Skip to main content

Principles and Applications of Pulsed Dielectric Spectroscopy and Nonresonant Dielectric Hole Burning

  • Chapter
Broadband Dielectric Spectroscopy

Abstract

Nowadays dielectric relaxation measurements can be carried out almost routinely in broad frequency ranges continuously covering ten to fifteen decades and more [1. This allows one to track the time scale on which dipolar motions occur in a wide temperature interval and to investigate in detail the shape of permittivity and dielectric loss spectra. Early on it has become clear that at a given temperature and pressure the molecular motion in most dielectric materials cannot be characterized by a unique time constant. In order to describe the experimentally observed relaxations intrinsic non-exponential as well as distributed processes have been considered. For a long time the distribution concept was quite popular in the description of dielectric phenomena [2–[4]. It was often based on the assumption that environments differing from site to site lead to locally varying time constants. However, the alternative option which starts from the consideration of nonexponential responses [5] has also gained considerable attention [6]–[9]. To justify these approaches theoretically it has been pointed out that the interactions which exist between dipolar molecules should render a description in terms of a simple distribution of relaxation times at least questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15 (see also Chaps. 2, 4, and 5)

    CAS  Google Scholar 

  2. Wagner KW (1913) Ann Phys (Leipzig) 40:817

    Google Scholar 

  3. Cole KS, Cole RH (1941) J Chem Phys 9:341

    CAS  Google Scholar 

  4. Böttcher CJF, Bordewijk P (1973) Theory of electric polarization, vol 2. Elsevier, Amsterdam

    Google Scholar 

  5. Kohlrausch R (1854) Pogg Ann Phys 91:179

    Google Scholar 

  6. Williams G, Cook M, Hains PJ (1972) J Chem Soc Faraday Trans II 68:1045

    Google Scholar 

  7. Ngai KL (1979) Comments Solid State Phys 9:127

    CAS  Google Scholar 

  8. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, London

    Google Scholar 

  9. Palmer G, Stein D, Abrahams E, Anderson PW (1984) Phys Rev Lett 53:958

    Google Scholar 

  10. Poole PH (1998) Curr Opin Solid State Mater Sci 3:391

    CAS  Google Scholar 

  11. Kob W (1999) J Phys Condensed Matter 11:R85

    CAS  Google Scholar 

  12. Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020

    CAS  Google Scholar 

  13. Böhmer R, Hinze G, Diezemann G, Geil B, Sillescu H (1996) Europhys Lett 36:55

    Google Scholar 

  14. Cicerone MT, Ediger MD (1995) J Chem Phys 103:5684; Ediger MD (2000) Annu Rev Phys Chem 51:99

    CAS  Google Scholar 

  15. Richert R (1997) J Phys Chem B 101:6323 (see also Chap. 15)

    CAS  Google Scholar 

  16. Schiener B, Böhmer R, Loidl A, Chamberlin RV (1996) Science 274:752

    CAS  Google Scholar 

  17. Vidal Russell E, Israeloff NE, Walther LE, Alvarez Gomariz H (1998) Phys Rev Lett 81: 1461

    Google Scholar 

  18. Vidal Russell E, Israeloff NE (2000) Nature 408:695

    Google Scholar 

  19. Chamberlin RV (1998) Phase Trans 65:169

    CAS  Google Scholar 

  20. Chamberlin RV (2002) ACS Sym Ser 820:228

    CAS  Google Scholar 

  21. Bloembergen N, Purcell EM, Pound RV (1948) Phys Rev 73:679

    CAS  Google Scholar 

  22. Friedrich J, Haarer D (1984) Angew Chem 96:96 [Angew Chem Int Ed Engl 23:113]; Friedrich J, Haarer D (1988) In: Moerner WE (ed) Persistent spectral hole burning: science and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Basché T, Moerner WE, Orrit M, Wild UP (eds) (1997) Single-molecule optical detection, imaging and spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  24. Böhmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiener B, Sillescu H, Spiess HW, Tracht U, Wilhelm M (1998) J Non-Cryst Solids 235/237:1

    Google Scholar 

  25. Williams G (1978) Chem Soc Rev 7:89

    CAS  Google Scholar 

  26. For a definition of the Poisson bracket see, e.g., Chap. X of [4]

    Google Scholar 

  27. Rajagopal AK, Ngai KL, Rendell RW, Teitler S (1988) Physica 149A:358

    Google Scholar 

  28. Fournier J, Williams G (1996) J Chem Phys 104:5690 and references cited therein

    Google Scholar 

  29. Chamberlin RV (1993) Phys Rev B 48:15,638

    Google Scholar 

  30. Böhmer R, Schiener B, Hemberger J, Chamberlin RV (1995) Z Phys B Condensed Matter 99:91; Böhmer R, Schiener B, Hemberger J, Chamberlin RV (1996) Z Phys B Condensed Matter 99:624

    Google Scholar 

  31. Schiener B, Chamberlin RV, Diezemann G, Böhmer R (1997) J Chem Phys 107:7746

    CAS  Google Scholar 

  32. Cole RH (1981) In: Goodman CHL (ed) Inst Phys Conf Series 58:1

    Google Scholar 

  33. Madden PA, Kivelson D (1984) Adv Chem Phys 56:467

    CAS  Google Scholar 

  34. van Kampen NG (1981) Stochastic processes in physics and chemistry. North Holland Publishing Company, Amsterdam

    Google Scholar 

  35. Diezemann G, Sillescu H (1999) J Chem Phys 111:1126

    CAS  Google Scholar 

  36. Debye P (1929) Polare Molekeln. S. Hirzel, Leipzig, chap V

    Google Scholar 

  37. Böhmer R, Diezemann G, Hinze G, Rössler E (2001) Prog NMR Spectrosc 39:191 and references cited therein; Böhmer R, Kremer F (2002) Broadband dielectric spectroscopy. Springer, Berlin Heidelberg New York, chap 17

    Google Scholar 

  38. Rosato V, Williams G (1981) Faraday Trans II 77:1761

    Google Scholar 

  39. Kozak A, Williams G (1989) Mol Phys 67:1065

    CAS  Google Scholar 

  40. Beevers MS, Crossley J, Garrington DC, Williams G (1976) J Chem Soc Faraday II 72:1482

    Google Scholar 

  41. Anderson JE (1972) Faraday Symp Chem Soc 6:82

    Google Scholar 

  42. Fröhlich H (1949) Theory of dielectrics. Oxford University Press, New York

    Google Scholar 

  43. Note that ADWPs have also been used in the context of the frequency-dependent conductivity in glasses; see, e.g., Pollak M, Pike GE (1972) Phys Rev Lett 28:1449

    Google Scholar 

  44. Wagner A, Kliem H (1999) J Chem Phys 111:1043

    CAS  Google Scholar 

  45. Anderson JE, Ullman R (1967) J Chem Phys 47:2178

    CAS  Google Scholar 

  46. Stannarius R,Kremer F,Arndt M (1995) Phys Rev Lett 75:4698

    CAS  Google Scholar 

  47. Böttcher CJF (1973) Theory of electric polarization, vol 1. Elsevier, Amsterdam

    Google Scholar 

  48. Morita A (1986) Phys Rev A 34:1499

    Google Scholar 

  49. Alexiewicz W, Derdowska-Zimpel H (1995) Physica A 214:9

    CAS  Google Scholar 

  50. Déjardin JL, Debiais G (1995) Adv Chem Phys 91:241

    Google Scholar 

  51. Diezemann G (2001) Europhys Lett 53:604

    CAS  Google Scholar 

  52. Diezemann G (to be submitted) J Chem Phys

    Google Scholar 

  53. Kircher O, Chamberlin RV, Diezemann G, Böhmer R (2000) J Chem Phys 113:6449

    CAS  Google Scholar 

  54. Mills DL (1991) Nonlinear optics: basic concepts. Springer, Berlin Heidelberg New York

    Google Scholar 

  55. Glazounov AE, Tagantsev AK (2000) Phys Rev Lett 85:2192

    CAS  Google Scholar 

  56. Diezemann G, Sillescu H, Hinze G, Böhmer R (1998) Phys Rev E 57:4398

    CAS  Google Scholar 

  57. Sillescu H (1999) J Non-Cryst Solids 243:81

    CAS  Google Scholar 

  58. Chamberlin RV, Schiener B, Böhmer R (1997) Mat Res Soc Symp Proc 455:117

    CAS  Google Scholar 

  59. Rather than expressing the change in properties that depend on Boltzmann factors, exp(–B/k B T), by modified (fictive, effective) temperatures T in some cases modified energy barriers B may be preferable

    Google Scholar 

  60. Baschnagel J, Binder K, Wittmann HP (1993) J Phys C 5:1597

    CAS  Google Scholar 

  61. Moynihan CT (1998) Solid State Ionics 105:175

    CAS  Google Scholar 

  62. Nieuwenhuizen TM (1998) Phys Rev Lett 80:5580

    CAS  Google Scholar 

  63. For a review, see Hodge IM (1994) J Non-Cryst Solids 169:211

    CAS  Google Scholar 

  64. Adam G, Gibbs JH (1965) J Chem Phys 28:373

    Google Scholar 

  65. Moynihan CT, Schroeder J (1993) J Non-Cryst Solids 160:52

    CAS  Google Scholar 

  66. Donth E (1982) J Non-Cryst Solids 53:325; Donth E (1999) Acta Polym 50:240

    CAS  Google Scholar 

  67. Chamberlin RV (1999) Phys Rev Lett 82:2520; see also Chamberlin RV (2000) Nature 408:337

    CAS  Google Scholar 

  68. Chamberlin RV (1999) Phys Rev Lett 83:5134

    CAS  Google Scholar 

  69. Chamberlin RV (private communication)

    Google Scholar 

  70. Kircher O, Schiener B, Böhmer R (1998) Phys Rev Lett 81:4520

    CAS  Google Scholar 

  71. Sawyer CB, Tower CH (1930) Phys Rev 35:269

    CAS  Google Scholar 

  72. Wagner H, Richert R (1999) J Appl Phys 85:1750

    CAS  Google Scholar 

  73. Kircher O, Wirsch C, Böhmer R (unpublished)

    Google Scholar 

  74. Cugliandolo LF, Iguain JL (2000) Phys Rev Lett 85:3448

    CAS  Google Scholar 

  75. Diezemann G, Böhmer R (2001) Phys Rev Lett; 87:129602

    CAS  Google Scholar 

  76. Richert R, Böhmer R (1999) Phys Rev Lett 83:4337

    CAS  Google Scholar 

  77. Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201

    Google Scholar 

  78. Hanaya M, Nakayama M, Hatate A, Oguni M (1995) Phys Rev B 52:3234 and references cited therein

    CAS  Google Scholar 

  79. Mizukami M, Fujimori H, Oguni M (1996) Solid State Commun 100:83

    CAS  Google Scholar 

  80. Wu L (1991) Phys Rev B 43:9906

    CAS  Google Scholar 

  81. Hemberger J, Böhmer R, Loidl A (1998) Phase Trans 65:233

    CAS  Google Scholar 

  82. Schiener B, Böhmer R (1995) J Non-Cryst Solids 182:180 and references cited therein

    CAS  Google Scholar 

  83. Angell CA, Boehm L, Oguni M, Smith DL (1993) J Mol Liq 56:275; Takahara S, Yamamuro O (1995) J Phys Chem 99:9589

    CAS  Google Scholar 

  84. Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions. Dover Publications, New York

    Google Scholar 

  85. Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727

    CAS  Google Scholar 

  86. From a mathematical viewpoint Δ(t) vanishes in the limits of times that are very much shorter or very much longer than the mean correlation time. With finite signal to noise ratios these time regimes are not expected to be accessible experimentally

    Google Scholar 

  87. Schiener B, Böhmer R (unpublished)

    Google Scholar 

  88. Johari GP, Goldstein M (1970) J Chem Phys 53:2372

    CAS  Google Scholar 

  89. Schnauss W, Fujara F, Hartmann K, Sillescu H (1990) Chem Phys Lett 166:381. For references to more recent work see Böhmer R, Hinze G, Jörg T, Qi F, Sillescu H (2000) J Phys Condensed Matter 12:A383

    CAS  Google Scholar 

  90. Wagner H, Richert R (1998) J Non-Cryst Solids 242:19

    CAS  Google Scholar 

  91. Richert R (2001) Europhys Lett 54:767

    CAS  Google Scholar 

  92. Wagner H, Richert R (1999) J Phys Chem B 103:4071

    CAS  Google Scholar 

  93. Olsen NB (1998) J Non-Cryst Solids 235/237:399

    Google Scholar 

  94. Blochowicz T, Rössler E (unpublished)

    Google Scholar 

  95. Angell CA, Dworkin A, Figuière P, Fuchs A, Szwarc H (1985) J Chim Phys 82:773

    CAS  Google Scholar 

  96. Loidl A, Böhmer R (1994) In: Richert R, Blumen A (eds) Disorder effects on relaxa-tional processes. Springer, Berlin Heidelberg New York, p 659 and references cited therein

    Google Scholar 

  97. Jiménez-Ruiz M, González MA, Bermejo FJ, Miller MA, Birge NO, Cendoya I, Alegría A (1999) Phys Rev B 59:9155

    Google Scholar 

  98. Leslie-Pelecky DL, Birge NO (1994) Phys Rev B 50:13,250

    Google Scholar 

  99. Brand R, Lunkenheimer P, Loidl A (1997) Phys Rev B 56:R5713

    Google Scholar 

  100. Dyre JC (1988) J Appl Phys 64:2456; Proceedings of the International Conference on Structure and Dynamics of Ionic Glasses: Experiments, Models and Applications [(1998) Solid State Ionics 105].

    Google Scholar 

  101. Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873 and references cited therein

    Google Scholar 

  102. Moynihan CT (1998) J Non-Cryst Solids 235/237:781

    Google Scholar 

  103. Angell CA (1990) Chem Rev 90:523

    CAS  Google Scholar 

  104. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:631

    Google Scholar 

  105. Pimenov A, Lunkenheimer P, Rall H, Kohlhaas R, Loidl A, Böhmer R (1996) Phys Rev E 54:676

    CAS  Google Scholar 

  106. Lunkenheimer P, Pimenov A, Loidl A (1997) Phys Rev Lett 78:2995 and references cited therein

    CAS  Google Scholar 

  107. Pimenov A, Loidl A, Böhmer R (1997) J Non-Cryst Solids 212:89

    CAS  Google Scholar 

  108. Machavariani VS, Voronel A (2000) Phys Rev E 61:2121

    CAS  Google Scholar 

  109. Sen S, Stebbins JF (1997) Phys Rev Lett 78:3495

    CAS  Google Scholar 

  110. Zürn C, Titze A, Diezemann G, Böhmer R (1999) J Phys Chem B 103:4109

    Google Scholar 

  111. Roling B, Martiny C, Funke K (1999) J Non-Cryst Solids 249:201

    CAS  Google Scholar 

  112. Isard JO (1996) J Non-Cryst Solids 202:137

    CAS  Google Scholar 

  113. Barton JL (1996) J Non-Cryst Solids 203:280

    CAS  Google Scholar 

  114. Roling B (private communication)

    Google Scholar 

  115. Xu Z, Stebbins JF (1995) Science 270:1332

    CAS  Google Scholar 

  116. Böhmer R, Jörg T, Qi F, Titze A (2000) Chem Phys Lett 316:417

    Google Scholar 

  117. Höchli UT, Knorr K, Loidl A (1990) Adv Phys 39:405

    Google Scholar 

  118. Korner N, Pfammatter C, Kind R (1993) Phys Rev Lett 70:1283

    CAS  Google Scholar 

  119. Levstik A, Kutnjak Z, Filipic C, Pirc R (1998) Phys Rev B 57:11,204

    Google Scholar 

  120. Kutnjak Z, Filipic C, Pirc R, Levstik A, Farhi R, El Marssi M (1999) Phys Rev B 59:294

    CAS  Google Scholar 

  121. Kleemann W, Albertini A, Chamberlin RV, Bednorz JG (1997) Europhys Lett 37:145

    CAS  Google Scholar 

  122. Cross LE (1994) Ferroelectrics 151:305 and references cited therein

    CAS  Google Scholar 

  123. Uchino K (1994) In: Swain MV (ed) Materials science and technology, vol 11: structure and properties of ceramics.VCH, Weinheim, p 635

    Google Scholar 

  124. Kircher O, Diezemann G, Böhmer R (2001) Phys Rev B 64:054,103

    Google Scholar 

  125. Kleemann W, Bobnar V, Dec J, Lehnen P, Pankrath R, Prosandeev SA (2001) Ferroelectrics 261:43

    CAS  Google Scholar 

  126. El Goresy T, Kircher O, Böhmer R (2002) Solid State Commun 121:485

    Google Scholar 

  127. Koper JM, Hilhorst HJ (1988) J Phys (France) 49:429

    Google Scholar 

  128. Tracht U, Heuer A, Spiess HW (1998) J Non-Cryst Solids 235/237:27

    Google Scholar 

  129. Struik LCE (1978) Physical ageing in amorphous polymers and other materials. Elsevier, Amsterdam

    Google Scholar 

  130. Grigera TS, Israeloff NE (1999) Phys Rev Lett 83:5038

    CAS  Google Scholar 

  131. McKenna GB, Zapas LJ (1986) Polym Eng Sci 26:725

    CAS  Google Scholar 

  132. Yee AF, Bankert RJ, Ngai KL, Rendell RW (1988) J Polym Sci Polym Phys Ed 26:2463

    CAS  Google Scholar 

  133. Waldron WK Jr, McKenna GB (1995) J Rheol 39:471

    CAS  Google Scholar 

  134. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworth, Boston

    Google Scholar 

  135. Jones P, Darcy P, Attard GS, Jones WJ, Williams G (1989) Mol Phys 67:1053

    CAS  Google Scholar 

  136. Jones P, Jones WJ, Williams G (1990) J Chem Soc Faraday Trans 86:1013

    CAS  Google Scholar 

  137. Cicerone MT, Ediger MD (1993) J Phys Chem 97:10,489

    Google Scholar 

  138. Kanetakis J, Sillescu H (1996) Chem Phys Lett 252:127

    CAS  Google Scholar 

  139. Beevers MS, Elliott DA, Williams G (1980) J Chem Soc Faraday II 76:112

    Google Scholar 

  140. Torre R, Bartolini P, Pick RM (1998) Phys Rev E 57:1912

    CAS  Google Scholar 

  141. Arbe A, Colmenero J, Monkenbusch M, Richter D (1998) Phys Rev Lett 81:590

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Böhmer, R., Diezemann, G. (2003). Principles and Applications of Pulsed Dielectric Spectroscopy and Nonresonant Dielectric Hole Burning. In: Kremer, F., Schönhals, A. (eds) Broadband Dielectric Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56120-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56120-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62809-2

  • Online ISBN: 978-3-642-56120-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics