Skip to main content

Nucleic Acid Hybridization. A Theoretical Consideration

  • Chapter

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

DNA-DNA and RNA-DNA hybridization reactions are the basis of many assays in DNA analysis and are presently some of the most frequently used techniques in molecular biology. The hybridization reaction is the formation of partial or complete double-stranded nucleic acid molecules by sequence-specific interaction of two complementary single-stranded nucleic acids. The hybridization reaction, using labeled probes, is the only practical way to detect the presence of specific nucleic acid sequences in a complex nucleic acid mixture. The most frequently used hybridization technique is the membrane hybridization technique. Denatured DNA or RNA is immobilized on an inert support in a way that self-annealing is prevented but bound sequences are available for hybridization with labeled single or double stranded probes. Extensive washing of the membrane to remove unbound probe and poorly matched hybrids follows the hybridization reaction. Membrane hybridization is used in many different applications such as Southern and Northern blot hybridization, dot blot hybridization and phage plaque or bacterial colony hybridization. This chapter will briefly consider theoretical aspects of membrane hybridization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aderson MLM, Young BD (1985) Quantitive filter hybridization. In: Nucleic acid hybridization a practical approach. Ed.Hames BD.and Higgins SJ IRLPress 1985.pp. 73–111.

    Google Scholar 

  • Blake RD (1995) Denaturation of DNA. In: Molecular Biology and Biotechnology. A Comprehensive Desk Reference. Ed. Meyers RA VCH Publishers, Inc pp 207–210.

    Google Scholar 

  • Bonner TI, Brenner DJ, Neufeld BR,Britten RJ (1973) Reduction in the rate of DNA reassociation by sequence divergence. J Mol Bioi 81:123–135

    Article  CAS  Google Scholar 

  • Britten RJ Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Method Enzyrnol 29E:363–420.

    Article  Google Scholar 

  • Brush M (1995) A run on nylons: A survey of nylon blotting membranes. BioConsumer 2:14–22.

    Google Scholar 

  • Chang C-T,Hain TC,Hutton JR,Wetmur JG(1974) The effects ofmicroscopic viscosity on the rate of renaturation of DNA. Biopolymers 13:1847–1855.

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995.

    Article  PubMed  CAS  Google Scholar 

  • Denhardt DT (1966) A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646

    Article  PubMed  CAS  Google Scholar 

  • Geoffrey M, Wahl L, Shelby C, Berger, Kimme AR (1987) Molecular hybridization of immobilized nucleic acids: Theoretical concepts and practical consideration. Method Enzyrnol 152:399–407.

    Article  Google Scholar 

  • Hutton JR (1977) Renaturation kinetics and thermal stability of DNA in aqueous solutions of formamide and urea. Nucl Acid Res 4:3537–3555.

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal melting temperature. J Mol Biol 5:109–118.

    Article  PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer SA,Gebhardt JS, Linkkila L and Walsh K (1990) A comparison of UV crosslinking and vacuum baking for nucleic acids immobilization and retention. BioTechniques 9:472–478.

    PubMed  CAS  Google Scholar 

  • Orosz JM,Wetmur J (1977) DNA melt ing temperatures and renaturation rates in concentrated alkylammonium salt solutions. Biopolyrners 16:1183–1190.

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF,Maniatis T (1989)Molecular Cloning.A laboratory Manual. Cold Spring Harbor Laboratory Press. 1998. pp. 9.48

    Google Scholar 

  • Vernier P,Mastrippolito R,Helin C, Bendali M,Mallet J, Tricoire H (1996) Radioimager quantification of oligonucleotide hybridization with DNA immobilized on transfer membrane: Application to the identification of related sequences. Anal Biochem 235:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Wetmur JG (1991) DNA probes: Application of the principles of nucleic acid hybridization. Critical Rev Biochem Molec Bioi 26:227–259.

    Article  CAS  Google Scholar 

  • Wetmur JG (1995) Nucleic acid hybrids, formation and structure of. In:Molecular Biology and Biotechnology.AComprehensive Desk Reference. Ed. Meyers RA, VCH Publishers, Inc pp 605–608.

    Google Scholar 

  • Wetmur JG,Davidson N (1968) Kinetics of renaturation of DNA. J Mol Bioi 3:349–370.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Surzycki, S. (2000). Nucleic Acid Hybridization. A Theoretical Consideration. In: Basic Techniques in Molecular Biology. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56968-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56968-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66678-3

  • Online ISBN: 978-3-642-56968-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics