Proceedings of 7th Congress International Society of Laser Surgery and Medicine 1987. Springer, Berlin Heidelberg New York, pp 200–203

    Google Scholar 

  • Kapp DS, Prionas SD (1992) Experience with radiofrequency-local current field interstitial hyperthermia: biological rationale, equipment development, and clinical results. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer, Berlin Heidelberg New York, pp 95–119

    Chapter  Google Scholar 

  • Kapp DS, Fessenden P, Samulski TV et al. (1988) Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 75–115

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Furukawa M, Uchida N et al. (1990) Development of inductive heating equipment using an inductive aperture-type applicator. Int J Hyperthermia 6: 155–168

    Article  PubMed  CAS  Google Scholar 

  • King RWP, Iizuka K (1963) Field of a half-wave dipole in a dissipative medium. IEEE Trans Antennas Propagat 11: 275–285

    Article  Google Scholar 

  • King RWP, Trembly BS, Strohbehn JW (1983) The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Tech 31: 574–583

    Article  Google Scholar 

  • Kobayashi T, Kida Y, Tanaka T, Kageyama N, Kobayashi H, Amemiya Y (1986) Magnetic induction hyperthermia for brain tumor using ferromagnetic implant with low Curie temperature. J Neurooncol 4: 175–181

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JW (1990) A microwave-like LCF interstitial hyperthemia system. Strahlenther Onkol 166: 521

    Google Scholar 

  • Lagendijk JW, Visser AG, Kaatee RSJP et al. (1995) The 27 MHz current source multielectrode interstitial hyperthermia method. Activity, Special Report 6, pp 83–90

    Google Scholar 

  • Lee D, O’Neill MJ, Lam K, Rostock R, Lam W (1986) A new design of microwave interstitial applicator for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003–2008

    Article  PubMed  CAS  Google Scholar 

  • Li KJ, Luk KH, Jiang HB, Chou CK, Hwang GZ (1984) Design and thermometry of an intracavitary microwave applicator suitable for treatment of some vaginal and rectal cancers. Int J Radiat Oncol Biol Phys 10: 2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Malloy JA, Ritter RC, Grady MS, Howard III MA, Quate EG, Gilles GT (1990) Experimental determination of the force required for insertion of a thermoseed into deep brain tissues. Ann Biomed Eng 18: 299–313

    Article  Google Scholar 

  • Malloy JA, Ritter RC, Broaddus WC et al. (1991) Thermodynamics of movable inductively heated seeds for the treatment of brain tumors. Med Phys 18: 794–803

    Article  Google Scholar 

  • Mang T (1990) Combination studies of hyperthermia induced by the Neodymium: Yttrium-Aluminum-Garnet (Nd:YAG) laser as an adjuvant to photodynamic therapy. Lasers Surg Med 10: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Manning MR, Gerner EW (1983) Interstitial thermoradiotherapy. In: Storm FK (ed) Hyperthermia in cancer therapy. CK Hall, Boston, pp 467–477

    Google Scholar 

  • Manning MR, Cetas TC, Miller RC, Oleson JR, Connor WG, Gerner EW (1982) Results of a phase I trial employing hyperthermia alone or in combination with external beam or interstitial radiotherapy. Cancer 49: 205–216

    Article  PubMed  CAS  Google Scholar 

  • Marchai C, Nadi M, Hoffstetter S, Bey P, Pernot M, Prieur G (1989) Practical interstitial method of heating operating at 27.12MHz. Int J Hyperthermia 5: 451–466

    Article  Google Scholar 

  • Marchosky JA, Babbs CF, Moran CJ, Fearnot NE, DeFord JA, Welsh DM (1990a) Conductive, interstitial hyperthermia: a new modality for treatment of intracranial tumors. In: Bicher HI et al. (eds) Consensus on hyperthermia for the 1990’s. Plenum Press, New York, pp 129–143

    Chapter  Google Scholar 

  • Marchosky JA, Welsh DM, Moran CJ (1990b) Hyperthermia treatment of brain tumors. Missouri Med January: 29–33

    Google Scholar 

  • Masters A, Steger AC, Lees WR, Walmsley KM, Bown SG (1992) Interstitial laser hyperthermia: a new approach for treating liver métastases. Br J Cancer 66: 518–522

    Article  PubMed  CAS  Google Scholar 

  • Matloubieh AY, Roemer RB, Cetas TC (1984) Numerical simulation of magnetic induction heating of tumors with ferromagnetic seed implants. IEEE Trans Biomed Eng 31: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Matsuki H, Kurakami K (1985) High quality soft heating method utilizing temperature dependence of permeability and core loss of low curie temperature ferrite. IEEE Trans Magnetics 21: 1927–1929

    Article  Google Scholar 

  • Matsuki H, Murakami K, Satoh T, Hoshino T (1987) An optimum design of a soft heating system of local hyperthermia. IEEE Trans Magnetics 23: 2440–2442

    Article  Google Scholar 

  • Matthewson K, Coleridge-Smith P, Northfield TC, Bown SG (1986) Comparison of continuous wave and pulsed excitation for interstitial Nd:YAG induced hyperthermia. Lasers Med Sci 1: 197–201

    Article  Google Scholar 

  • Matthewson K, Coleridge-Smith P, O’Sullivan JD, North-field TC, Bown SG (1987) Biological effects of intrahepatic Nd-YAG laser photocoagulation in rats. Gastroenterology 93: 550–557

    PubMed  CAS  Google Scholar 

  • McKenzie A (1990) Physics of thermal processes in lasertissue interaction. Phys Med Biol 35: 1175–1209

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW (1986) A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems. Int J Radiat Oncol Biol Phys 12: 2137–2149

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW, France LJ (1991) A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models. Int J Hyperthermia 7: 465–483

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW, Ryan TP (1992) Threedimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue. Int J Radiat Oncol Biol Phys 22: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Meijer JG, van Wieringen N, Koedooder C, Nieuwenhuys GJ, van Dijk JDP (1995) The development of Pd Ni thermoseeds for interstitial hyperthermia. Med Phys 22(1): 1–4

    Article  Google Scholar 

  • Merry GA, Zervas NT, Hale R (1973) Induction thermocoagulation — a power seed study. IEEE Trans Biomed Eng 20: 302–303

    Article  PubMed  CAS  Google Scholar 

  • Milligan AJ, Panjehpour M (1983) The relationship of temperature profiles to frequency during interstitial hyperthermia. Med Instrum 17: 303–306

    PubMed  CAS  Google Scholar 

  • Milligan AJ, Dobelbower RR (1984) Interstitial hyperthermia. Med Instrum 18: 175–180

    PubMed  CAS  Google Scholar 

  • Milligan AJ, Conran PB, Ropar MA, McCulloch HA, Ahuja RK, Dobelbower RR Jr (1983) Predictions of blood flow from thermal clearance during regional hyperthermia. Int J Radiat Oncol Biol Phys 9:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Mirotznik MS, Engheta N, Foster KR (1993) Heating characteristics of thin helical antennas with conducting cores in a lossy medium. I. Noninsulated antennas. IEEE Trans Microwave Theory Tech 41: 1878–1886

    Article  Google Scholar 

  • Mizushina S, Shimizou T, Sugiura T (1992) Precision of non-invasive temperature profile measurement using a multi-frequency microwave radiometric technique. In: Gerner EW (ed) Proceedings of 6th Intl. Conference on Hyperthermic Oncology, vol 1. Arizona Board of Regents, Tucson, AZ, p 212

    Google Scholar 

  • Moidel RA, Wolfson SK, Selker RG, Weiner SB (1976) Materials for selective tissue heating in a radiofrequency electromagnetic field for the combined chemothermal treatment of brain tumors. J Biomat Res 10: 327–334

    Article  CAS  Google Scholar 

  • Moriyama E, Matsumi N, Shiraishi T et al. (1988) Hyperthermia for brain tumors: improved delivery with a new cooling system. Neurosurgery 23: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Nolsoe C, Torp-Pederson S, Olldag E, Holm HH (1992) Bare fibre low power Nd:YAG laser interstitial hyperthermia. Comparison between diffuser tip and non-modified tip. Lasers Med Sci 7: 1–8

    Article  Google Scholar 

  • Oleson JR (1982) Hyperthermia by magnetic induction. I. Physical characteristics of the technique. Int J Radiat Oncol Biol Phys 8: 1747–1756

    Article  PubMed  CAS  Google Scholar 

  • Oleson JR, Cetas TC, Corry PM (1983) Hyperthermia by magnetic induction: experimental and theoretical results for coaxial coil pairs. Radiat Res 95: 175–186

    Article  PubMed  CAS  Google Scholar 

  • Paliwal BR, Wang GB, Wakai RT et al. (1989) A pretreatment planning model for ferromagnetic hyperthermia. Endocurie/Hyp Oncol 5: 215–220

    Google Scholar 

  • Panjehpour M, Overholt BF, Milligan AJ, Swaggerty MW, Wilinson E, Kiebanow ER (1990) Nd:YAG laser induced interstitial hyperthermia using a long frosted contact probe. Lasers Surg Med 10: 16–24

    Article  PubMed  CAS  Google Scholar 

  • Patel UH, DeFord JA, Babbs CF (1991) Computer-aided design and evaluation of novel catheters for conductive interstitial hyperthermia. Med Biol Eng Comput 29: 25–33

    Article  PubMed  CAS  Google Scholar 

  • Pisch J, Berson A, Harvey J, Mishra S, Beattie E (1994) Absorbable mesh in placement of temporary implants. Int J Radiat Oncol Biol Phys 28: 719–722

    Article  PubMed  CAS  Google Scholar 

  • Prionas SD, Kapp DS (1992) Quality assurance for interstitial radiofrequency-induced hyperthermia. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer Berlin Heidelberg New York, pp 77–94

    Chapter  Google Scholar 

  • Prionas SD, Fessenden P, Kapp DS, Goffinet DR, Hahn GM (1989) Interstitial electrodes allowing longitudinal control of SAR distributions. In: Sugahara T, Saito M (eds) Hyperthermic oncology, 1988. Taylor and Francis, London, vol 2, pp 707–710

    Google Scholar 

  • Prionas SD, Kapp DS, Goffinet DR et al. (1993) Interstitial radiofrequency-induced hyperthermia. In: Gerner EW, Cetas TC (eds) Proceedings of 6th International Congress on Hyperthemic Oncology, vol 2. Arizona Board of Regents, Tucson AZ, pp 249–253

    Google Scholar 

  • Prionas SD, Kapp DS, Goffinet DR, Ben-Yosef R, Fessenden P, Bagshaw MA (1994) Thermometry of interstitial hyperthermia given as an adjuvant to brachytherapy for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 28: 151–162

    Article  PubMed  CAS  Google Scholar 

  • Prior MV (1991) A comparative study of RF-LCF and hot source interstitial hyperthermia techniques. Int J Hyperthermia 7: 131–140

    Article  PubMed  CAS  Google Scholar 

  • Quate EG, Wika KG, Lawson MA et al. (1991) Goniometric motion controller for the superconducting coil in a magnetic stereotaxis system. IEEE Trans Biomed Eng 38: 899–905

    Article  PubMed  CAS  Google Scholar 

  • Rand RW, Snyder M, Elliott DG, Snow HD (1977) Selective radiofrequency heating of ferrosilicone occluded tissue: a preliminary report. Bull Los Angeles Neurol Soc 41: 154–159

    Google Scholar 

  • Rand RW, Snow HD, Elliot DG, Snyder M (1981) Thermomagnetic surgery for cancer. Appl Biochem Biotech 6: 265–272

    Article  Google Scholar 

  • Ritter RC, Grady MS, Howard III MA, Gillies GT (1992) Magnetic stereotaxis: computer-assisted, image-guided remote movement of implants in the brain. Innov Tech Biol Med 13: 437–449

    Google Scholar 

  • Roos D, Hugander A (1988) Microwave interstitial applicators with improved longitudinal heating patterns. Int J Hyperthermia 4: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Ruggera PS, Kantor G (1984) Development of a family of RF helical coil applicators which produce transversely uniform axially distributed heating in cylindrical fatmuscle phantoms. IEEE Trans Biomed Eng 31: 98–106

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP (1991) Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys 21: 403–413

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Wright W (1989) Design and performance of a high-speed driver circuit for PIN diode switches used in microwave hyperthermia. J Biomed Eng 11: 130–132

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Mechling JA, Strohbehn JW (1990) Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experimental vs theory. Int J Radiat Oncol Biol Phys 19: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Hoopes PJ, Taylor JH et al. (1991a) Experimental brain hyperthermia: techniques for heat delivery and thermometry. Int J Radiat Oncol Biol Phys 20: 739–750

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Wikoff RP, Hoopes PJ (1991b) An automated temperature mapping system for use in ultrasound or microwave hyperthermia. J Biomed Eng 13: 348–354

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, James MS, Taylor MD, Coughlin CT (1992) Interstitial microwave hyperthermia and brachytherapy for malignancies of the vulva and vagina. I. Design and testing of a modified intracavitary obturator. Int J Radiat Oncol Biol Phys 23: 189–199

    Article  PubMed  CAS  Google Scholar 

  • Samaras GM (1984) Intracranial microwave hyperthermia: heat induction and temperature control. IEEE Trans Biomed Eng 31: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Sathiaseelan V, Leybovich L, Emami B, Stauffer P, Sträube W (1991) Characteristics of improved microwave interstitial antennas for local hyperthermia. Int J Radiat Oncol Biol Phys 20: 531–539

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Masuki H, Hoshiono T, Yamada H, Takahashi M, Kimura K (1989) Experimental study on interstitial hyperthermia by soft heating method. In: Sugahara T, Saito M (eds) Hyperthermic oncology, 1988. Taylor and Francis, London vol 1, pp 848–850

    Google Scholar 

  • Satoh T, Stauffer PR (1988) Implantable helical coil microwave antenna for interstitial hyperthermia. Int J Hyperthermia 4(5): 497–512

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Stauffer PR, Fike JR (1988) Thermal dosimetry studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 15: 1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Schreier K, Budihna M, Lesnicar H et al. (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–444

    Article  PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Sauer R (eds) (1993) Interstitial and intracavitary thermoradiotherapy. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shrivastava P, Luk K, Oleson J et al. (1989) Hyperthermia quality assurance guidelines. Int J Radiat Oncol Biol Phys 16: 571–587

    Article  PubMed  CAS  Google Scholar 

  • Smythe WR (1950) Static and dynamic electricity. McGraw-Hill, New York, pp 397–400

    Google Scholar 

  • Sneed PK, Gutin PH, Stauffer PR et al. (1992) Thermoradiotherapy of recurrent malignant brain tumors. Int J Radiat Oncol Biol Phys 23: 853–861

    Article  PubMed  CAS  Google Scholar 

  • Stauffer PR (1984) Simple RF matching circuit for conversion of electrosurgical units or laboratory amplifiers to hyperthermia treatment devices. Med Instrum 18: 326–328

    PubMed  CAS  Google Scholar 

  • Stauffer PR (1990) Techniques for interstitial hyperthermia. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 344–370

    Google Scholar 

  • Stauffer PR (1991) Interstitial hyperthermia: evolving technologies. In: Chapman JD, Dewey WC, Whitmore GF (eds) Radiation research: a twentieth century perspective. Academic Press, San Diego, pp 906–911

    Google Scholar 

  • Stauffer PR (1992) Interstitial technology development: have we responded to the clinical needs. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992. Taylor and Francis, London, vol 2, 237–240

    Google Scholar 

  • Stauffer PR, Cetas TC, Jones RC (1984a) Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep seated tumors. IEEE Trans Biomed Eng 31: 235–251

    Article  PubMed  CAS  Google Scholar 

  • Stauffer PR, Fletcher AM, DeYoung DW, Dewhirst MW, Oleson JR, Cetas TC (1984b) Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng 31: 76–90

    Article  PubMed  CAS  Google Scholar 

  • Stauffer PR, Suen SA, Satoh T, Fike JR, Sneed PK (1987a) Validity of an in vivo tissue model for hyperthermia dosimetry. In: Leinberger J (eds) Proceedings of Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Boston. IEEE Press, Piscataway, NJ, pp 997–999

    Google Scholar 

  • Stauffer PR, Satoh T, Suen SA, Fike JR (1987b) Thermal dosimetry characterization of implantable helical coil microwave antennas. In: Leinberger J (eds) Proceedings of Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Boston. IEEE Press, Piscataway, NJ, pp 1633–1635

    Google Scholar 

  • Stauffer PR, Sneed PK, Suen SA et al. (1989) Comparative thermal dosimetry of interstitial microwave and radiofrequency-LCF hyperthermia. Int J Hyperthermia 5: 307–318

    Article  PubMed  CAS  Google Scholar 

  • Stauffer PR, Sneed PK, Hashemi H, Phillips TL (1994) Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Trans Biomed Eng 41(1): 17–28

    Article  PubMed  CAS  Google Scholar 

  • Stea B, Cetas TC, Cassady JR et al. (1990) Interstitial thermoradiotherapy of brain tumors: preliminary results of a phase I clinical trial. Int J Radiat Oncol Biol Phys 19: 1463–1471

    Article  PubMed  CAS  Google Scholar 

  • Stea B, Shimm D, Kittelson J, Cetas TC (1992) Interstitial hyperthermia with ferromagnetic seed implants: preliminary results of a phase I clinical trial. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer, Berlin Heidelberg New York, pp 183–193

    Chapter  Google Scholar 

  • Steger AC (1993) Laser technology for interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Berlin Heidelberg New York, pp 63–74

    Chapter  Google Scholar 

  • Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: theoretical predictions. Int J Radiat Oncol Phys 9:1655–1667

    Article  CAS  Google Scholar 

  • Strohbehn JW (1987) Interstitial techniques for hyperthermia. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Martinus Nijhoff, Amsterdam, pp 211–240

    Chapter  Google Scholar 

  • Strohbehn JW, Mechling JA (1986) Interstitial techniques for clinical hyperthermia. In: Hand JW, James J (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Herts, England, pp 210–287

    Google Scholar 

  • Strohbehn JW, Bowers EW, Walsh JE, Douple EB (1979) An invasive antenna for locally induced hyperthermia for cancer therapy. J Microwave Power 14: 339–350

    CAS  Google Scholar 

  • Strohbehn JW, Trembly BS, Douple EB (1982) Blood flow effects on the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE Trans Biomed Eng 29: 649–666

    Article  PubMed  CAS  Google Scholar 

  • Svaasand LO, Boerslid T, Oeveraasen M (1985) Thermal and optical properties of living tissue: application to laser induced hyperthermia. Lasers Surg Med 5:589–602

    Article  PubMed  CAS  Google Scholar 

  • Taylor L (1978) Electromagnetic syringe. IEEE Trans Biomed Eng 25: 303–304

    Article  PubMed  CAS  Google Scholar 

  • Tiberio CA, Raganella L, Banci G, Franconi C (1988) The RF toroidal transformer as a heat delivery system for regional and focused hyperthermia. IEEE Trans Biomed Eng 35: 1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Microwave Theory Tech 32: 152–157

    CAS  Google Scholar 

  • Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wang TZ, Strohbehn JW (1986) Control of SAR pattern with an interstitial microwave antenna array through variation of antenna driving phase. IEEE Trans Microwave Theory Tech 34: 568–571

    Article  Google Scholar 

  • Trembly BS, Wilson AH, Harvard JM, Sabatakakis K, Strohbehn JW (1988) Comparison of power deposition by in phase 433 and phase-modulated 915 MHz interstitial antenna array hyperthermia systems. IEEE Trans Microwave Theory Tech 36: 908–916

    Article  Google Scholar 

  • Trembly BS, Douple EB, Hoopes PJ (1991) The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in vivo. Int J Hyperthermia 7: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS, Ryan TP, Strohbehn JW (1992) Physics of microwave hyperthermia — microwave. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol 3, Interstitial hyperthermia. VSP BV, Utrecht

    Google Scholar 

  • Trembly BS, Douple EB, Ryan TD, Hoopes PH (1994) The effect of phase modulation on the temperature distribution of a microwave hyperthermia antenna array in vivo. Int J Hyperthermia 10(5): 691–705

    Article  PubMed  CAS  Google Scholar 

  • Tumeh A, Iskander MF (1989) Perfomance comparison of available interstitial antennas for microwave hyperthermia. IEEE Trans Microwave Theory Tech 37: 1126–1133

    Article  Google Scholar 

  • Turner PF (1986) Interstitial equal-phased arrays for EM hyperthermia. IEEE Trans Microwave Theory Tech 34: 572–577

    Article  Google Scholar 

  • van Dijk J (1993) Magnetic induction heating of ferromagnetic seeds. In: Franconi C (ed) Interstitial and intracavitary hyperthermia. ESHO-COMAC/ BME task group report 3. Tor Vergata Medical Physics Monograph Series. University of Rome, Rome, pp 14–17

    Google Scholar 

  • Visser AG, Deurloo IKK, Levendag PC, Ruifrok ACC, Cornet B, van Rhoon GC (1989) An interstitial hyperthermia system at 27 MHz. Int J Hyperthermia 5: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Visser AG, Kaatee RSJP, Levendag PC (1993) Radiofrequency techniques for interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermo-radiotherapy. Springer, Berlin Heidelberg New York, pp 35–48

    Chapter  Google Scholar 

  • Vora N, Forell B, Joseph C, Lipsett J, Archambeau J (1982) Interstitial implant with interstitial hyperthermia. Cancer 50: 2518–2523

    Article  PubMed  CAS  Google Scholar 

  • Waldow SM, Hendersow BW, Dougherty TY (1985) Potentiation of photodynamic therapy by heat: effect of sequence and time interval between treatments in vivo. Lasers Surg Med 5: 83–94

    Article  PubMed  CAS  Google Scholar 

  • Walker AE, Burton CV (1966) Radiofrequency tele-thermocoagulation. JAMA 197: 108–112

    Article  Google Scholar 

  • Wilkinson DA, Say lor TK, Shrivastava PN, Werts ED (1990) Calorimetric evaluation of antennas used for microwave interstitial hyperthermia. Int J Hyperthermia 6: 655–663

    Article  PubMed  CAS  Google Scholar 

  • Wong TZ, Strohbehn JW, Jones KM, Mechling JA, Trembly BS (1986) SAR patterns from an interstitial microwave antenna array hyperthermia system. IEEE Trans Microwave Theory Tech 34: 560–567

    Article  Google Scholar 

  • Wong TZ, Trembly BS (1994) A theoretical model for input impedance of interstitial microwave antennas with choke. Int J Radiat Oncol Biol Phys 28: 673–682

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Watson ML, Sternick ES, Bielawa RJ, Carr KC (1987) Performance characteristics of a helical microwave interstitial antenna for local hyperthermia. Med Phys 14: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Yeh MM, Trembly BS, Douple EB et al. (1994) Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators. IEEE Trans Biomed Eng 41(9): 874–882

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dubai NV, Hambleton RT, Joines WT (1988) The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative dielectric medium. IEEE Trans Microwave Theory Tech 36: 1438–1444

    Article  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1990) Microwave hyperthermia induced by a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 217–221

    Article  CAS  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1991a) Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas. IEEE Trans Biomed Eng 38: 92–96

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1991b) Prediction of heating patterns of a microwave interstitial antenna array at various insertion depths. Int J Hyperthermia 7: 197–207

    Article  PubMed  CAS  Google Scholar 

  • Zhu XL, Gandhi OP (1988) Design of RF needle applicators for optimum SAR distributions in irregularly shaped tumors. IEEE Biomed Eng 35: 382–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stauffer, P.R., Diederich, C.J., Seegenschmiedt, M.H. (1995). Interstitial Heating Technologies. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics