Skip to main content

Synopsis: Influence of Biological Soil Crusts on Arid Land Hydrology and Soil Stability

  • Chapter
Biological Soil Crusts: Structure, Function, and Management

Part of the book series: Ecological Studies ((ECOLSTUD,volume 150))

Abstract

Chapters 22–24 of this Volume review the relationships between biological soil crusts and soil hydrology in the deserts of Israel, Australia, and North America, respectively. It is readily apparent that there are contradictions regarding the effects of biological soil crusts on arid land hydrology and soil stability. A logical approach to understanding some of the commonalities and disparities is to seek an understanding of how the crusts affect the processes of infiltration, runoff and erosion. Infiltration and runoff are closely related and inversely proportional, i. e., as more water infiltrates into the soil, less is available for surface runoff. This chapter discusses the effects of biological soil crusts on parameters known to control the partitioning of surface water between infiltration and runoff, as well as parameters related to soil erosion. These include soil physical and chemical properties, surface cover and roughness, below-ground biomass, soil hydrophobicity, and antecedent soil moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abaturov BD (1993) Alteration of small relief forms of the hydrophysical properties of heavy loam soils in the semidesert zone by grazing. Euras Soil Sci 25:17–28

    Google Scholar 

  • Alexander RW, Calvo A (1990) The influence of lichens on slope processes in some Spanish badlands. In: Thornes JB (ed) Vegetation and erosion. John Wiley, Chichester, UK, pp 385–398

    Google Scholar 

  • Belnap J, Gardner JS (1993) Soil micro structure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53:40–47

    Google Scholar 

  • Belnap J, Sanford RL, Lungu L (1996) Biological soil crusts: ecological roles and response to fire in miombo woodlands of Zimbabwe. Trans Zimbabwe Sci Assoc 70:14–20

    Google Scholar 

  • Beymer RJ, Klopatek JM (1991) Potential contribution of carbon by microphytic crusts in pinyon-juniper woodland. Arid Soil Res Rehabil 5:187–198

    CAS  Google Scholar 

  • Blackburn WH (1975) Factors influencing infiltration and sediment production of semiarid rangelands in Nevada. Water Resour Res 11:929–937

    Article  Google Scholar 

  • Bond RD, Harris JR (1964a) The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungi. Aust J Soil Res 2:111–122

    Article  Google Scholar 

  • Bond RD, Harris JR (1964b) The influence of the microflora on physical properties of soils. II. Field studies on water-repellent sands. Aust J Soil Res 2:123–131

    Article  Google Scholar 

  • Burns RG, Davies JA (1986) The microbiology of soil structure. In: Lopez-Real JM, Hodges RD (eds) The role of microorganisms in a sustainable agriculture. AB Academic Publ, Great Britain, pp 9–27

    Google Scholar 

  • Cameron RE, Blank GB (1966) Desert algae: soil crusts and diaphanous substrata as algal habitats. Nat Aeronaut Space Adm, Jet Propul Lab Tech Rep 32–971. California Inst Tech, Pasadena, California

    Google Scholar 

  • Campbell SE (1979) Soil stabilization by prokaryotic desert crust: implications for Precambrian land biota. Origins Life 9:335–348

    Article  CAS  Google Scholar 

  • Campbell SE, Seeler JS, Golubic S (1989) Desert crust formation and soil stabilization. Arid Soil Res Rehabil 3:217–228

    Article  Google Scholar 

  • Danin A, Barbour MG (1982) Microsuccession of cryptogams and phanerogams in the Dead Sea area, Israel. Flora 172:173–179

    Google Scholar 

  • Danin A, Ganor E (1991) Trapping of airborne dust by mosses in the Negev Desert, Israel. Earth Surface Processes Landforms 16:153–162

    Article  Google Scholar 

  • Danin A, Bar-Or Y, Dor I, Yisraeli T (1989) The role of cyanobacteria in stabilization of sand dunes in southern Israel. Ecol Mediterr 15:55–64

    Google Scholar 

  • Danin A, Dor I, Sandler A, Amit R (1998) Desert crust morphology and its relations to microbiotic succession at Mt. Sedom, Israel. J Arid Environ 38:161–174

    Article  Google Scholar 

  • de Cano MS, de Mulé MCZ, de Caire GZ, Palma RM, Colombo K (1997) Aggregation of soil particles by Nostoc muscorum Ag. (Cyanobacteria). Phyton 60:33–38

    Google Scholar 

  • Dobrowolski JP (1994) In situ estimation of effective hydraulic conductivity to improve erosion modeling for rangeland conditions. In: Blackburn WH, Schuman GE, Pierson FB Jr, Zartman R (eds) Variability in rangeland water erosion processes. Soil Sci Soc Am Spec Publ 38, Madison, Wisconsin, pp 83–91

    Google Scholar 

  • Dobrowolski JP, Williams JD (1994) Effects of disturbance by tracked vehicles on wind and water erosion. Report to US Dep Agric, For Serv, Shrub Sci Lab, Provo, Utah. Utah State Univ, Logan, Utah

    Google Scholar 

  • Dulieu D, Gaston A, Darley J (1977) La dégradation des pâturages de la région de N’Djamena (République du Tchad) en relation avec la présence de cyanophycées psammophiles — étude préliminaire. Rev Elev Méd Vét Pays Trop 30:181–190

    PubMed  CAS  Google Scholar 

  • Durrell LW, Shields LM (1961) Characteristics of soil algae relating to crust formation. Trans Am Microsc Soc 80:73–79

    Article  Google Scholar 

  • Eldridge DJ (1993) Cryptogam cover and soil surface condition: effects on hydrology on a semiarid woodland soil. Arid Soil Res Rehabil 7:203–217

    Article  Google Scholar 

  • Eldridge DJ, Greene RSB (1994) Assessment of sediment yield by splash erosion on a semi-arid soil with varying cryptogam cover. J Arid Environ 26:221–232

    Article  Google Scholar 

  • Eldridge DJ, Kinnell PIA (1997) Assessment of erosion rates from microphyte-dominated calcareous soils under rain-impacted flow. Aust J Soil Res 35:475–489

    Article  Google Scholar 

  • Eldridge DJ, Tozer ME, Slangen S (1997) Soil hydrology is independent of microphytic crust cover: further evidence from a wooded semiarid Australian rangeland. Arid Soil Res Rehabil 11:113–126

    Article  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40:323–336

    Article  Google Scholar 

  • Faust WF (1970) The effect of algal-mold crusts on the hydrologic processes of infiltration, runoff, and soil erosion under simulated conditions. MS Thesis, Univ Arizona, Tucson, Arizona

    Google Scholar 

  • Fritsch FE (1922) The terrestrial algae. J Ecol 10:220–236

    Article  Google Scholar 

  • Graetz RD, Tongway DJ (1986) Influence of grazing management on vegetation, soil structure and nutrient distribution and the infiltration of applied rainfall in a semiarid chenopod shrubland. Aust J Ecol 11:347–360

    Article  Google Scholar 

  • Greene RSB, Tongway DJ (1989) The significance of (surface) physical and chemical properties in determining soil surface condition of red earths in rangelands. Aust J Soil Res 27:213–225

    Article  CAS  Google Scholar 

  • Greene RSB, Chartres RSB, Hodgkinson KC (1990) The effects of fire on soil in a degraded semi-arid woodland. I. Cryptogamic cover and physical and micro-morphological properties. Aust J Soil Res 28:755–777

    Article  Google Scholar 

  • Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangelands. In: Tueller PT (ed) Vegetation science applications for rangeland analysis and management. Kluwer Academic Publishers, Dordrecht, pp 135–169

    Chapter  Google Scholar 

  • Harper KT, St Clair LL (1985) Cryptogamic soil crusts on arid and semiarid rangelands in Utah: effects on seedling establishment and soil stability. Report to US Dep Inter, Bur Land Manage, Denver, Colorado. Brigham Young Univ, Provo, Utah

    Google Scholar 

  • Jeffries DL, Link SO, Klopatek JM (1993) CO2 fluxes of cryptogamic crusts. I. Response to resaturation. New Phytol 125:163–173

    Article  CAS  Google Scholar 

  • Jungerius PD, de Jong JH (1989) Variability of water repellence in the dunes along the Dutch coast. Catena 16:491–497

    Article  Google Scholar 

  • Jungerius PD, van der Meulen F (1988) Erosion processes in a dune landscape along the Dutch coast. Catena 15:217–228

    Article  Google Scholar 

  • Kidron GJ (1995) The impact of microbial crust upon rainfall-runoff-sediment yield relationships on longitudinal dune slopes, Nizzana, western Negev Desert, Israel. PhD Thesis, Hebrew University of Jerusalem, Jerusalem

    Google Scholar 

  • Kidron GJ, Yair A (1997) Rainfall-runoff relationships over encrusted dune surfaces, Nizzana, western Negev, Israel. Earth Surface Processes Landforms 22:1169–1184

    Article  Google Scholar 

  • Kidron GJ, Yaalon DH, Vonshak A (1999) Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci 164:18–27

    Article  CAS  Google Scholar 

  • Kononova MM (1975) Humus of virgin and cultivated soils. In: Gieseking JE (ed) Soil components, 1. Organic components. Springer, Berlin Heidelberg New York, pp 475–526

    Chapter  Google Scholar 

  • Loope WL, Gifford GF (1972) Influence of a soil microfloral crust on select properties of soils under pinyon-juniper in southeastern Utah. J Soil Water Conserv 27:164–167

    Google Scholar 

  • Malam Issa O, Trichet J, Défarge C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196

    Article  Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130

    Article  CAS  Google Scholar 

  • Miller DE (1971) Formation of vesicular structure in soil. Soil Sci Soc Am Proc 35:635–637

    Article  Google Scholar 

  • Mücher HJ, Chartres CJ, Tongway DJ, Greene RSB (1988) Micromorphology and significance of the surface crusts of soils in rangelands near Cobar, Australia. Geoderma 42:227–244

    Article  Google Scholar 

  • Osborn B (1952) Range soil conditions influence water intake. J Soil Water Conserv 7:128–132

    Google Scholar 

  • Perez FL (1997) Microbiotic crusts in the high equatorial Andes, and their influence on paramo soils. Catena 31:173–198

    Article  Google Scholar 

  • Rawls WJ, Brakensiek DL, Miller N (1983) Green-Ampt infiltration parameters from soils data. J Hydraul Eng 109:62–70

    Article  Google Scholar 

  • Rietveld J (1978) Soil non wettability and its relevance as a contributing factor to surface runoff on sandy soils in Mali. Report of the project Production Primaire au Sahel, Wageningen

    Google Scholar 

  • Roberts FJ, Carbon BA (1972) Water repellence in sandy soils of south-western Australia. II. Some chemical characteristics of the hydrophobic skins. Aust J Soil Res 10:35–42

    Article  CAS  Google Scholar 

  • Rodin LE, Bazilevich NI (1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Rogers RW (1994) Zonation of the liverwort Riccia in a temporary watercourse in subtropical, semi-arid Australia. Aust J Bot 42:659–662

    Article  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Rutin J (1983) Erosional processes on a coastal sand dune, De Blink, Noordwijkerhout. Physical Geography and Soils Laboratory Publ 35. Univ Amsterdam, Amsterdam

    Google Scholar 

  • Savage SM, Martin JP, Letey J (1969) Contribution of some soil fungi to natural and heat-induced water repellency in sand. Soil Sci Soc Am Proc 33:405–409

    Article  Google Scholar 

  • Schulten JA (1985) Soil aggregation by cryptogams of a sand prairie. Am J Bot 72:1657–1661

    Article  Google Scholar 

  • Scott GAM (1982) Desert bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 105–122

    Chapter  Google Scholar 

  • Seghieri J, Galle S, Rajot JL, Ehrmann M (1997) Relationships between soil moisture and growth of herbaceous plants in a natural vegetation mosaic in Niger. J Arid Environ 36:87–102

    Article  Google Scholar 

  • Talbot MR, Williams MAJ (1978) Erosion of fixed dunes in the Sahel, central Niger. Earth Surface Processes 3:107–113

    Article  Google Scholar 

  • Tchoupopnou E (1989) Splash from microphytic soil crusts following simulated rain. MS Thesis, Utah State Univ, Logan; Utah

    Google Scholar 

  • Tsoar H, Møller JT (1986) The role of vegetation in the formation of linear sand dunes. In: Nickling WG (ed) Aeolian geomorphology. Allen &; Unwin, Boston, pp 75–95

    Google Scholar 

  • Verrecchia E, Yair A, Kidron GJ, Verrecchia K (1995) Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. J Arid Environ 29:427–437

    Article  Google Scholar 

  • Wang F, Zhung Z, Hu Z (1981) Nitrogen fixation by an edible terrestrial blue-green alga. In: Gibson AH, Newton WE (eds) Current perspective in nitrogen fixation. Elsevier, Amsterdam, p 455

    Google Scholar 

  • Wessel AT (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surface Processes Landforms 13:555–561

    Article  Google Scholar 

  • Williams JD, Dobrowolski JP, West NE (1995) Microphytic crust influence on interrill erosion and infiltration capacity. Trans Am Soc Agric Eng 38:139–146

    Google Scholar 

  • Williams JD, Dobrowolski JP, West NE (1999) Microbiotic crust influence on unsaturated hydraulic conductivity. Arid Soil Res Rehabil 13:145–154

    Article  Google Scholar 

  • Yair A (1990) Runoff generation in a sandy area — the Nizzana sands, western Negev, Israel. Earth Surface Processes Landforms 15:597–609

    Article  Google Scholar 

  • Zombré PN, Pallo F, Mulders MA, Thiombiano L, Stroosnijder L, Hoog-Moed WB, Tromp M, Kaboré BR, Van Baren JHV (1996) Excursion to the Kaya Region, Burkina Faso. In: Escadafal R, Mulders MA, Thiombiano L (eds) Surveillance des sols dans l’environnement par télédétection et systèmes d’information géographiques. Institut Français de Recherche Scientifique pour le Développement en Coopération, Paris, pp 569–592

    Google Scholar 

  • Zulpa de Caire G, Storni de Cano M, Zaccaro de Mulé MC, Palma RM, Colombo K (1997) Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Warren, S.D. (2001). Synopsis: Influence of Biological Soil Crusts on Arid Land Hydrology and Soil Stability. In: Belnap, J., Lange, O.L. (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56475-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56475-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43757-4

  • Online ISBN: 978-3-642-56475-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics