Skip to main content

Vascular Disease in Diabetes Mellitus

  • Chapter
Pan Vascular Medicine
  • 19 Accesses

Abstract

Diabetes mellitus is a disease characterized by chronic hyperglycemia affecting both the microvasculature (retinopathy, neuropathy, and nephropathy) and macrovasculature [coronary artery disease (CAD), cerebrovascular disease (CVD), and peripheral vascular disease (PVD)]. In spite of the general decreasing trend in cardiac mortality in the United States, patients with diabetes still carry a much higher overall mortality. As the population of elderly, obese, and sedentary Americans continues to grow, diabetes and its associated vascular complications will continue to be a major public health problem [1]. Middle-aged and older white people with diabetes have double the risk of coronary artery disease compared with the nondiabetics in the same cohort [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris MI, Flegal DM, Cowie CC et al (1998) Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in US adults The Third National Health and Nutrition Examination Survey, 1988–1994 (see comments). Diabetes Care 21:518–524

    Article  CAS  PubMed  Google Scholar 

  2. Donahue RP, Orchard TJ (1992) Diabetes mellitus and macro-vascular complications. An epidemiological perspective. Diabetes Care 15:1141–1155

    Article  CAS  PubMed  Google Scholar 

  3. Waller BF, Palumbo PJ, Lie JT et al (1980) Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Analysis of 229 diabetic patients with and without clinical evidence of coronary heart disease and comparison to 183 control subjects. Am J Med 69:498–506

    Article  CAS  PubMed  Google Scholar 

  4. Stein B, Weintraub WS, Gebhart SP et al (1995) Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation 91:979–989

    Article  CAS  PubMed  Google Scholar 

  5. Silva JA, Escobar A, Collins TJ et al (1995) Unstable angina. A comparison of angioscopic findings between diabetic and nondiabetic patients. Circulation 92:1731–1736

    Article  CAS  PubMed  Google Scholar 

  6. Alderman EL, Corley SD, Fisher LD et al (1993) Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J Am Coll Cardiol 22:1141–1154

    Article  CAS  PubMed  Google Scholar 

  7. Granger CB, Califf RM, Young S et al (1993) Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. J Am Coll Cardiol 21: 920–925

    Article  CAS  PubMed  Google Scholar 

  8. Haffner SM, Stern MP, Hazuda HP et al (1990) Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? (see comments) JAMA 263:2893–2898

    Article  CAS  Google Scholar 

  9. Hopkins PN, Hunt SC, Wu LL et al (1996) Hypertension dyslipidemia and insulin resistance: links in a chain or spokes on a wheel? Curr Opin Lipidol 7:241–253

    Article  CAS  PubMed  Google Scholar 

  10. Gray RS, Fabsitz RR, Cowan LD et al (1998) Risk factor clustering in the insulin resistance syndrome. The Strong Heart Study. Am J Epidemiol 148:869–878

    Article  CAS  PubMed  Google Scholar 

  11. Haffner SM, Stern MP, Dunn J et al (1990) Diminished insulin sensitivity and increased insulin response in nonobese nondiabetic Mexican Americans. Metabolism 39:842–847

    Article  CAS  PubMed  Google Scholar 

  12. Barker DJ, Hales CN, Falls CH et al (1993) Type 2 non-insulin-dependent) diabetes mellitus hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36: 62–67

    Article  CAS  PubMed  Google Scholar 

  13. Borch-Johnsen K (1993) Epidemiology of microangiopathy in type 1 diabetes mellitus. A review. Diabete Metab 19:133–137

    CAS  PubMed  Google Scholar 

  14. Atkinson MA, Maclaren NK (1994) The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 331:1428–1436

    Article  CAS  PubMed  Google Scholar 

  15. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy (published erratum appears in N Engl J Med [2000] 342:1376). N Engl J Med 342:381–389

    Article  PubMed Central  Google Scholar 

  16. Krolewski AS, Kosinski EJ, Warram JH et al (1987) Magnitude and determinants of coronary artery disease in juvenile-onset insulin-dependent diabetes mellitus. Am J Cardiol 59:750–755

    Article  CAS  PubMed  Google Scholar 

  17. The Diabetes Control and Complications Trial Research Group (1995) The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 122:561–568

    Article  Google Scholar 

  18. The Diabetes Control and Complications Trial Research Group (1995) Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology 102:647–661

    Article  Google Scholar 

  19. The Diabetes Control and Complications (DCCT) Research Group 1995) Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 47:1703–1720

    Article  Google Scholar 

  20. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus (see comments). N Engl J Med 329:977–986

    Article  Google Scholar 

  21. Kannel WB, McGee DL (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 2:120–126

    Article  CAS  PubMed  Google Scholar 

  22. Stamler J, Vaccaro O, Neaton JD et al (1993) Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16:434–444

    Article  CAS  PubMed  Google Scholar 

  23. Jarrett RJ, Shipley MJ (1988) Type 2 (non-insulin-dependent) diabetes mellitus and cardiovascular disease — putative association via common antecedents; further evidence from the Whitehall Study. Diabetologia 31:737–740

    Article  CAS  PubMed  Google Scholar 

  24. Jarrett RJ, McCartney P, Keen H (1982) The Bedford survey: ten-year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 22:79–84

    CAS  PubMed  Google Scholar 

  25. Fontbonne A, Eschwege E, Cambien F et al (1989) Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 32:300–304

    Article  CAS  PubMed  Google Scholar 

  26. Gerstein HC, Yusuf S (1996) Dysglycaemia and risk of cardiovascular disease. Lancet 347:949–950

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell BD, Stern MP, Haffner SM et al (1990) Risk factors for cardiovascular mortality in Mexican Americans and non-Hispanic whites. San Antonio Heart Study. Am J Epidemiol 131:423–433

    CAS  PubMed  Google Scholar 

  28. Haffner SM, Stern MP, Mitchell BD et al (1990) Incidence of type II diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesity, and body-fat distribution. Diabetes 39:283–288

    Article  CAS  PubMed  Google Scholar 

  29. Asher CR, Topol EJ, Moliterno DJ (1999) Insights into the pathophysiology of atherosclerosis and prognosis of black Americans with acute coronary syndromes. Am Heart J 138:1073–1081

    Article  CAS  PubMed  Google Scholar 

  30. Haffner SM, Mitchell BD, Stern MP et al (1990) Decreased prevalence of hypertension in Mexican-Americans (see discussion). Hypertension 16:223–232

    Article  Google Scholar 

  31. Brancati FL, Kao WH, Folsom AR et al (2000) Incident type 2 diabetes mellitus in African American and white adults: the Atherosclerosis Risk in Communities Study. JAMA 283:2253–2259

    Article  CAS  PubMed  Google Scholar 

  32. Sievers ML, Nelson RG, Knowler WC et al (1992) Impact of NIDDM on mortality and causes of death in Pima Indians. Diabetes Care 15:1541–1549

    Article  CAS  PubMed  Google Scholar 

  33. Ross R (1999) Atherosclerosis — an inflammatory disease (see comments). N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  34. Keegan A, Walbank H, Cotter MA et al (1995) Chronic vitamin E treatment prevents defective endothelium-dependent relaxation in diabetic rat aorta. Diabetologia 38:1475–1478

    Article  CAS  PubMed  Google Scholar 

  35. Timimi FK, Ting HH, Haley EA et al (1998) Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 31:552–557

    Article  CAS  PubMed  Google Scholar 

  36. Ting HH, Timimi FK, Boles KS et al (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Marfella R, Nappo F, De Angelis L et al (2000) Hemodynamic effects of acute hyperglycemia in type 2 diabetic patients. Diabetes Care 23:658–663

    Article  CAS  PubMed  Google Scholar 

  38. Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173:932–939

    Article  CAS  PubMed  Google Scholar 

  39. Hunt JV, Dean RT, Wolff SP (1988) Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205–212

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hunt JV, Smith CC, Wolff SP (1990) Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39:1420–1424

    Article  CAS  PubMed  Google Scholar 

  41. Richardson M, Hadcock SJ, DeReske M et al (1994) Increased expression in vivo of VCAM-1 and E-selectin by the aortic endothelium of normolipemic and hyperlipemic diabetic rabbits. Ar-terioscler Thromb 14:760–769

    Article  CAS  Google Scholar 

  42. Assmann G, Cullen P, Schulte H (1998) The Munster Heart Study (PROCAM). Results of follow-up at 8 years. Eur Heart J 19 [Suppl A] : A2–A11

    Google Scholar 

  43. Assmann G, Schulte H, Funke H et al (1998) The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J 19 [Suppl M]:M8-M14

    Google Scholar 

  44. Castelli WP (1992) Epidemiology of triglycerides: a view from Framingham (see comments). Am J Cardiol 70:3H–9H

    Article  Google Scholar 

  45. Castelli WP, Anderson K, Wilson PW et al (1992) Lipids and risk of coronary heart disease. The Framingham Study. Ann Epidemiol 2:23–28

    Article  CAS  PubMed  Google Scholar 

  46. Vakkilainen J, Makimattila S, Seppala-Lindroos A et al (2000) Endothelial dysfunction in men with small LDL particles. Circulation 102:716–721

    Article  CAS  PubMed  Google Scholar 

  47. Vehkavaara S, Seppala-Lindroos A, Westerbacka J et al (1999) In vivo endothelial dysfunction characterizes patients with impaired fasting glucose. Diabetes Care 22:2055–2060

    Article  CAS  PubMed  Google Scholar 

  48. Vehkavaara S, Makimattila S, Schlenzka A et al (2000) Insulin therapy improves endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol 20:545–550

    Article  CAS  PubMed  Google Scholar 

  49. Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    Article  CAS  PubMed  Google Scholar 

  50. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Parthasarathy S, Steinberg D, Witztum JL (1992) The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med 43:219–225

    Article  CAS  PubMed  Google Scholar 

  52. Brunner F, Wascher TC (1998) Contribution of the endothelium to transcapillary insulin transport in rat isolated perfused hearts. Diabetes. 47:1127–1134

    Article  CAS  PubMed  Google Scholar 

  53. Wascher TC, Wolkart G, Russell JC et al (2000) Delayed insulin transport across endothelium in insulin-resistant JCR:LA-cp rats. Diabetes 49:803–809

    Article  CAS  PubMed  Google Scholar 

  54. Min C, Kang E, Yu SH et al (1999) Advanced glycation end products induce apoptosis and procoagulant activity in cultured human umbilical vein endothelial cells. Diabetes Res Clin Pract 46:197–202

    Article  CAS  PubMed  Google Scholar 

  55. Kessler L, Wiesel ML, Attali P et al (1998) Von Willebrand factor in diabetic angiopathy. Diabetes Metab 24:327–336

    CAS  PubMed  Google Scholar 

  56. John R, Choudhri AF, Weinberg AD et al (2000) Multicenter review of preoperative risk factors for stroke after coronary artery bypass grafting (see discussion). Ann Thorac Surg 69:30–36

    Article  CAS  PubMed  Google Scholar 

  57. Meigs JB, Mittleman MA, Nathan DM et al (2000) Hyperinsulinemia hyperglycemia and impaired hemostasis: the Framingham Offspring Study. JAMA 283:221–228

    Article  CAS  PubMed  Google Scholar 

  58. Ossei-Gerning N, Wilson IJ, Grant PJ (1998) Sex differences in coagulation and fibrinolysis in subjects with coronary artery disease. Thromb Haemost 79:736–740

    CAS  PubMed  Google Scholar 

  59. Hasenstab D, Lea H, Clowes AW (2000) Local plasminogen activator inhibitor type 1 overexpression in rat carotid artery enhances thrombosis and endothelial regeneration while inhibiting intimai thickening. Arterioscler Thromb Vasc Biol 20:853–859

    Article  CAS  PubMed  Google Scholar 

  60. Capes SE, Hunt D, Malmberg K et al (2000) Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview (see comments). Lancet 355 773–778

    Article  Google Scholar 

  61. Ridker PM, Cushman M, Stampfer MJ et al (1998) Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease (see comments). Circulation 97:425–428

    Article  CAS  PubMed  Google Scholar 

  62. Ridker PM (1997) Intrinsic fibrinolytic capacity and systemic inflammation: novel risk factors for arterial thrombotic disease. Haemostasis 27 [Suppl 1]:2–11

    CAS  PubMed  Google Scholar 

  63. Grau AJ, Buggle F, Becher H et al (1996) The association of leukocyte count fibrinogen and C-reactive protein with vascular risk factors and ischemic vascular diseases. Thromb Res 82:245–255

    Article  CAS  PubMed  Google Scholar 

  64. Harris TB, Ferrucci L, Tracy RP et al (1999) Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 106:506–512

    Article  CAS  PubMed  Google Scholar 

  65. McCarty MF (1999) Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity: down-regulation with essential fatty acids, ethanol and pentoxifylline. Med Hypotheses 52:465–477

    Article  CAS  PubMed  Google Scholar 

  66. Bendtzen K, Buschard K, Diamant M et al (1989) Possible role of IL-1 TNF-alpha and IL-6 in insulin-dependent diabetes mellitus and autoimmune thyroid disease. Thyroid Cell Group. Lymphokine Res 8:335–340

    CAS  PubMed  Google Scholar 

  67. Vlassara H (1996) Advanced glycation end-products and atherosclerosis. Ann Med 28:419–426

    Article  CAS  PubMed  Google Scholar 

  68. Stitt AW, Bucala R, Vlassara H (1997) Atherogenesis and advanced glycation: promotion progression and prevention (see discussion). Ann N Y Acad Sci 811:115–129

    Article  CAS  PubMed  Google Scholar 

  69. Vlassara H, Bucala R (1996) Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end product receptors. Diabetes 45 [Suppl 3]:S65–S66

    Article  Google Scholar 

  70. Kilhovd BK, Berg TJ, Birkeland KI et al (1999) Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22:1543–1548

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt AM, Hori O, Brett J et al (1994) Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14:1521–1528

    Article  CAS  PubMed  Google Scholar 

  72. Schmidt AM, Hori O, Chen JX et al (1995) Advanced glycation end products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-i (VCAM- 1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96: 1395–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wautier JL, Zoukourian C, Chappey O et al (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperperme-ability in diabetic rats. J Clin Invest 97:238–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Hori O, Yan SD, Ogawa S et al (1996) The receptor for advanced glycation end-products has a central role in mediating the effects of advanced glycation end-products on the development of vascular disease in diabetes mellitus. Nephrol Dial Transplant 11 [Suppl 5]: 13–16

    Article  CAS  PubMed  Google Scholar 

  75. Kirstein M, Brett J, Radoff S et al (1990) Advanced protein glycosylation induces transendothelial human monocyte Chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci USA 87:9010–9014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Schmidt AM, Yan SD, Brett J et al (1993) Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products. J Clin Invest 91:2155–2168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Vlassara H, Fuh H, Makita Z et al (1992) Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complication. Proc Natl Acad Sci USA 89:12043–12047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Bucala R, Makita Z, Vega G et al (1994) Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci USA 91:9441–9445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Bucala R, Makita Z, Koschinsky T et al (1993) Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 90:6434–6438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  CAS  PubMed  Google Scholar 

  81. Foretz M, Guichard C, Ferre P et al (1999) Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes (see comments). Proc Natl Acad Sci USA 96:12737–12742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Foretz M, Pacot C, Gugail I et al (1999) ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol 19:3760–3768

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Laakso M (1999) Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48:937–942

    Article  CAS  PubMed  Google Scholar 

  84. Laakso M (1999) Hyperglycemia as a risk factor for cardiovascular disease in type 2 diabetes. Prim Care 26:829–839

    Article  CAS  PubMed  Google Scholar 

  85. Henricsson M, Gottsater A, Peppsson JO et al (1998) The frequency and severity of retinopathy are related to HbA1c values after but not at the diagnosis of NIDDM. J Intern Med 244:149–154

    Article  CAS  PubMed  Google Scholar 

  86. The Diabetes Control and Complications Trial Research Group (1995) The relationship of glycemie exposure (HbAic) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 44:968–983

    Article  Google Scholar 

  87. UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38 (see comments) (published erratum appears in BMJ [1999] 318:29). BMJ 317:703–713

    Article  PubMed Central  Google Scholar 

  88. Laakso M, Voutilainen E, Sarlund H et al (1985) Serum lipids and lipoproteins in middle-aged non-insulin-dependent diabetics. Atherosclerosis 56:271–281

    Article  CAS  PubMed  Google Scholar 

  89. Goldberg RB (1981) Lipid disorders in diabetes. Diabetes Care 4: 561–572

    Article  CAS  PubMed  Google Scholar 

  90. Uusitupa M, Siitonen O, Voutilainen E et al (1986) Serum lipids and lipoproteins in newly diagnosed non-insulin-dependent (type II) diabetic patients, with special reference to factors influencing HDL-cholesterol and triglyceride levels. Diabetes Care 9:17–22

    Article  CAS  PubMed  Google Scholar 

  91. Waiden CE, Knopp RH, Wahl PW et al (1984) Sex differences in the effect of diabetes mellitus on lipoprotein triglyceride and cholesterol concentrations. N Engl J Med 311:953–959

    Article  Google Scholar 

  92. Hedrick CC, Thorpe SR, Fu MX et al (2000) Glycation impairs high-density lipoprotein function. Diabetologia 43:312–320

    Article  CAS  PubMed  Google Scholar 

  93. No authors listed (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S) (see comments). Lancet 344:1383–1389

    Google Scholar 

  94. Kjekshus J, Pedersen TR (1995) Reducing the risk of coronary events: evidence from the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol 76:64C–68C

    Article  Google Scholar 

  95. Sacks FM, Pfeffer MA, Moye LA et al (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators (see comments). N Engl J Med 335:1001–1009

    Article  CAS  PubMed  Google Scholar 

  96. Goldberg RB, Mellies MJ, Sacks FM et al (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the Cholesterol And Recurrent Events (CARE) trial. The CARE Investigators. Circulation 98:2513–2519

    Article  CAS  PubMed  Google Scholar 

  97. Huttunen JK, Manninen V, Manttari M et al (1991) The Helsinki Heart Study: central findings and clinical implications. Ann Med 23:155–159

    Article  CAS  PubMed  Google Scholar 

  98. Gress TW, Nieto FJ, Shahar E et al (2000) Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study (see comments). N Engl J Med 342:905–912

    Article  CAS  PubMed  Google Scholar 

  99. Mattock MB, Barnes DJ, Viberti G et al (1998) Microalbuminuria and coronary heart disease in NIDDM: an incidence study. Diabetes 47:1786–1792

    Article  CAS  PubMed  Google Scholar 

  100. Curb JD, Pressel SL, Cutler JA et al (1996) Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group (published erratum appears in JAMA [1997] 277:1356) (see comments). JAMA 276:1886–1892

    Article  CAS  PubMed  Google Scholar 

  101. Yusuf S, Sleight P, Pogue J et al (2000) Effects of an angiotensin-converting-enzyme inhibitor ramipril on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators (published errata appear in N Engl J Med (2000) 342:748 and [2000] 342:1376) (see comments). N Engl J Med 342:145–153

    Article  CAS  PubMed  Google Scholar 

  102. Hansson L, Lindholm LH, Niskanen L et al (1999) Effect of angio-tensin-converting enzyme inhibition compared with conventional therapy on car diovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial (see comments). Lancet 353:611–616

    Article  CAS  PubMed  Google Scholar 

  103. Gerstein HC, Mann JF, Pogue J, Dinneen SF, Halle JP, Hoogwerf B, Joyce C, Rashkow A, Young J, Zinman B, Yusuf S (2000) Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. The HOPE Study Investigators. Diabetes Care 23 [Suppl 2]: B35–B39

    Google Scholar 

  104. Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy (see comments). Lancet 355:253–259

    Article  Google Scholar 

  105. Vijan S, Hofer TP, Hayward RA (2000) Cost-utility analysis of screening intervals for diabetic retinopathy in patients with type 2 diabetes mellitus. JAMA 283:889–896

    Article  CAS  PubMed  Google Scholar 

  106. Parving HH (1999) Diabetic hypertensive patients. Is this a group in need of particular care and attention? Diabetes Care 22 [Suppl 2]: B76–B79

    Google Scholar 

  107. Tatti P, Pahor M, Byington RP et al (1998) Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM (see comments). Diabetes Care 21:597–603

    Article  CAS  PubMed  Google Scholar 

  108. Kiberd BA, Jindal KK (1999) Should all Pima Indians with type 2 diabetes mellitus be prescribed routine angiotensin-converting enzyme inhibition therapy to prevent renal failure? Mayo Clin Proc 74:559–564

    Article  CAS  PubMed  Google Scholar 

  109. Rodby RA, Rohde RD, Clarke WR et al, for the Collaborative Study Group (2000) The Irbesartan type II diabetic nephropathy trial: study design and baseline patient characteristics. Nephrol Dial Transplant 15:487–497

    Article  CAS  PubMed  Google Scholar 

  110. Burnier M, Brunner HR (1998) Angiotensin II AT1 receptor antagonists: clinical development and future perspectives. Therapie 53: 279–284

    CAS  PubMed  Google Scholar 

  111. Deedwania PC (2000) Hypertension and diabetes: new therapeutic options. Arch Intern Med 160:1585–1594

    Article  CAS  PubMed  Google Scholar 

  112. Sturrock ND, George E, Pound N et al (2000) Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabet Med 17:360–364

    Article  CAS  PubMed  Google Scholar 

  113. Wei M, Gibbons LW, Kampert JB et al (2000) Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes (see comments). Ann Intern Med 132:605–611

    Article  CAS  PubMed  Google Scholar 

  114. Mikhailidis DP, Papadakis JA, Ganotakis ES (1998) Smoking, diabetes, and hyperlipidaemia. J R Soc Health 118:91–93

    Article  CAS  PubMed  Google Scholar 

  115. The Bypass Angioplasty Revascularization Investigation (BARI) investigators (1996) Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease (see comments) (published erratum appears in N Engl J Med [1997] 336:147). N Engl J Med 335:217–225

    Article  Google Scholar 

  116. No authors listed (2000) Seven-year outcome in the Bypass Angioplasty Revascularization Investigation (BARI) by treatment and diabetic status (see comments). J Am Coll Cardiol 35:1122–1129

    Google Scholar 

  117. Marso SP, Lincoff AM, Ellis SG et al (1999) Optimizing the percutaneous interventional outcomes for patients with diabetes mellitus: results of the EPISTENT (Evaluation of Platelet IIb/IIIa Inhibitor for Stenting trial) diabetic substudy (see comments). Circulation 100:2477–2484

    Article  CAS  PubMed  Google Scholar 

  118. Lincoff AM, Califf RM, Moliterno DJ et al (1999) Complementary clinical benefits of coronary-artery stenting and blockade of platelet glycoprotein IIb/IIIa receptors. Evaluation of Platelet IIb/IIIa Inhibition in Stenting investigators (see comments). N Engl J Med 341: 319–327

    Article  CAS  PubMed  Google Scholar 

  119. American Diabetes Association (2000) Clinical practice recommendations. Diabetes Care 23 [Suppl 1]:S1–S116

    Article  Google Scholar 

  120. Cleveland JC Jr, Meldrum DR et al (1997) Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited (see comments). Circulation 96: 29–32

    Article  CAS  PubMed  Google Scholar 

  121. Owens DR (1998) Repaglinide-prandial glucose regulator: a new class of oral antidiabetic drugs. Diabet Med 15 [Suppl 4]:S28–S36

    Article  Google Scholar 

  122. No authors listed (1995) Metformin for non-insulin-dependent diabetes mellitus. Med Lett Drugs Ther 37:41–42

    Google Scholar 

  123. Dunn CJ, Peters DH (1995) Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 49:721–749

    Article  CAS  PubMed  Google Scholar 

  124. Giugliano D, Quatraro D, Quatraro A, Consoli G et al (1993) Metformin for obese insulin-treated diabetic patients: improvement in glycaemic control and reduction of metabolic risk factors. Eur J Clin Pharmacol 44:107–112

    Article  CAS  PubMed  Google Scholar 

  125. Inzucchi SE, Maggs DG, Spollett GR et al (1998) Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus (see comments). N Engl J Med 338:867–872

    Article  CAS  PubMed  Google Scholar 

  126. Maggs DG, Buchanan TA, Burant CF et al (1998) Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized double-blind placebo-controlled trial (see comments). Ann Intern Med 128:176–185

    Article  CAS  PubMed  Google Scholar 

  127. Garber AJ, Duncan TG, Goodman AM et al (1997) Efficacy of metformin in type II diabetes: results of a double-blind placebo-controlled dose-response trial. Am J Med 103:491–497

    Article  CAS  PubMed  Google Scholar 

  128. Quatraro A, Minei A, Consoli G et al (1993) Respiratory function in IDDM patients (letter). Diabetes Care 16:851–852

    CAS  PubMed  Google Scholar 

  129. Stumvoll M, Radjaipour M, Seif F (1995) Diagnostic considerations in pheochromocytoma and chronic hemodialysis: case report and review of the literature. Am J Nephrol 15:147–151

    Article  CAS  PubMed  Google Scholar 

  130. DeFronzo RA, Goodman AM (1995) Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multi-center Metformin Study Group (see comments). N Engl J Med 333: 541–549

    Article  CAS  PubMed  Google Scholar 

  131. Robinson AC, Burke J, Robinson S et al (1998) The effects of metformin on glycemic control and serum lipids in insulin-treated NIDDM patients with suboptimal metabolic control (see comments). Diabetes Care 21:701–705

    Article  CAS  PubMed  Google Scholar 

  132. Stang M, Wysowski DK, Butler-Jones D (1999) Incidence of lactic acidosis in metformin users. Diabetes Care 22:925–927

    Article  CAS  PubMed  Google Scholar 

  133. Campbell RK, White JR Jr, Saulie BA (1996) Metformin: a new oral biguanide (see discussion). Clin Ther 18:359–371

    Article  Google Scholar 

  134. Sulkin TV, Bosman D, Krentz AJ (1997) Contraindications to metformin therapy in patients with NIDDM. Diabetes Care 20: 925–928

    Article  CAS  PubMed  Google Scholar 

  135. Jurovich MR, Wooldridge JD, Force RW (1997) Metformin-associated nonketotic metabolic acidosis. Ann Pharmacother 31:53–55

    CAS  PubMed  Google Scholar 

  136. Zimmerman BR, Hagen MD (1998) An evaluation of new agents in the treatment of type 2 diabetes. J Fam Pract 47 [5 Suppl]:S37–S43

    Google Scholar 

  137. Tafuri SR (1996) Troglitazone enhances differentiation, basal glucose uptake, and Gluti protein levels in 3T3-L1 adipocytes. Endocrinology 137:4706–4712

    Article  CAS  PubMed  Google Scholar 

  138. Miles PD, Romeo OM, Higo K et al (1997) TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes 46:1678–1683

    Article  CAS  PubMed  Google Scholar 

  139. Buse JB, Gumbiner B, Mathias NP et al (1998) Troglitazone use in insulin-treated type 2 diabetic patients. The Troglitazone Insulin Study Group (see comments). Diabetes Care 21:1455–1461

    Article  CAS  PubMed  Google Scholar 

  140. Schwartz S, Raskin P, Fonseca V et al (1998) Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group (see comments). N Engl J Med 338:861–866

    Article  CAS  PubMed  Google Scholar 

  141. Horton ES, Whitehouse F, Ghazzi MN et al (1998) Troglitazone in combination with sulfonylurea restores glycemic control in patients with type 2 diabetes. The Troglitazone Study Group (see comments). Diabetes Care 21:1462–1469

    Article  CAS  PubMed  Google Scholar 

  142. Mizushige K, Noma T, Yao L et al (2000) Effects of troglitazone on collagen accumulation and distensibility of aortic wall in prestage of non-insulin-dependent diabetes mellitus of Otsuka Long-Evans Tokushima Fatty rats. J Cardiovasc Pharmacol 35:150–155

    Article  CAS  PubMed  Google Scholar 

  143. Fonseca V, Rosenstock J, Patwardhan R et al (2000) Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 283:1695–1702

    Article  CAS  PubMed  Google Scholar 

  144. Balfour JA, Plosker GL (1999) Rosiglitazone (see discussion). Drugs 57:921–932

    Article  CAS  PubMed  Google Scholar 

  145. Wolffenbuttel BH, Gomis R, Squatrito S et al (2000) Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabet Med 17:40–47

    Article  CAS  PubMed  Google Scholar 

  146. Li AC, Brown KK, Silvestre MJ et al (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106:523–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Scott LJ, Spencer CM (2000) Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs 59:521–549

    Article  CAS  PubMed  Google Scholar 

  148. Vallejo S, Angulo J, Peiro C et al (2000) Treatment with acarbose may improve endothelial dysfunction in streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol 36:255–262

    Article  CAS  PubMed  Google Scholar 

  149. Gillies PS, Figgitt DP, Lamb HM (2000) Insulin glargine (see discussion). Drugs 59:253–262

    Article  CAS  PubMed  Google Scholar 

  150. Bohannon NJ (1999) Insulin delivery using pen devices. Simple-to-use tools may help young and old alike. Postgrad Med 106:57–68

    CAS  PubMed  Google Scholar 

  151. Saudek CD (1997) Novel forms of insulin delivery. Endocrinol Metab Clin North Am 26:599–610

    Article  CAS  PubMed  Google Scholar 

  152. Hoffman A, Ziv E (1997) Pharmacokinetic considerations of new insulin formulations and routes of administration. Clin Pharmacokinet 33:285–301

    Article  CAS  PubMed  Google Scholar 

  153. Nobels FR, Hermans MP, De Leeuw I (1999) Insulin lispro (Humalog), a novel fast-acting insulin analogue: guidelines for its practical use. Acta Clin Belg 54:246–254

    CAS  PubMed  Google Scholar 

  154. Bex M, Buysschaert M, De Leeuw I et al (1999) Insulin lispro (Humalog) in the treatment of diabetes mellitus: overview of Belgian clinical data from global studies. Acta Clin Belg 54:241–245

    CAS  PubMed  Google Scholar 

  155. Hermans MP, Nobels FR, De Leeuw I (1999) Insulin lispro (Humalog), a novel fast-acting insulin analogue for the treatment of diabetes mellitus: overview of pharmacological and clinical data. Acta Clin Belg 54:233–240

    CAS  PubMed  Google Scholar 

  156. Boland EJ, Ahern J, Grey M (1998) A primer on the use of insulin pumps in adolescents (see quiz). Diabetes Educ 24:78–89

    Article  CAS  PubMed  Google Scholar 

  157. Boland E (1998) A flexible option for adolescents with diabetes. Insulin pump therapy. Adv Nurse Pract 6:38–44

    CAS  PubMed  Google Scholar 

  158. Kaufman FR, Halvorson M, Fisher L et al (1999) Insulin pump therapy in type 1 pediatric patients: now and into the year 2000. Diabetes Metab Res Rev 15:338–352

    Article  CAS  PubMed  Google Scholar 

  159. Kaufman FR, Halvorson M, Miller D et al (1999) Insulin pump therapy in type 1 pediatric patients. J Pediatr Endocrinol Metab 12 [Suppl 3] 759–764

    PubMed  Google Scholar 

  160. Schrezenmeir J, Muller-Haberstock S, Achterberg H et al (1990) Computer-assisted insulin dosage adjustment — perspectives for diabetes control. Horm Metab Res 24 [Suppl] :116–123

    CAS  Google Scholar 

  161. Silverstein JH, Rosenbloom AL (2000) New developments in type 1 (insulin-dependent) diabetes. Clin Pediatr (Phila) 39:257–266

    Article  CAS  Google Scholar 

  162. Kendall DM, Robertson RP (1997) Pancreas and islet transplantation. Challenges for the twenty-first century. Endocrinol Metab Clin North Am 26:611–630

    Article  CAS  PubMed  Google Scholar 

  163. Masetti M, Inverardi L, Ranuncoli A et al (1997) Current indications and limits of pancreatic islet transplantation in diabetic nephropathy. J Nephrol 10:245–252

    CAS  PubMed  Google Scholar 

  164. Garfinkel MR, Harland RC, Opara EC (1998) Optimization of the microencapsulated islet for transplantation. J Surg Res 76:7–10

    Article  CAS  PubMed  Google Scholar 

  165. Genovese S, Bonfanti R, Bazzigaluppi E et al (1996) Association of IA-2 autoantibodies with HLA DR4 phenotypes in IDDM. Diabetologia 39:1223–1226

    Article  CAS  PubMed  Google Scholar 

  166. Seidel D, Ziegler AG (1996) Prediction of type 1 diabetes. Horm Res 45 [Suppl 1]:36–39

    Article  CAS  PubMed  Google Scholar 

  167. Serrano-Rios M, Gutierrez-Lopez MD et al (1996) HLA-DR DQ and anti-GAD antibodies in first-degree relatives of type I diabetes mellitus. Diabetes Res Clin Pract 34 [Suppl]:S133–S139

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poon, M., Rayfield, E. (2002). Vascular Disease in Diabetes Mellitus. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics