Skip to main content

FDG: biochemical concept and radiochemical synthesis

  • Chapter
PET in Clinical Oncology
  • 155 Accesses

Abstract

2-[18F] Fluoro-2-deoxy-D-glucose (FDG) is the most frequently used oncologic PET tracer and it has beenthestandard PET compound for more than ten years. The reason for this unequaled success lies in the coincidence of two main chemical concepts: a solid biochemical concept of the compound’s behavior with respect to the intercellular metabolism of carbohydrates, and the reliability of the nuclear chemical synthesis of this glucose tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson J, Foster AB, Hall LD, Johnson RN, Hesse RH (1970) Fluorinated carbohydrates. Carbohyd Res 15:351–359

    Article  CAS  Google Scholar 

  2. Bida GT, Satyamurthy N, Barrio JR (1984) The synthesis of 2-[18F]Fluoro-2-deoxy-Dglucose using glycals: a reexamination. J Nucl Med 25:1327–1334

    PubMed  CAS  Google Scholar 

  3. Blomqvist G, Bergstrom K, Bergstrom M, Elvin E, Eriksson L, Garmelius B, Lindberg B, Lilja A, Litton JE, Lundmark L, Lundqvist H, Malmberg P, Moström U, Nilsson L, Stone-Elander S, Widén L (1985) Models for 11C-glucose. In: Greitz T, Ingvar DH, Widén L (eds) The Metabolism of the Brain Studied with Positron Emission Tomography. Raven Press, New York, pp 185–194

    Google Scholar 

  4. Brendsted HE, Gjedde A (1988) Measuring brain glucose phosphoryla.tion with labeled glucose. Am J Physiol 254:E443–E448

    Google Scholar 

  5. Clark JC, Silvester DJ (1966) A cyclotron method for the production of fluorine-18. Int J Appl Radiat Isot 17:151–154

    Article  PubMed  CAS  Google Scholar 

  6. Conti PS, Liliern DL, Hawley K, Keppler J, Grafton ST, Bading JR (1996) PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol 23:717–735

    Article  PubMed  CAS  Google Scholar 

  7. Cunningham VJ, Cremer JE (1981) A method for the simultaneous estimation of regional rates of glucose influx and phosphorylation in rat brain using radio-labelled 2-deoxy-glucose. Brain Res 221:319–330

    Article  PubMed  CAS  Google Scholar 

  8. Dubridge LA, Barnes SW, Buck JH (1937) Letters to the editor, proton induced radioactivity in oxygen. Phys Rev 51:995

    Article  CAS  Google Scholar 

  9. European Pharmacopoeia 3rd Edition (1997) Radiopharmaceutical Preparations. pp 1424–1433

    Google Scholar 

  10. European Pharmacopoeia 3rd Edition, Supplement (1999). pp 515–518 (abstr)

    Google Scholar 

  11. Evans AC (1987) A double integral form of the three-compartmental, four-rate-constant model for faster generation of parameter maps. J Cereb Blood Flow Metab 7 (Suppl 1):5453

    Google Scholar 

  12. Füchtner F, Steinbach J, Mäding P, Johannsen B (1996) Basic hydrolysis of 2-[18F] fluoro-1,3,4,6-tetra-0-acetyl-D-glucose in the preparation of 2-[18F]Fluoro-2-deoxy-Dglucose. Appl Radiat Isot 47:61–66

    Article  Google Scholar 

  13. Gaitonde MK (1965) Rate of utilization of glucose and `compartmentation’ of a-oxoglutarate and glutamate in rat brain. Biochem J 95:803–810

    PubMed  CAS  Google Scholar 

  14. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18-F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 19:11541161

    Google Scholar 

  15. Gatley SJ, Shaughnessy WJ (1982) Production of18F-labeled compounds with 18F-produced with a 1-MW research reactor. Int J Appl Radiat Isot 33:1325–1330

    Article  CAS  Google Scholar 

  16. Gjedde A (1995) Glucose metabolism. In: Wagner HN, Szabo Z, Buchanan JW (eds) Principles of Nuclear Medicine, 2ndEdition. W. B. Saunders, Philadelphia

    Google Scholar 

  17. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  CAS  Google Scholar 

  18. Hawkins R, Miller AL, Cremer JE, Veech RL (1974) Measurement of regional brain glucose utilization by rat brain in vivo. J Neurochem 23:917–923

    Article  PubMed  CAS  Google Scholar 

  19. Hawkins R, Hass K, Ransohoff J (1979) Measurement of regional brain glucose utilization in vivo using [2-14C]glucose. Stroke 10:690–703

    Article  PubMed  CAS  Google Scholar 

  20. Hawkins R, Mans AM, Davis DW, Vina JR, Hubbard LS (1985) Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position. Am J Physiol 248:C170–C176

    PubMed  CAS  Google Scholar 

  21. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP (1978) Labeled 2-deoxy-D-glucose analogs.18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and14C-2deoxy-2-fluoro-D-glucose. J Label Comp Radiopharm 14:175–183

    Article  CAS  Google Scholar 

  22. Kuwabara H, Evans AC, Gjedde A (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F1 fluorodeoxyglucose. J Cereb Blood Flow Metab 10:180–189

    Article  PubMed  CAS  Google Scholar 

  23. Kuwabara H, Gjedde A (1991) Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. J Nucl Med 32:692–698

    PubMed  CAS  Google Scholar 

  24. Levy S, Elmaleh DR, Livni E (1982) A new method using anhydrous [18F]fluoride to radiolabel 2-[18F]fluoro-2-deoxy-D-glucose. J Nucl Med 23:918–922

    PubMed  CAS  Google Scholar 

  25. Nickles RJ, Gatley SJ, Votaw JR, Kornguth ML (1986) Fluorine radiopharmaceuticals. Production of reactive fluorine-18. Appl Radiat Isot 37:649–661

    Article  CAS  Google Scholar 

  26. Pacàk J, Tocik Z, Cerny M (1969) Synthesis of 2-deoxy-2-fluoro-D-glucose. Chem Comm 77

    Google Scholar 

  27. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with 2-[18F]fluoro-2deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  28. Qaim SM, Clark JC, Crouzel C, Guillaume M, Helmeke HJ, Nebeling B, Pike VW, Stöcklin G (1993) PET radionuclide production. In: Stöcklin G, Pike VW (eds) Radio-pharmaceuticals for Positron Emission Tomography. Methodological Aspects. Kluwer Academic Publishers, pp 1–46

    Google Scholar 

  29. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Folwer-Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluoro-deoxyglucose method for the measurement of local cerebral glucose utilization of man. Circ Res 44:127–137

    Article  PubMed  CAS  Google Scholar 

  30. Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shine CY, Atkins H, Anand A (1985) Glucose metabolic rate kinetic model$parameter determi-nation in humans: the lumped constants and rate constants for [18F] fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5:179–192

    Article  PubMed  CAS  Google Scholar 

  31. Rigo P, Paulus P, Kaschten BJ, Hustinx R, Bury T, Jerusalem G, Benoit T, Foidart-Willems J (1996) Oncological applications of positron emission tomography with fluorine-18fluorodeoxyglucose. Eur J Nucl Med 23:1641–1674

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt KC, Lucignani G, Sokoloff L (1996) Fluorine-18-fluorodeoxyglucose PET to determine regional cerebral glucose utilisation: a re-examination. J Nucl Med 37:394–399

    PubMed  CAS  Google Scholar 

  33. Snell AH (1937) A new radioisotope of fluorine. Phys Rev 51:143

    CAS  Google Scholar 

  34. Sokoloff L, Reivich M, Kennedy C, des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  35. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, Oster ZH, Sacker DF, Shiue CY, Turner H, Wan CN, Zabinski SV (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21:670–675

    PubMed  CAS  Google Scholar 

  36. Tewson JT (1983) Synthesis of no-carrier-added fluorine-18 2-fluoro-2-deoxy-D-glucose. J Nucl Med 24:718–721

    PubMed  CAS  Google Scholar 

  37. Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR (1990) Routine production of 2-deoxy-2-[18F]fluoro-D-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol 17:273–279

    CAS  Google Scholar 

  38. Warburg O (1925) Über den Stoffwechsel der Carcinomzelle. Klin Wochenschr Berl 4:534–536

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamkens, W., Rösch, F. (2000). FDG: biochemical concept and radiochemical synthesis. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_6

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics