Skip to main content

Force Measurement for a Single Nanoparticle

  • Chapter
Single Organic Nanoparticles

Part of the book series: NanoScience and Technology ((NANO))

  • 491 Accesses

Abstract

Micrometer- and Nanometer-sized particles suspended in liquids and in air experience various kinds of forces [15]. Gravity and viscous drags exerted on a single microparticle are as weak as femto-Newtons, though they, of course, cannot be neglected for determining the mechanical motion of the particles. Van der Waals interactions between microparticles and those between a particle and a solid surface play an important role in the adhesion mechanism. Surface double layer forces also act on microparticles dispersed in solution. Particles and solid surfaces are usually charged by ionic dissociation of surface groups or by adsorption of ions from solution onto particles, so that counter-ions are attracted to the charged surfaces against thermal diffusion, forming electric double layers. Electrostatic forces can also be induced on the charged particles by applying an electric field. Short-range forces due to hydrophobic and hydrophilic interactions, hydration and solvation energy, and hydrogen bonding networks sometimes govern the behavior of microparticles in solution. In addition to these mechanical and electromagnetic forces, particles always undergo Brownian motion with thermally induced random forces. Aggregation, adhesion, and sedimentation processes of organic, metallic, semiconductor colloidal particles, surfactant micelles, macromolecules, and so on, can be determined by the strength of those forces and their balances. Equilibrium states and the dynamics of particle motion have been theoretically investigated by Derjaguin, Landau, Verway and Overbeek, the so-called DLVO theory. It has been clarified that those forces are dependent on surface roughness, particle shapes, the physical and chemical structures of the surfaces, the hydrogen exponent and electrolyte concentrations of the medium, as well as temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.N. Israelachvili: Intermolecular and Surface Forces. (Academic Press, London 1985)

    Google Scholar 

  2. H.C. Hamaker: Physica 4, 1058 (1937)

    Article  CAS  Google Scholar 

  3. B.V. Derjaguin: Kolloid Zeits. 69, 155 (1934)

    Article  Google Scholar 

  4. B.V. Derjaguin, L. Landau: ActaPhysicohim. URSS. 14, 633 (1941)

    Google Scholar 

  5. E.J.W. Verway, J.Th.G. Overbeek: Theory of Stability of Lyophobic Colloids. (Elsevier, Amsterdam 1948)

    Google Scholar 

  6. D.J. Shaw: Introduction to Colloid and Surface Chemistry, 4th ed. (Butterworth-Heinemann, Oxford 1992)

    Google Scholar 

  7. D.J. Shaw: Electrophoresis. (Academic Press, New York 1969)

    Google Scholar 

  8. W.A. Ducker, T.J. Senden, R.M. Pashley: Nature 353, 239 (1991)

    Article  CAS  Google Scholar 

  9. Y.Q. Li: Langmuir 9, 637 (1993)

    Article  CAS  Google Scholar 

  10. K. Sasaki, M. Tsukima, H, Masuhara: Appl. Phys. Lett. 71, 37 (1997)

    Article  CAS  Google Scholar 

  11. H. Masuhara, F.C. De Schryver, N. Kitamura, N. Tamai, eds.: Microchemistry. (Elsevier, Amsterdam 1994)

    Google Scholar 

  12. A. Ashkin: Biophys. J. 61, 569 (1992)

    Article  CAS  Google Scholar 

  13. S.C. Kuo, M.P. Sheetz: Science 260, 232 (1993)

    Article  CAS  Google Scholar 

  14. J.T. Finer, R.M. Simmons, J.A. Spudich: Nature 368, 113 (1994)

    Article  CAS  Google Scholar 

  15. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block: Nature 365, 721 (1993)

    Article  CAS  Google Scholar 

  16. D.C. Prieve: Science 231, 1269 (1986)

    Article  CAS  Google Scholar 

  17. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, K. Iwai: Langmuir 13, 414 (1997)

    Google Scholar 

  18. S. Kawata, T. Sugiura: Opt. Lett. 17, 772 (1992)

    Article  CAS  Google Scholar 

  19. S. Kawata, T. Tani: Opt. Lett. 21, 1768 (1996)

    Article  CAS  Google Scholar 

  20. S. Kawata ed.: Near-Field Optics and Surface Plasmon Polaritons. (Springer, Berlin, Heidelberg, New York, 2001)

    Google Scholar 

  21. K. Wada, K. Sasaki, H. Masuhara: Appl. Phys. Lett. 76, 2815 (2000)

    Article  CAS  Google Scholar 

  22. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu: Opt. Lett. 11, 288 (1986)

    Article  CAS  Google Scholar 

  23. M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris, and L.E. Brus: Nature 383, 383 (1996)

    Article  Google Scholar 

  24. T. Basche, W.E. Moerner, M. Orrit, U.P. Wild eds.: Single-Molecule Optical Detection, Imaging and Spectroscopy. (Weinheim, Tokyo 1997)

    Google Scholar 

  25. T.S. Ahmadi, S.L. Logunov, M.A. El-Sayed: J. Phys. Chem. 100, 8053 (1996)

    Article  CAS  Google Scholar 

  26. M.C. Brelle, J.Z. Zhang: J. Chem. Phys. 108, 3119 (1998)

    Article  CAS  Google Scholar 

  27. H.-B. Kim, S. Yoshida, N. Kitamura: Anal. Chem. 70, 51 (1998)

    Article  CAS  Google Scholar 

  28. Y. Matsuo, H. Takasaki, J. Hotta, K. Sasaki: J. Appl. Phys. 89, 5438 (2001)

    Article  CAS  Google Scholar 

  29. M. Kerker: The Scattering of Light and Other Electromagnetic Radiation. (Academic Press, San Diego 1969)

    Google Scholar 

  30. P.W. Barber and S.C. Hill: Light Scattering by Particles: Computational Methods. (World Scientific, Singapore 1990)

    Google Scholar 

  31. I.B. Berlman: Handbook of Fluorescence Spectra of Aromatic Molecules. Academic, New York 1971)

    Google Scholar 

  32. K. Wada, K. Sasaki, H. Masuhara: Appl. Phys. Lett. 81, 1768 (2002)

    Article  CAS  Google Scholar 

  33. K. Sasaki, J. Hotta, K. Wada, H. Masuhara: Opt. Lett. 25, 1385 (2000)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sasaki, K. (2003). Force Measurement for a Single Nanoparticle. In: Masuhara, H., Nakanishi, H., Sasaki, K. (eds) Single Organic Nanoparticles. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55545-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55545-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62429-2

  • Online ISBN: 978-3-642-55545-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics