Skip to main content

From Structure to Function: What Should Be Known About Building Blocks of Protein

  • Chapter
From Nutrition Support to Pharmacologic Nutrition in the ICU

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 34))

  • 357 Accesses

Abstract

The name protein is derived from the greek word “proteno” — the first. Actually, the philosopher Engels defined life as the living form of protein. Proteins are associated with all forms of life, an observation that dates back to the original identification of proteins as a class by Mulder in 1838. Their importance lies in the fact that proteins are the principal nitrogenous constituents of every cell in the body (half of the dry weight, 90% as enzymes). These proteins are subject to continuous wear and replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laidlaw SA and Kopple JD (1987) Newer concepts of the indispensable amino acids. Am J Clin Nutr 46:593–605

    PubMed  CAS  Google Scholar 

  2. Grimble GK (1994) The significance of peptides in clinical nutrition. Annu Rev Nutr 14: 419–447

    Article  PubMed  CAS  Google Scholar 

  3. Fürst P (1998) Old and new substrates in clinical nutrition. J Nutr 128:789–796

    PubMed  Google Scholar 

  4. Fürst P (1972) 15N-studies in severe renal failure. II. Evidence for the essentiality of histidine. Scand J Clin Lab Invest 30:307–312

    Article  PubMed  Google Scholar 

  5. Bergström J, Alvestrand A and Fürst P (1990) Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 38:108–114

    Article  PubMed  Google Scholar 

  6. Najarian N and Harper AE (1956) A clinical study of the effect of arginine on blood ammonia. Am J Med 21:832–842

    Article  PubMed  Google Scholar 

  7. Kirk SJ and Barbul A (1990) Role of arginine in trauma, sepsis, and immunity. JPEN 14:226S–229S

    Google Scholar 

  8. Evoy D, Lieberman MD, Fahey III TJ and Daly JM (1998) Immunonutrition: The role of Arginine. Nutrition 14:611–617

    Article  PubMed  CAS  Google Scholar 

  9. Barbul A (1990) Arginine and immune function. Nutrition 6:53–58

    PubMed  CAS  Google Scholar 

  10. Daly JM, Reynolds J, Sigal RK, Shou J and Liberman MD (1990) Effect of dietary protein and amino acids on immune function. Crit Care Med 18:S86–S93

    Article  PubMed  CAS  Google Scholar 

  11. Grossie VBJ (1996) Citrulline and arginine increase the growth of the Ward colon tumor in parenterally fed rats. Nutr Cancer 26:91–97

    Article  PubMed  CAS  Google Scholar 

  12. Sodeyama M, Gardiner KR, Regan MC, Kirk SJ, Efron G and Barbul A (1993) Sepsis impairs gut amino acid absorption. Am J Surg 165:150–154

    Article  PubMed  CAS  Google Scholar 

  13. Brittenden J, Park KG, Heys SD, Ross C, Ashby J, Ah-See A and Eremin 0 (1994) L-arginine stimulates host defenses in patients with breast cancer. Surgery 115:205–212

    PubMed  CAS  Google Scholar 

  14. Beaumier L, Castillo L, Ajami AM and Young VR (1995) Urea cycle intermediate kinetics and nitrate excretion at normal and “therapeutic” intakes of arginine in humans. Am J Physiol 269:E884–E896

    PubMed  CAS  Google Scholar 

  15. Lin E, Goncalves JA and Lowry SF (1998) Efficacy of nutritional pharmacology in surgical patients. Curr Opin Clin Nutr Met Care 1:41–50

    Article  CAS  Google Scholar 

  16. Nathan C and Xie Q (1994) Nitric oxide synthases: rolls, tolls and controls. Cell 78:915–918

    Article  PubMed  CAS  Google Scholar 

  17. Quyyumi AA (1998) Does acute improvement of endothelial dysfunction in coronary artery disease improve myocardial ischemia? A double-blind comparison of parenteral D- and Larginine. J Am Coll Cardiol 32:904–911

    Article  PubMed  CAS  Google Scholar 

  18. Gaull G, Sturman JA and Räihä NCR (1972) Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediat Res 6:538–547

    Article  PubMed  CAS  Google Scholar 

  19. Zlotkin SH, Bryan MH and Anderson GH (1981) Cystine supplementation to cystine-free intravenous feeding regimens in newborn infants. Am J Clin Nutr 34:914–923

    PubMed  CAS  Google Scholar 

  20. Rudman D, Kutner M, Ansley J, Jansen R, Chipponi JX and Bain RP (1981) Hypotyrosinemia, hypocystinemia and failure to retain nitrogen during total parenteral nutrition of cirrhotic patients. Gastroenterol 81:1025–1035

    CAS  Google Scholar 

  21. Chawla RK, Lewis FW, Kutner M, Bate DM, Roy RGB and Rudman D (1984) Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterol 87:770–776

    CAS  Google Scholar 

  22. Stegink LD and Den Besten L (1972) Synthesis of cysteine from methionine in normal adult subjects: effect of route of alimentation. Science 178:514–516

    Article  PubMed  CAS  Google Scholar 

  23. Grimble RF and Grimble GK (1998) Immunonutrition: Role of sulfur amino acids, related amino acids, and polyamines. Nutrition 14:605–610

    Article  PubMed  CAS  Google Scholar 

  24. Grimble RF (1994) Nutritional antioxidants and the modulation of inflammation: theory and practice. New Horiz 2:175–185

    PubMed  CAS  Google Scholar 

  25. Ollenschläger G, Jansen S, Schindler J, Rasokat H, Schrappe-Bächer M and Roth E (1988) Plasma amino acid pattern of patients with HIV infection. Clin Chem 34:1787–1789

    PubMed  Google Scholar 

  26. Dröge W (1993) Cysteine and glutathione deficiency in AIDS patients: A rationale for the treatment with N-acetyl-cysteine. Pharmacology 46:61–65

    Article  PubMed  Google Scholar 

  27. Mihm S, Ennen J and Pessagra U (1991) Inhibition of HIV-1 replication and NFKB activity by cysteine and cysteine derivatives. AIDS 5:497–503

    Article  PubMed  CAS  Google Scholar 

  28. Fürst P (1994) New parenteral substrates in clinical nutrition. Part I. Introduction. New substrates in protein nutrition. Eur J Clin Nutr 48:607–616

    PubMed  Google Scholar 

  29. Bergström J, Fürst P, Noree L-0 and Vinnars E (1974) Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36:693–697

    PubMed  Google Scholar 

  30. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  31. Redmond HP, Stapleton PP, Neary P and Bouchier-Hayes D (1998) Immunonutrition: the role of taurine. Nutrition 14:599–604

    Article  PubMed  CAS  Google Scholar 

  32. Wang JH, Redmond HP, Watson RWG, Condron C and Bouchier-Hayes D (1995) Taurine protects against stress gene induced human endothelial cell apoptosis. Br J Surg 82:

    Google Scholar 

  33. Neary P, Condron C, Kilbaugh T, Redmond HP and Bouchier-Hayes D (1997) Taurine inhibits fas mediated neutrophil apoptosis. Shock 7:S120

    Google Scholar 

  34. Askanazi J, Carpentier YA, Michelsen CB, Elwyn DH, Fürst P, Kantrowitz LR, Gump FE and Kinney JM (1980) Muscle and plasma amino acids following injury. Influence of intercurrent infection. Ann Surg 192:78–85

    Article  PubMed  CAS  Google Scholar 

  35. Pathirana C and Grimble RF (1992) Taurine and serine supplementation modulates the metabolic response to tumor necrosis factor a in rats fed a low protein diet. J Nutr 122:1369–1375

    PubMed  CAS  Google Scholar 

  36. Geggel HS, Ament ME, Heckenlively JR, Martin DA, Kopple BS and Kopple JD (1985) Nutritional requirement for taurine in patients receiving long-term parenteral nutrition. N Engl J Med 312:142–146

    Article  PubMed  CAS  Google Scholar 

  37. Heird WC, Hay W, Helms RA, Storm MC, Kashyap S and Dell RB (1988) Pediatric parenteral amino acid mixture in low birth weight infants. Pediatrics 81:41–50

    PubMed  CAS  Google Scholar 

  38. Kopple JD, Vinton NE, Laidlaw SA and Ament ME (1990) Effect of intravenous taurine supplementation on plasma, blood cell, and urine taurine concentrations in adults undergoing long-term parenteral nutrition. Am J Clin Nutr 52:846–853

    PubMed  CAS  Google Scholar 

  39. Desai TK, Maliakkal J, Kinzie JL, Ehrinpreis MN, Luk GD and Ceijka J (1992) Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 55:708–711

    PubMed  CAS  Google Scholar 

  40. Bergström J, Alvestrand A, Fürst P and Lindholm B (1989) Sulphur amino acids in plasma and muscle in patients with chronic renal failure: evidence for taurine depletion. J Int Med 226:189–194

    Article  Google Scholar 

  41. Suliman ME, Anderstam B and Bergström J (1996) Evidence of taurine depletion and accumulation of cysteinesulfinic acid in chronic dialysis patients. Kidney Int 50:1713–1717

    Article  PubMed  CAS  Google Scholar 

  42. Banks MA, Porter DW, Martin WG and Castranova V (1992) Taurine protects against oxidant injury to rat alveolar pneumocytes. Adv Exp Med Biol 315:341–354

    Article  PubMed  CAS  Google Scholar 

  43. Gordon RE, Heller RF and Heller RF (1992) Taurine protection of lungs in hamster models of oxidant injury: A morphologic time study of paraquat and bleomycin treatment. Adv Exp Med Biol 315:319–328

    Article  PubMed  CAS  Google Scholar 

  44. Räihä NCR (1973) Phenylalanine hydroxylase in human liver during development. Pediat Res 7:1–4

    PubMed  Google Scholar 

  45. Alvestrand A, Fürst P and Bergström J (1982) Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol 18:297–305

    PubMed  CAS  Google Scholar 

  46. Fürst P (1983) Intracellular muscle free amino acids - their measurement and function. Proc Nutr Soc 42:451–462

    Article  PubMed  Google Scholar 

  47. Fürst P, Pogan K and Stehle P (1997) Glutamine dipeptides in clinical nutrition. Nutrition 13:731–737

    Article  PubMed  Google Scholar 

  48. Souba WW (1991) Glutamine: a key substrate for the splanchnic bed. Annu Rev Nutr 11:285–308

    Article  PubMed  CAS  Google Scholar 

  49. Rennie MJ, MacLennan P, Hundal HS, Weryk B, Smith K, Taylor PM, Egan C and Watt PW (1989) Skeletal muscle glutamine transport, intramuscular glutamine concentration, and muscle-protein turnover. Metabolism 38 (suppl 1):47–51

    Article  PubMed  CAS  Google Scholar 

  50. Plumley DA, Souba WW and Hautamaki RD (1990) Accelerated lung amino acid release in hyperdynamic septic surgical patients. Arch Surg 125:57–61

    Article  PubMed  CAS  Google Scholar 

  51. Rennie MJ, Hundal HS, Babji P, MacLennan P, Taylor PM, Watt PW, Jepson MM and Millward DJ (1986) Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection, and chronic disease. Lancet ii:1008–1011

    Google Scholar 

  52. MacLennan P, Smith K, Weryk B, Watt PW and Rennie MJ (1988) Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett 237:133–136

    Article  PubMed  CAS  Google Scholar 

  53. Cuthbertson DP (1931) The distribution of nitrogen and sulphur in the urine during conditions of increased catabolism. Biochem J 25:236–244

    PubMed  CAS  Google Scholar 

  54. Cuthbertson DP (1932) Observations on the disturbances of metabolism produced by injury to the limbs. Q J Med 1:223–230

    Google Scholar 

  55. Duke JH, Jorgensen SB, Broell JR, Long CL and Kinney JM (1970) Contribution of protein to caloric expenditure following injury. Surgery 68:168–174

    PubMed  Google Scholar 

  56. Moore FD and Brennan MR (1975) Intravenous amino acids. N Engl J Med 293:194–195

    Article  PubMed  CAS  Google Scholar 

  57. Shenkin A, Neuhäuser M, Bergström J, Chao L, Vinnars E, Larsson J, Liljedahl S-O, Schildt B and Fürst P (1980) Biochemical changes associated with severe trauma. Am J Clin Nutr 33:2119–2127

    PubMed  CAS  Google Scholar 

  58. Shaw JFH and Wolfe RR (1987) Energy and protein metabolism in sepsis and trauma. Aust NZ J Surg 57:41–47

    Article  CAS  Google Scholar 

  59. FAO/WHO/UNU (1985) Energy and protein requirements. WHO technical report series no 724. Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stehle, P., Kuhn, K.S., Fürst, P. (2002). From Structure to Function: What Should Be Known About Building Blocks of Protein. In: Pichard, C., Kudsk, K.A. (eds) From Nutrition Support to Pharmacologic Nutrition in the ICU. Update in Intensive Care Medicine, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57119-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57119-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42604-2

  • Online ISBN: 978-3-642-57119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics