Skip to main content

Zusammenfassung

Sedimente bilden Habitate für zahlreiche Organismen und Biozönosen, die in oder auf dem Sediment leben und allgemein als Benthos bezeichnet werden. Neben dem Benthos, dessen tierischer Anteil sich aus der Endofauna (oder Infauna) und Epifauna zusammensetzt, sind Sedimente Lebensraum für bakterielle, pflanzliche und tierische Mikroorganismen. Der Groβteil der Organismen besiedelt die oberen Zentimeter des Sediments, während die tieferen Schichten nur von wenigen Spezialisten bewohnt wird. Diese Stratifikation der Sedimente ist weitgehend Resultat mikrobieller Aktivitäten wie Sauerstoffverbrauch beim Abbau von organischen Stoffen, Denitrifikation oder Schwefelwasserstoffproduktion durch bakterielle Sulfatreduktion. Bakterien kommen auf Grund ihrer geringen Gröβe, ihren vielfältigen Ernährungsmöglichkeiten und Stoffwechselaktivitäten nahezu ubiquitär vor. Ein mariner Sedimentausschnitt mit der Fläche von 1 cm2 bis zu einer Sedimenttiefe von 10 cm weist etwa 4×1010 Bakterienzellen auf (Fenchel, 1992). Die gleiche Zahl wird für Süβwassersedimente pro ml angegeben (Schallenberg & Kalff, 1993). Eigene Untersuchungen am oligotrophen Brunnsee (Bayern) ergaben selbst im Profundal (16 mWassertiefe) eine mittlere Bakteriendichte von 109-1010 Bakterienzellen pro ml (Bergtold & Traunspurger, in Vorbereitung). Bakterien spielen eine bedeutende Rolle im Sediment bei allen wichtigen Stoffkreisläufen, Wichtige mikrobielle Prozesse sowie ihre zeitliche und räumliche Varianz sind z.B. bei (1992) für einen winzigen Bruchteil eines Sediments beschrieben (vgl. auch Review: Bonner et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel I.2

  • Ahlborg UG, Becking GC, Birnbaum LS, Brouwer A, Derks HJGM, Feely M, Golor G, Hanberg A, Larsen JC, Liem AKD, Safe SH, Schlatter C, Waern F, Younes M, Yränheikki E (1994) Toxic equivalency factors for dioxin-like PCBs, Chemosphere 28, 1049–1067

    Article  CAS  Google Scholar 

  • Amiard J-C (1992) Bioavailability of sediment-bound metals for benthic aquatic organisms. Trace Met. Environ. 2: 183–202

    CAS  Google Scholar 

  • Ankley GT; DiToro DM, Hansen DJ, Berry J (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ. Toxic. Chem. 15: 2056–2066

    Article  CAS  Google Scholar 

  • Arnold CG, Weidenhaupt A, David MM, Müller SR, Haderlein SB, Schwarzenbach RP (1997) Aqueous speciation and 1-octanol-water partionierung of tributy1-and triphenyltin: effect of pH and ion composition, Environ. Sci. Technol. 31, 2596–2602

    Article  CAS  Google Scholar 

  • Atri F (1983) Schwermetalle und Wasserpflanzen. Gustav Fischer Verlag, Stuttgart/New York. Ballschmiter K, Bacher R (1996) Dioxine. VCH, Weinheim, Bundesrepublik Deutschland). Basler (1995) Regulatory measures in the Federal Republic of Germany to reduce the exposure of man and the environment to dioxins, Organohalogen Compounds 22, 173–191

    Google Scholar 

  • Behrendt H (1996) Inventories of point and diffuse sources and estimated nutrient loads-A comparison for different river basins in Central Europe. Water, Science & Technology 33, 4–5: 99–107

    Article  CAS  Google Scholar 

  • Berg M van den, Birnbaum L, Bosveld ATC, Brunström B, Cook P, Feely M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, Leeuwen FXR van, Liem, AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Toxic equivalence Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives 106, 775–792.

    Article  Google Scholar 

  • Berndt J (1996) Umweltbiochemie, G. Fischer Verlag, Stuttgart, Jena

    Google Scholar 

  • Berner RA (1980) Early diagenesis —a theoretical approach. Princeton Uni. Press, Princeton, New Jersey, U.S.A.

    Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J. of sedimentary and petrology 51: 359–365

    CAS  Google Scholar 

  • Biggs BJF (1996) Patterns in benthic algae of streams. In: Stevenson, R.J., Bothwell, M.L. & Lowe, R. L. (eds.): Algal Ecology, Freshwater Benthic Ecosystems (Aquatic Ecology Series), Academic Press, San Diego, 31–56.

    Google Scholar 

  • Blaut M (1994) Metabolism of methanogens. Antonie van Leeuwenhoek 66: 187–208.

    Article  CAS  Google Scholar 

  • Boers PCM, Hese O van (1988) Phosphorus release from the peaty sediments of the Loosdrecht Lakes (the Netherlands). Wat. Res. 22, 3: 355–363

    Article  CAS  Google Scholar 

  • Bonner, JS, Autenrieth RL, Schreiber L (1990) Aquatic sediments. —JWPCF 62(4): 503–613

    Google Scholar 

  • Borchardt MA(1996) Nutrients. In: Stevenson, R.J., Bothwell, M.L. & Lowe, R. L. (eds.). Algal Ecology, Freshwater Benthic Ecosystems (Aquatic Ecology Series), Academic Press, San Diego, 184–227.

    Google Scholar 

  • Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244

    Article  Google Scholar 

  • Boström B, Pettersson K (1982) Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 92: 415–429

    Google Scholar 

  • Boudreau BP (1987) A steady-state diagenetic model for dissolved carbonate species and pH in the porewaters of oxic and suboxic sediments. Geoch. Cosmochim. acta 51: 1985–1996

    Article  CAS  Google Scholar 

  • Broman D, Carina N, Rolff C, Zebühr Y (1991) Occurence and dynamics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polycyclic aromatic hydrocarbons in the mixed surface layer of remote coastal and offshore waters of the baltic, Environ.Sci. Technol., 1850–1864

    Google Scholar 

  • Bund/Länder-Arbeitsgruppe Dioxine (1993) 2. Bericht der Bund/Länder-Arbeitsgruppe Dioxine, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Bonn

    Google Scholar 

  • Burkholder JA (1996) Interactions of benthic algae with their substrata. In: Stevenson, R.J., Bothwell, M. L. & Lowe, R. L. (eds.). Algal Ecology, Freshwater Benthic Ecosystems (Aquatic ecology series), Academic Press, San Diego, 253–297.

    Google Scholar 

  • Calmano W, Hong J, Förstner U (1992) Einfluss von pH-Wert und Redoxpotential auf die Bindung und Mobilisierung von Schwermetallen in kontaminierten Sedimenten. Vom Wasser 78: 245–257

    CAS  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic orgnisms: a critique of the Free-Ion Activity Model. In: Tessier A; Turner, D.R. (eds): Metal speciation and bioavailability in aquatic systems, John Wiley and Sons, NewYork, pp. 45–102

    Google Scholar 

  • Campbell PGC, Tessier A (1996) Ecotoxicology of metals in the aquatic environment: geochemical aspects. In: Newman, M.C.; Jagoe, C.H. (eds) Ecotoxicology: a hierarchical treatement, Lewis Publishers Chelsea, Michigan, 10–58

    Google Scholar 

  • Caraco NF, Cole JJ, Likens GE (1993) Sulfate control of phosphorus availability in lakes —A test and re-evaluation of Hasler and Einsele’s model. Hydrobiologia 253: 275–280

    Article  CAS  Google Scholar 

  • Characklis WG, Turakhia MH, Zelver N (1990) Transport and interfacial transfer phenomena. In: W.G. Characklis & K.C. Marshall (eds.): Biofilms. John Wiley, New York; 265–340.

    Google Scholar 

  • Conrad R, Schütz H (1988) Methods of studying methanogenic bacteria and methanogenic activities in aquatic environments. In: B. Austin (ed.). Methods in aquatic bacteriology. John Wiley & Sons, New York, 301–343.

    Google Scholar 

  • Cook CDK, Gut BJ, Rix EM, Schneller J, Seitz M (1974) Water plants of the world. Dr. W. Junk b.v., Publishers, The Hague.

    Google Scholar 

  • Dade WB, Davis JD, Nichols PD, Nowell ARM, Thistle D, Trexler MB, White DC (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol. 8, 1–16.

    Article  Google Scholar 

  • Decho AW, Luoma SN (1994) Humic and fulvic acids: sink or source in the availability of metals to the marine bivalves Macoma balthica and Potamocorbula amurensis? Mar. Ecol. Prog. Ser. 108, 133–145

    Article  CAS  Google Scholar 

  • DiToro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Sci. 26: 96–101

    Article  CAS  Google Scholar 

  • DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chern. 10: 1541–1583

    Article  CAS  Google Scholar 

  • Drake JC, Haney I (1987) Occurence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake.-Freshwat. Biol. 17: 513–523

    Article  CAS  Google Scholar 

  • Dykyjova D, Kvet J (1978) Pond littoral ecosystems. Structure and functioning. Ecological Studies 28, Springer Verlag, Berlin, Heidelber, New York.

    Google Scholar 

  • Edwards RW, Rolley HLJ (1965) Oxygen consumption of river muds. J. Ecol. 53:1–19.

    Article  Google Scholar 

  • Ehrlich HL (1981) Geomicrobio1ogy. Marcel Dekker Inc., NewYork, Basel

    Google Scholar 

  • Eisenmann H, Traunspurger W, Meyer E (1998) Community structure of selected microand meiobenthic organisms in sediment chambers from a prealpine river (Necker, Switzerland). In: Bretschko, G. & Helesic (eds.), Advances in River Bottom Ecology, Backhuys Publishers, Leiden, The Netherlands, pp. 155–162.

    Google Scholar 

  • Eisenreich SJ (1987) The chemica1 limnologie of nonpolar organic contaminants: polychlorinated biphenyls in Lake Superior, in Sources and fates of aquatic pollutants (Hrg.: R. H. Hites und S. J. Eisenreich), S. 393–469, Advances in Chemistry 216, American Chemical Society, Washington DC.

    Chapter  Google Scholar 

  • Fenchel T (1992) What can ecologists learn from microbes: life beneath a square centmetre of sediment surface. Funct. Ecol. 6: 499–507

    Article  Google Scholar 

  • Fenchel TM (1978) The ecology of micro-and meiobenthos. Ann. Rev. Ecol. Syst. 9: 99–12l.

    Article  Google Scholar 

  • Fent K (1996) Ecotoxicology of Organotin Compounds, Critical Reviews in Toxicology 26, 1–117

    Article  CAS  Google Scholar 

  • Fiedler H (1995) Quellen von PCDD/PCDF und Konzentrationen in der Umwelt, Organohalogen Compounds 22, 7–29

    Google Scholar 

  • Flemming H-C (1995) Sorption sites in biofilms of sediments. Water Sci. Technol. 32, 27–33

    CAS  Google Scholar 

  • Flemming H-C, Schmitt J, Marshall KC (1996) Sorption properties of biofilms. In: W. Calmano and U. Förstner (eds.): Environmental behaviour of sediments. Lewis Publishers Chelsea, Michigan; 115–157

    Google Scholar 

  • Flessa H (1994) Plant-induced changes in redox potential of the rhizospheres of the submerged vascular macrophytes Myriophyllum verticillatum L. and Ranunculus circinatus L.. Aquatic Botany 47, 119–129.

    Article  Google Scholar 

  • Förstner U, Ahlf W, Calmano W, Kersten M, Salomons W (1986) Mobility of heavy metals in dredged harbor sediments. In: Sly, P.G.: Sediments and Water interactions. Springer, New York

    Google Scholar 

  • Förstner U, Wittmann GTW (1983) Metal Pollution in the Aquatic Environment, Springer Verlag, Berlin

    Google Scholar 

  • Foster PL (1982) Metal resistances of Chlorophyta from rivers polluted by heavy metals. Freshwater Biology 12, 41–61.

    Article  CAS  Google Scholar 

  • Franke S, Francke W und Hildebrandt S (1995) The Occurrence of Chlorinated Bis (propyl)ethers in the River Elbe and Tributaries, Naturwissenschaften 82, 80–83

    Article  CAS  Google Scholar 

  • Frenzel P (1990) The influence of chironomid larvae on sediment oxygen profiles. Arch. Hydrobiol. 119, 427–437.

    Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke, NA, Heath, GR, Cullen, D, Dauphin, P, Hammond, D, Hartman, B, Maynard, V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. acta 43: 1075–1090

    Article  CAS  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML et al., (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geoch. Cosmochim. acta 43: 1075–1090

    Article  CAS  Google Scholar 

  • Gaberscik A (1997) Makrofiti in kvaliteta voda (Aquatic macrophytes and water quality) Acta Biologica Slovenica 41, 141–148.

    Google Scholar 

  • Gächter R (1987) Lake restoration. Why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading.-Schweiz. Zeitschrift Hydrol. 49,2: 176–185

    Google Scholar 

  • Gächter R, Meyer JS (1993) The role of microorganisms in mobilization and fixation of phosphorus in sediments.-Hydrobiologia 253: 103–121

    Article  Google Scholar 

  • Gasol JM (1993) Benthic flagellates and ciliates in fine freshwater sediments: Calibration of a live counting procedure and estimation of their abundances. Microb. Ecol. 25: 247–262.

    Article  Google Scholar 

  • Gassmann G, Schorn F (1993) Phosphine from Harbor surface sediments. Naturwissenschaften 80, 2: 78–80

    Article  CAS  Google Scholar 

  • Gätje C (1992) Artenzusammensetzung, Biomasse und Primärproduktion des Mikrophytobenthos des Elbe—Ästuars. Dissertation, Hamburg.

    Google Scholar 

  • Genter RB (1996) Ecotoxicology of inorganic chemical stress to algae. In: Stevenson, R.J., Bothwell, M.L. & Lowe, R.L. (eds.). Algal Ecology, Freshwater Benthic Ecosystems (Aquatic Ecology Series), Academic Press, San Diego, 404–468.

    Google Scholar 

  • Götz R, Bauer OH, Friesel P, Roch K (1998A) Organic trace compounds in the water of the River Elbe near Hamburg, Part I und Part II, Chemosphere 36, 2085–2101 und 2103–2118

    Article  Google Scholar 

  • Götz R, Enge P, Friesel P, Roch K, Kjeller LO, Kulp SE, Rappe C (1994 B) Sampling and analysis of water and suspended particulate matter of the river Elbe for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), Chemosphere 28, 63–74

    Article  Google Scholar 

  • Götz R, Enge P, Friesel P, Roch K, Schilling B, Hartmann B, Wunsch H (1994 A) Quantification of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in the picogram/ liter range in water of the River Elbe, Fresenius J. Anal. Chem. 348, 694–695

    Article  Google Scholar 

  • Götz R, Steiner B, Friesel P, Roch K, Walkow F, Maaβ V, Reinecke H, Stachel B. (1998 B) Dioxin (PCDD/F) in the River Elbe-investigations of their origin by multivariate statistical methods, Chemosphere 37, 1987–2002

    Article  Google Scholar 

  • Götz R, Steiner B, Sievers S, Friesel P, Roch K, Schwörer R, Haag F (1998 C) Dioxin, dioxin-like PCBs and organotin compounds in the River Elbe and the harbour of Hamburg: Identification of sources, Wat. Sci. Tech. 37, 207–215

    Article  Google Scholar 

  • Grant J, Bathmann UV, Mills EL (1986) The interaction between benthic diatom films and sediment transport. Estuarine, Coastal and Shelf Science 23, 225–238.

    Article  CAS  Google Scholar 

  • Gray N (1996) A substrate classification index for the visual assessment of the impact of acid mine drainage in lotic systems. Wat. Res. 30, 1551–1554.

    Article  CAS  Google Scholar 

  • Grosch U (1980) Die Bedeutung der Ufervegetation für Fisch und Fischerei. Garten + Landschaft 1, 20–23.

    Google Scholar 

  • Guilizzoni P (1991) The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Botany 41, 87–109.

    Article  CAS  Google Scholar 

  • Gülden M, Turan A, Seibert H (1997) Substanzen mit endokriner Wirkungin Oberflächengewässern, Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Forschungbericht 102 04 279, Umweltbundesamt, Texte 46.

    Google Scholar 

  • Gumbricht T (1993) Nutrient removal processes in freshwater submersed macrophyte systems. Ecological Engineering 2, 1–30.

    Article  Google Scholar 

  • Gust G, Harrison JT (1981) Biological pumps at the sediment-water interface: mechanistic evaluation of the alpheid shrimp Alpheus mackayi and its irrigation pattern. Mar. Biol. 64, 71–78.

    Article  Google Scholar 

  • Hamburger K, Lindegaard C, Dall PC (1996) The role of glycogen during ontogenesis of Chironomus anthracinus (Chironomidae, Diptera). Hydrobiologia 318, 51–59.

    Article  CAS  Google Scholar 

  • Hamburger Umweltberichte 51/95 (1995) Dioxin-Bilanz für Hamburg, Umweltbehörde Hamburg.

    Google Scholar 

  • Haslam SM (1978) River plants, the macrophytic vegetation of watercourses. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hoess S, Traunspurger W, Haitzer M, Gratzer H, Ahlf W, Steinberg C (1997) The influence of sediment on toxicity of copper for Caenorhabditis elegans. Water, Air and Soil Pollution 99: 689–695.

    Google Scholar 

  • Holdren GC, Armstrong DE (1986) Interstitial ion concentration as an indicator of phosphorus release and minreal formation in lake sediments.-In: Sly, P. G. (Ed.): Sediment and water interactions. Springer-Verlag, Geneva, Switzerland: 133–147

    Chapter  Google Scholar 

  • Holland AF, Zingmark RG, Dean JM (1974) Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. Marine Biology 27, 191–196.

    Article  Google Scholar 

  • Houba, VJG, Lexmond TM, Novozamsky I, Vanderlee JJ (1996) State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment 178: 21–28

    Article  CAS  Google Scholar 

  • Humann K (1996) Der Einfluβ des Mikrophytobenthos auf die Sedimentstabilität und die Schwebstoffbildung aus Sedimenten im Elbe-Ästuar. Dissertation, Hamburg.

    Google Scholar 

  • Hupfer M, Gächter R, Rüegger H (1995) Poly-P in lake sediments. 31p NMR spectroscopy as a tool for its identification. Limnol. & Oceanogr. 40, 3: 610–617

    Article  Google Scholar 

  • Hupfer M, Steinberg C (1997) Auswirkungen von Restaurierungsmaβnahmen auf den Phosphat-Rückhalt in Sedimenten. Deutsche Gewässerkundliche Mitteilungen 41, 6: 238-244

    Google Scholar 

  • Ingersoll CG; Nelson MK (1990) Testing sediment toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera). In: W. Landis and W.H. van der Schalie (Hrsg.) Aquatic Toxicology and Risk Assessment, 13. Volume. ASTM STP 1096, American Society for Testing and materials, Philadelphia, PA: 93–109

    Google Scholar 

  • Jahresbericht CVUA (1996), Chemisches Landes-und Staatliches Veterinäruntersuchungsamt Münster, Sperlichstr. 19, 48151 Münster, 38–42.

    Google Scholar 

  • Jeffries M, Mills D (1990) Freshwater ecology. Belhaven Press, London and New York.

    Google Scholar 

  • Jenne EA (1968) Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: the significant roel of hydrous Mn-Nand Fe-oxides. Am. Chem. Soc. Adv. Chem. Ser. 73: 337–387

    Google Scholar 

  • Jeppesen E, Sondergaard M, Sondergaard M, Christofferson K (1997) The structuring role of submerged macrophytes in lakes. Ecological Studies 131, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  • Jones JG (1982) Acitivities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column. In: D.B. Nedwell & C.M. Brown (eds.): Sediment microbiology, pp. 107–145, Academic Press, New York, New York, USA.

    Google Scholar 

  • Jvorgensen BB (1983) Processes at the sediment-water interface. In: B. Bolin & R.B. Cook (eds.), The major biogeochemical cycles and their interaction, pp 477–515, J. Wiley & Sons, New York, New York, USA.

    Google Scholar 

  • Kaplan D, Christiaen D, Shoshana A (1987) Chelatingproperties of extracellular polysaccharides from Chlorella spp. ApplEnviron. Microbiol. 53, 2953–2956

    CAS  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutans on natural sediments, Water Res.13, 241–248.

    Article  CAS  Google Scholar 

  • Kelly CA, Rudd JWM & Schindler DW (1988) Carbon and electron flow via metahanogenesis, SO4 2-, NO3 -, Fe3+, and MN4+ reduction in the anoxic hypolimnia of three lakes. Ergebnisse der Limnologie 31, 333–344.

    CAS  Google Scholar 

  • Kelly MG & Whitton BA (1989) Interspecific differences in Zn, Cd and Pb accumulation by freshwater algae and bryophytes. Hydrobiologiy 175, 1–11.

    Article  CAS  Google Scholar 

  • Kemp PF (1990) The fate of benthic bacterial production. Reviews in Aquatic Science 2, 109–124.

    Google Scholar 

  • Kersten M, Förstner U (1991) Geochemical characterization of the potential trace metal mobility in cohesive sediments. Geo-Marine Letters 11: 184–187

    Article  Google Scholar 

  • Kies L, Leya T (1995) Ökologische Folgen der Versalzung nordthüringischer Flieβgewässer —algenökologische Vorstudieder Wipper. Bericht im Auftrag der Thüringer Landesanstalt für Umwelt, Jena (unveröffentlicht)

    Google Scholar 

  • Klaine SJ, Byl TD, Wall VD, Warren JE (1993) Heavy metal bioavailability in freshwater sediments: Implications for sediment quality criteria. Sixth International Symposium, Toxicity Assessment and On-line Monitoring Berlin, 10–14 May 1993.

    Google Scholar 

  • Kohler A (1975a) Makrophytische Wasserpflanzen als Bioindikatoren für Belastungen von Flieβgewässer-Ökosystemen. Verh. Ges. Ökol. Wien 4, 255–276.

    Google Scholar 

  • Kohler A (1975b) Submerse Makrophyten und ihre Gescllschaften als Indikatoren der Gewässerbelastung. Beitr. Naturk. Forsch. Südw.-Dtl. 34, 149–159.

    Google Scholar 

  • Kohler A (1982) Wasserpflanzen als Belastungsindikatoren. Decheniana-Beihefte (Bonn) 26, 31–42.

    Google Scholar 

  • Kristensen E (1985) Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) bioturbated sediment water system. J. Coast. Res. 1, 109–116.

    Google Scholar 

  • Kuballa J, Jantzen E, Wilken RD (1996) Organotin Compounds in Sediments of the River Elbe and Mulde, In Sediments and Toxic Substances, (Hrg.: Calmano W und Förster U), S. 245–270, Springer Verlag Berlin.

    Chapter  Google Scholar 

  • Lamberti GA (1996) The Role of Periphyton in Benthic Food Webs. In: Stevenson, R.J., Bothwell, M. L. & Lowe, R. L. (eds.): Algal Ecology, Freshwater Benthic Ecosystems (Aquatic ecology series), Academic Press, San Diego, 533–572.

    Google Scholar 

  • Lampert W, Sommer U (1993) Limnoökologie. Thieme Verlag, Stuttgart.

    Google Scholar 

  • Landrum PF, Gossiaux DC, Kukkonen J (1997) Sediment characteristics influencing the bioavailability of nonpolar organic contaminants to Diporeia spp. Chem. Speciation Bioavailability, 9(2), 43–55.

    CAS  Google Scholar 

  • Lerman (1979) Geochemical processes. Water and sediment environments. Wiley, New York.

    Google Scholar 

  • Leuchs H (1986) Die Schlängelaktivität von Chironomuslarven (Diptera) aus flachen und tiefen Gewässern und die resultierende Wasserzirkulation in Abhängigkeit von Temperatur und Sauerstoffangebot. Arch. Hydrobiol. 108, 281–299.

    Google Scholar 

  • Leuchs H, Neumann D (1990) Tube texture, spinning and feeding behaviour of Chironomus larvae. Zool. Jb. Syst. 117, 31–40.

    Google Scholar 

  • Leuchs H, Schöll F (in Vorbereitung): Die Charakterisierung von Fluβbverläufen über das Makrozoobenthos.

    Google Scholar 

  • Leya T, Kies L (1997) The influence of drainage from potash mining on the composition of the algal flora in the river Wipper (Thuringia, Germany) —a preliminary study. Limnologica 27, 301–306.

    Google Scholar 

  • Liebert H-P (1988) Umwelteinfluβ auf Wachstum und Entwicklung von Wasserpflanzen sowie deren Rolle bei der Reinhaltung unserer Gewässer, Auswahlbibliographie. Jena

    Google Scholar 

  • Lijklema L (1977) The role of iron in the exchange of phosphate between water and sediment. In: Golterman (ed.): Interaction between Freshwater and Sediment: The Haque: 313–317.

    Google Scholar 

  • Lorch D, Irmer U, Weber A (1987) Aufnahme, Speicherung und Wirkung von Blei in Süβwassergrünalgen, In: Bioakkumulation in Nahrungsketten. Zur Problematik der Akkumulation von Umweltchemikalien in aquatischen Systemen. Ergebnisse aus dem Schwerpunktprogramm ‚Nahrungskettenprobleme‘: Hrsg. Lillelund K, De Haar U, Elster H-J, Karbe L, Schwoerbel I & Simonis W, DFG Forschungsbericht, VCH Verlagsgesellschaft, Weinheim, 233–241.

    Google Scholar 

  • Lovely DR, Phillips EJP (1987) Competetive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction sediments. Appl. Environ. Microbiol. 53, 2636–2641.

    Google Scholar 

  • Luoma SN (1983) Bioavailability of trace metalsto aquatic organisms —a review. Sci. Tot. Environ., 28, 1–22

    Article  CAS  Google Scholar 

  • Luoma SN (1989) Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia, 176/177, 379–396

    Article  Google Scholar 

  • Luther H (1983) On life form, and above-ground and underground biomass of aquatic macrophytes. A review. Acta Bot. Fennica 123, 1–23.

    Google Scholar 

  • Mah RH, Xun LY, Boone DR, Ahring B, Smith PH, Wilkie A (1990) Methanogenesis from propionate in sludge and enrichment systems. In: J.P. Belaich, M. Bruschi & J.L. Garcia (eds.): Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, NewYork, 99–119.

    Chapter  Google Scholar 

  • Marencic H (1993) Vorkommen, Verteilung und saisonale Variabilität von polychlorierten Biphenylen und ausgewählten schwerflünchtigen Chlorkohlenwasserstoffen in benthischen Organismen verschiedener Trophiestufen des Wattenmeeres. Dissertation, Hamburg.

    Google Scholar 

  • Marencic H, Lorch D, Weber A (1996) Comparative investigations on the potential use of Wadden Sea organisms of different trophic levels for trend monitoring of polychlorinated biphenyls. In: Anderson, J., Karup, H. & Nielsen, U. A. (eds): Scientific Symposium on the North Sea Quality Status Report 1993, 18–21 April 1993, Ebeltoft, Denmark, 132–137.

    Google Scholar 

  • Maruya K, Risebrough RW, Home AJ (1996) Partition of polynuclear aromatic hydrocarbons between sediments from San Francisco Bay and their porewaters, Environ. Sci. Technol. 30, 2942–2947.

    Article  CAS  Google Scholar 

  • McCaffrey RJ et al (1980) The relation between pore water chemisty and benthic fluxes of nutrients and manganese in Narrangasett Bay, Rhode Island. Limnol. Oceanogr. 25: 31–44.

    Article  CAS  Google Scholar 

  • Melzer A (1976) Makrophytische Wasserpflanzen als Indikatoren des Gewässerzustandes oberbayerischer Seen. Dissertationes Botanicae 34, J. Cramer, Vaduz.

    Google Scholar 

  • Melzer A (1985) Makrophytische Wasserpflanzen als Bioindikatoren. Naturwissenschaften 72, 456–460.

    Article  Google Scholar 

  • Meyer-Reil LA, Faubel A (1980) Uptake of organic matter by meiofauna organisms and interrelationships with bacteria. Mar. Ecol. 3, 251–256.

    Article  Google Scholar 

  • Morel FMM (1983) Principles of aquatic chemistry. Wiley-Interscience, New York, pp. 300–309

    Google Scholar 

  • Mulholland PJ (1996) Role in Nutrient Cycling in Streams. In: Stevenson, R.J., Bothwell, M.L. & Lowe, R.L. (eds.): Algal Ecology, Freshwater Benthic Ecosystems (Aquatic Ecology Series), Academic Press, San Diego, 609–639.

    Google Scholar 

  • Müller U (1994) Seasonal development of epiphytic algae on Plragmites australis (Cav.) Trin. Ex Sten. In a eutrophic lake. Arch. Hydrobiol. 129, 273–292.

    Google Scholar 

  • Müller U (1995) Vertical zonation and production rates of epiphytic algae on Phragmites australis. Freshwater Biology 34, 69–80.

    Article  Google Scholar 

  • Naes K, Axelmann J, Näf C, Broman D (1998) Role of soot carbon and other carbon matrices in the distribution of PAHs among particles, DOC, and the dissolved phase in the effluent and recipient waters of an aluminium reduction plant, Environ. Sci. Technol. 32, 1786–1792.

    Article  Google Scholar 

  • Napolitano GE (1994) The relationship of lipids with light and chlorophyll measurements in freshwater algae and periphyton. J. Phycol. 30, 943–950.

    Article  CAS  Google Scholar 

  • NATO/CCMS (1988) International toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds, Report No. 176 and 178.

    Google Scholar 

  • Niimi AJ, Oliver BG (1989) Distribution of polychlorinated biphenyl congeners and other halocarbons in whole fish and muscle among Lake Ontario salmonids. Environ. Sci. Technol. (1989), 23(1), 83–85.

    Article  CAS  Google Scholar 

  • Nürnberg G (1987) A comparison of internal phosphorus loads in lakes with anoxic hypolimnia: Laboratory incubations versus hypolimnetic phosphorus accumulation-Limnol. Oceanogr. 32: 1160–1164.

    Google Scholar 

  • Ohle W (1953) Der Vorgang rasanter Seenalterung in Holstein. Die Naturwissenschaften 40: 153–162.

    Article  CAS  Google Scholar 

  • Oliver G, Charlton MN (1984) Chlorinated organic contaminants on setting particulates in the Niagara River Vicinity of Lake Ontario, Environ. Sci. Technol. 18, 903–908.

    Article  CAS  Google Scholar 

  • Panis, L.I., Goddeeris, B., Verheyen, R. (1996) On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera). Hydrobiologia 318, 61–67.

    Article  CAS  Google Scholar 

  • Petersen W, Hong J, Willamowski C, Wallmann K (1996) Release of trace contaminants during reoxidation of anoxic sediment slurries in oxic water. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 47: 295–305

    CAS  Google Scholar 

  • Petersen W, Wallmann K, Li P, Schroeder F, Knauth H-D (1995) Exchange of trace elements at the sediment-water interface during early diagenesis processes. Marine and Freshwater Research 46: 19–26.

    CAS  Google Scholar 

  • Peterson CG (1996) Response of Benthic Algal Communities to Natural Physical Disturbance. In: Stevenson, R.J., Bothwell, M.L. & Lowe, R.L. (eds.): Algal Ecology, Freshwater Benthic Ecosystems (Aquatic Ecology Series), Academic Press, San Diego, 375–402.

    Google Scholar 

  • Petr T (1976) Bioturbation and exchange of chemicals in the mud-water interface. In: Goltemann, H.L. (ed.): Interactions between sediments and freshwater. Junk, The Hague.

    Google Scholar 

  • Pflanzenschutz-Anwendungsverordnung vom 10. November 1992 (1995) BGBl. I S. 1887 in: Das deutsche Bundesrecht, 743. Lieferung

    Google Scholar 

  • Phipps GL, Ankley GT, Benoit DA (1993) Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ. Toxicol. Chem. 12: 269–279

    CAS  Google Scholar 

  • Prause B, Rehm E, Schulz-Baldes M (1985) The remobilization of Pb and Cd from contaminated dregde spoil after dumping in the marine environment. Environmental Technology Letters 6: 261–266.

    Article  CAS  Google Scholar 

  • Püschel R, Calmano W (1995) Speciation of polycyclic aromatic hydrocarbons (PAH) in aquatic sediments, Acta hydrochim. Hydrobiol. 23, 226–232.

    Google Scholar 

  • Revsbach NP, Jörgensen BB, Blackburn TH (1980) Oxygen in the sea bottom measured with a microelectrode. Science: 207, 1355–1356.

    Google Scholar 

  • Rheinheimer G (1991) Mikrobiologie der Gewässer. 5. Aufl., G. Fischer Verlag, Stuttgart.

    Google Scholar 

  • Ripl W, Lindmark G (1978) Ecosystem control by nitrogen metabolism in sediment. Vatten 2: 135–144. Rippen: Handbuch Umwelt-Chemikalien, Ecomed Verlag.

    Google Scholar 

  • Roden EE, Edmonds JW (1997) Phosphate mobilisation in iron-rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch. Hydrobiol. 139, 3: 347–378.

    CAS  Google Scholar 

  • Römpp (1997) Lexikon Chemie (Hrsg. J. Falbe und M. Regitz) Version 1.3, Stuttgart/New York, Georg Thieme Verlag.

    Google Scholar 

  • Sager M (1992) Chemical speciation and environmental mobility of heavy metals in sediments and soils. In: Stoeppler, M. (ed), Hazardous metals in the environment, Elsevier Science Publishers B.V. 133–175.

    Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the Hydrocycle, Springer Verlag, Berlin

    Book  Google Scholar 

  • Samant HS, Doe KG, Vaidya OC (1990) An integrated chemical and biological study of the bioavailability of metals in sediments from two contaminated harbours in New Brunswick, Canada. Sci. Total Envir. 96: 253–268.

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Prahl C, Stokholm H (1982) Oxygen release from roots of submerged aquatic macrophytes. Oikos 38, 349–354.

    Article  Google Scholar 

  • Sas H (1989) Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolation. AcademiaVerlag, St. Augustin.

    Google Scholar 

  • Schallenberg M, Kalff J (1993) The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems. Ecology, 74: 919–934.

    Article  Google Scholar 

  • Scharf BW, Hamm A, Steinberg C (1984) Sennrestaurierung. In: Besch, W., Hamm, A. Lenhart, B., Melzer, A., Scharf, B.W., Steinberg, C.: Limnologie für Praxis.-Ecomed, Landsberg Lech.

    Google Scholar 

  • Scholten JCM, Starns AJM (1995) The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeuwenhoek 68, 309–315.

    Article  CAS  Google Scholar 

  • Schopf JW, Hayes JM, Walter MR (1983) Evolution on earth’s earliest ecosystems: recent progress and unsolved problems. In: J.W. Schopf (ed.): Earth’s earliest biosphere, Princeton Univ. Press, New Jersey, 361–384.

    Google Scholar 

  • Schrenk D, Fürst P (1999) WHO setzt Werte für die tolerierbare tägliche Aufnahme an Dioxinen neu fest, Nachr. Chem. Tech. Lab. 47, 313–316.

    Article  CAS  Google Scholar 

  • Schulz-Steinert MG, Kies L (1996) Biomass and primary production of algal mats produced by Vaucheria compacta (Xanthophyceae) in the Elbe estuary (Germany) Arch. Hydrobiol./Suppl. 110, 159–174.

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental Organic Chemistry, Kapitel 7. John Wiley & Sons.

    Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Reprint 1985 by Koeltz Scientific Books, Königstein.

    Google Scholar 

  • Sich H (1990) Die benthische Ciliatenfauna bei Gabelsflach (Kieler Bucht) und deren Beeinflussung durch Bakterien. Ber. Inst. Meeresk. Univ. Kiel 191, 215 pp.

    Google Scholar 

  • Sinke A, Comelese AA, Keizer P, van Tongeren OFR, Cappenberg TE (1990) Mineralization, pore water chemistry and phosphorus release from peaty sediments in the eutrophic Loosdrecht lakes, The Netherlands.-Freshw. Biol. 23: 587–599.

    Article  CAS  Google Scholar 

  • Sondergaard M (1990) Pore water dynamics in the sediment of a shallow and hypertrophic lake.-Hydrobiologia 192, 2–3: 247–258.

    Article  Google Scholar 

  • Sondergaard M, Windolf J, Jeppesen E (1996) Phosphorus fractions and profiles in the sediment of shallow danish lakes as related to phosphorus load, sediment composition and lake chemistry.-Wat.Res. 30, 4: 9921002.

    Article  Google Scholar 

  • Staples CA, Dennis R, Peterson, Parkerton F, Adams WJ (1997) The environmental fate of phthalate esters: a literature review, Chemosphere 35, 667–749.

    Article  CAS  Google Scholar 

  • Steenbergen CLM, Sweerts JP, Cappenberg TE (1993) Microbial biogeochemical activities in lakes: stratification and eutrophication. In: Ford, T. (ed.): Aquatic Microbiology. Blackwell Scient. Publ., Oxford; 69–99.

    Google Scholar 

  • Steinberg C (1989) Bioverfügbarkeit und Rolle des Phosphors im Gewässer, Münchener Beiträgezur Abwasser-, Fischerei-und Fluβbiologie 43: 190–218

    CAS  Google Scholar 

  • Stevenson RJ (1996) The stimulation and drag of current. In: Stevenson, R.J., Bothwell, M.L. & R.L. Lowe (eds.): Algal Ecology, Freshwater Benthic Ecosystems (Aquatic Ecology Series), Academic Press, San Diego, 321–340.

    Google Scholar 

  • Streit (1991) Lexikon Ökotoxikologie, Verlag Chemie Weinheim

    Google Scholar 

  • Stumm W, Morgan JJ (1981) In: Aquatic Chemistry-An Introduction Emphasizing Chemical Equilibria in Natural Waters: John Wiley & Sons, NewYork.

    Google Scholar 

  • Tessenow U (1975) Lösungs-, Diffusions-und Sorptionsprozesse an der Oberschicht von Seesedimenten. Arch. Hydrobiol./Suppl. 47, 3: 325–412

    CAS  Google Scholar 

  • Thavipoke P (1997) Erstellung und Erprobung von Algentestsystemen zur Ermittlung toxischer Effekte in Sedimenten. Dissertation, Hamburg.

    Google Scholar 

  • Traunspurger W (1996a) Distribution of benthic nematodes in the littoral of an oligotrophic lake (Königssee, National Park Berchtesgaden, FRG). Arch. Hydrobiol., 135, 393–412.

    Google Scholar 

  • Traunspurger W (1996b) Distribution of benthic nematodes in the littoriprofundal and profundal of an oligotrophic lake (Königssee, National Park Berchtesgaden, FRG). Arch. Hydrobiol. 135, 557–575.

    Google Scholar 

  • Traunspurger W, Drews C (1996a) Toxicitiy tests with benthic organisms-review. Hydrobiologia 328, 215–261.

    Article  CAS  Google Scholar 

  • Traunspurger W, Drews C (1996 b) Vertical distribution of benthic nematodes in an oligotrophic lake: seasonality, species and age segregation. Hydrobiologia 331, 33–42.

    Article  Google Scholar 

  • Traunspurger W, Haitzer M, Höβ S, Beier S, Ahlf W, Steinberg C (1997) Ecotoxicological assessment with Caenorhabditis elegans (Nematoda) —Method for testing on agar, in liquid medium and in situ sediment. Environ. Toxicol and Chem., 16(2), 245–250.

    CAS  Google Scholar 

  • Tuchmann NC (1996) The role of heterotrophy in algae. In: Stevenson, R.J., Bothwell, M.L. & Lowe, R.L. (eds.): Algal Ecology, Freshwater Benthic Ecosystems (Aquatic Ecology Series), Academic Press, San Diego, 299–319.

    Google Scholar 

  • Uhlmann D (1988) Hydrobiologie. G. Fischer, Jena, Stuttgart.

    Google Scholar 

  • Umweltbehörde Hamburg (1995) Dioxin-Bilanz für Hamburg, Hamburger Umweltberichte 51/95.

    Google Scholar 

  • Umweltbehörde Hamburg, Amt für Umweltuntersuchungen (1993, 1995, 1998) Unveröffentlichte Meβdaten.

    Google Scholar 

  • Van Sprang PA, Jansen CR (1997) Identification and confimation of ammonia toxicity in contaminated sediments using a modified toxicity identification evaluation approach. Environ. Toxicol. Chem. 16(12): 2501–2507

    Article  Google Scholar 

  • Wallmann K (1992) Die Löslichkeit und die Bindungsformen von Spurenmetallen in anaeroben Sedimenten. Vom Wasser 78: 1–20.

    CAS  Google Scholar 

  • Wallmann K, Kersten M, Gruber J, Förstner U (1993) Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. Intern. J. Anal. Chem. 51: 187–200.

    Article  CAS  Google Scholar 

  • Wallmann K, Petersen W, Reiners C, Gramm H (1996) Trace element diagenesis in polluted sediments of the river Elbe estuary. In: Calmano, w., Förstner, U.: Sediments and toxic substances. Springer, Berlin (u. a.)

    Google Scholar 

  • Walshe B (1951) The feeding habits of certain chironomid larvae (Tendipedinae). Proc. Zool. Soc. Lond. 121, 63–79.

    Google Scholar 

  • Weber A (1985) Biologische Reinigung Hamburger Stadtgewässer mit Hilfe eines schwimmenden Grüngürtels von Wasserpflanzen. Hamburg, 1985, unveröffentlicht

    Google Scholar 

  • Wehrli B, Wüest A (1996) Zehn Jahre Seenbelüftung: Erfahrungen und Optionen.-Schrif-tenreihe der EAWAG Nr.9, Dübendorf

    Google Scholar 

  • Weidenhaupt Arnold C, Müller SR, Haderlein SB, Schwarzenbach RP (1997) Sorption of organotin biocides to mineral surfaces, Environ. Sci..Technol. 31, 2603–2609.

    Article  Google Scholar 

  • Welch EB, Cooke GD (1995) Internal phosphorus loading in shallow lakes: Importance and control. Lake-Reserv.-Manag. 11, 3: 273–281.

    Article  Google Scholar 

  • Wetzel RG (1983) Limnology. Saunders College Publishing, 767 pp.

    Google Scholar 

  • Wildhaber ML, Schmitt CJ (1996) Estimating aquatic toxicity as determined through laboratory tests of Great Lakes sediments containing complex mixtures of environmental contaminants. Environ. Monit. Assess. 41(3):255–289.

    Article  CAS  Google Scholar 

  • Winfrey MR, Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol. 33, 275–281.

    CAS  Google Scholar 

  • Wirtschaftsbehörde Hamburg, Strom-und Hafenbau (1996) Umlagerung von Baggergut aus dem Hamburger Hafen in der Tideelbe, Ergebnisse aus den Baggeruntersuchungs-programm Heft7.

    Google Scholar 

  • Zart D, Schmidt I, Bock E (1996) Neue Wege vom Ammonium zum Stickstoff. In: Lemmer, H., Griebe, T. u. Flemming, H.-C. (Hrsg.): Ökologie der Abwasser-Organismen. SpringerVerlag, Heidelberg, Berlin; 183–204.

    Chapter  Google Scholar 

  • Zeikus JG (1983) Metabolic communication between biodegradative populations. In. J.H. Slater, R. Whitenbury & J.W.T. Whimpenny (eds.): Anaerobic digestion. Cambridge University Press, Cambridge, 423–462.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahlf, W. et al. (2001). Sedimente als Lebensraum. In: Calmano, W. (eds) Untersuchung und Bewertung von Sedimenten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56483-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56483-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62661-6

  • Online ISBN: 978-3-642-56483-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics