Skip to main content

Biological Effects of Low Doses of Ionizing Radiation: Damage versus Protection

  • Chapter

Abstract

Medical applications of ionizing radiation frequently provoke the question of risk that may be associated with a planned radiological or nuclear medical procedure. In fact, the apprehension about a potential detriment following exposure to ionizing radiation in clinical diagnosis or therapy is often overwhelming to the patient. The consequence is not rarely a flat refusal of treatment. The reason for the relatively widely spread radiation phobia in the general public is partly rooted in the radiation-protection regulations and their interpretation by non-specialists, including the news media. The problem also often stems from the lack of knowledge by professionals who do not have the proper training in the biological effects of ionizing radiation. Patients need to be properly informed and instructed in order both to alleviate personal apprehension and fear, and to adhere to professional standards that demand the best possible treatment of the patient with minimization of the risk-benefit ratio. It thus appears fitting to treat the question of biological and health effects of low doses of ionizing radiation in the context of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Academie des Sciences, Institut de France (1995) Problems associated with the effects of low doses of ionizing radiations. Lavoisier, TecDoc, Paris (Rapport de l′Academie des Sciences, no 38)

    Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (eds) (1994) Molecular biology of the cell, 3rd edn. Garland, New York

    Google Scholar 

  • Amundson SA, Do KT, Fornace AJ (1999) Induction of stress genes by low doses of gamma rays. Radiat Res 152:225–231

    Article  PubMed  CAS  Google Scholar 

  • Anderson RE (1992) Effects of low-dose radiation on the immune response. In: Calabrese EJ (ed) Biological effects of low level exposures to chemicals and radiation. Lewis Pub Inc, Chelsea, MI, pp 95–112

    Google Scholar 

  • Azzam EI, de Toledo SM, Raaphorst GP, Mitchel REJ (1994) Résponse adaptive au rayonnement ionisant des fibroblastes des peau humain. Augmentation de la vitesse de reparation de l’ADN et variation de l’expression des génes. J de Chimie Physique 91:931–936

    CAS  Google Scholar 

  • Azzam El, Toledo SM de, Raaphorst GP et al (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res 146:369–373

    Article  PubMed  CAS  Google Scholar 

  • Azzam EI, de Toledo SM, Gooding T et al (1998) Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluency of alpha particles. Radiat Res 150:497–504

    Article  PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Brooks AL (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis; bystander effects, and genomic instability. Radiat Res 156:618–627

    Article  PubMed  CAS  Google Scholar 

  • Beckman KD, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Belyakov OV, Folkard M, Mothersill C et al (2002) Bystander-induced apoptosis and premature differentiation in primary urothelial expiants after charged particle microbeam irradiation. Radiat Prot Dosimetry 99:249–251

    Article  PubMed  CAS  Google Scholar 

  • Bond VP, Fliedner TM, Archambeau JO (1966) Mammalian radiation lethality: a disturbance in cellular kinetics. Academic, New York

    Google Scholar 

  • Bond VP, Benary V, Sondhaus CA et al (1995) The meaning of linear dose-response relations, made evident by use of absorbed dose to the cell. Health Phys 68:786–792

    Article  PubMed  CAS  Google Scholar 

  • Boothman DA, Meyers M, Odegaard E, Wang M (1996) Altered Gl checkpoint control determines adaptive survival responses to ionizing radiation. Mutation Res. 358:143–153

    Article  PubMed  Google Scholar 

  • Brooks AL, Retherford JC, McClellan RO (1974) Effects of 238PuO2 particle number and size on the frequency and distribution of chromosome aberrations in the liver of the Chinese hamster. Radiat Res 59:693–709

    Article  PubMed  CAS  Google Scholar 

  • DOE/NIH, Feinendegen LE, Neumann RD(eds) (2000) Cellular responses to low doses of ionizing radiation. Workshop of the US Department of Energy (DOE), Washington, DC, and the National Institutes of Health (NIH), Bethesda, MD, 27-30 Apr 1999. Mary Woodward Lasker Center, Cloister, NIH; DOE Report Publication SC-047

    Google Scholar 

  • Broome EJ, Brown DL, Mitchel REJ (2002) Dose response for adaptation to low doses of 60Co-gamma rays and 3H beta particles in normal human fibroblasts. Radiat Res 158:181–186

    Article  PubMed  CAS  Google Scholar 

  • Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE (1991) Radiation risk of tissue late effect, a net consequence of probabilities of various cellular responses. Eur J Nucl Med 18:740–751

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE (1999) The role of adaptive responses following exposure to ionizing radiation. Hum Exp Toxicol 18:426–432

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE (2002) Reactive oxygen species in cell responses to toxic agents. Huma Exp Toxicol 21:85–90

    Article  CAS  Google Scholar 

  • Feinendegen LE, Pollycove M (2001) Biologic response to low doses of ionizing radiation: detriment versus hormesis, part 1. Dose responses of cells and tissues. J Nucl Med 42:17N–27N

    PubMed  CAS  Google Scholar 

  • Feinendegen LE, Graessle DH (2003) Energy deposition in tissue during chronic irradiation and the biological consequences. Br J Radiol [Suppl 26] (in press)

    Google Scholar 

  • Feinendegen LE, Muehlensiepen H, Lindberg C et al (1984) Acute and temporary inhibition of thymidine kinase in mouse bone marrow cells after low-dose exposure. Intern J Radiat Biol 45:205–215

    Article  CAS  Google Scholar 

  • Feinendegen LE, Booz J, Bond VP et al (1985) Microdosimetric approach to the analysis of cell responses at low dose and low dose rate. Radiat Prot Dosimetry 13:299–306

    Google Scholar 

  • Feinendegen LE, Muehlensiepen H, Bond VP et al (1987) Intracellular stimulation of biochemical control mechanisms by low-dose low-LET irradiation. Health Phys 52:663–669

    Article  PubMed  CAS  Google Scholar 

  • Feinendegen LE, Bond VP, Booz J (1994) The quantification of physical events within tissue at low levels of exposure to ionizing radiation. ICRU-News 2:9–13

    Google Scholar 

  • Feinendegen LE, Loken MK, Booz J et al (1995) Cellular mechanisms of protection and repair induced by radiation exposure and their consequences for cell system responses. Stem Cells 13[Suppl l]:7–20

    PubMed  Google Scholar 

  • Feinendegen LE, Bond VP, Sondhaus CA et al (1999) Cellular signal adaptation with damage control at low doses versus the predominance of DNA damage at high doses. CR Acad Sci Paris Life Sci 322:245–251

    CAS  Google Scholar 

  • Feinendegen LE, Bond VP, Sondhaus CA (2000) The dual response to low-dose irradiation: induction vs. prevention of DNA damage. In: Yamada T, Mothersill C, Michael BD, Potten CS (eds) Biological effects of low dose radiation. Excerpta medica. International Congress Series 1211. Elsevier, Amsterdam, pp 3–17

    Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg-Schwager M (1990) Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Rad Environ Biophys 29:273–292

    Article  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington DC

    Google Scholar 

  • Gell-Mann M (1994) The quark and the jaguar. Freeman, New York

    Google Scholar 

  • Golder-Novoselsky E, Ding L-H, Chen F et al (2002) Radiation response in normal HSF (human skin fibroblasts): cDNA microarray analysis. DOE Low Dose Radiation Research Program Workshop III (abstract). Office of Biological and Environmental Research, US Department of Energy, Washington DC

    Google Scholar 

  • Hanawalt PC (1995) DNA repair comes of age. Mutat Res 336:101–113

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (2000) Radiobiology for the radiologist, 5th edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  • Hashimoto S, Shirato H, Hosokawa M et al (1999) The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumorbearing rats. Radiat Res 151:717–724

    Article  PubMed  CAS  Google Scholar 

  • Ikushima T, Aritomi H, Morisita J (1996) Radioadaptive response: efficient repair of radiation-induced DNA damage in adapted cells. Mutat Res 358:193–198

    Article  PubMed  Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (1983) Microdosimetry. ICRU-Report 36. ICRU, Bethesda MD

    Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (1998) Fundamental Quantities and units for ionizing radiation. ICRU-Report 60. ICRU, Bethesda MD

    Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (2002) Absorbed-dose specification in nuclear medicine. ICRU-Report 67. ICRU, Bethesda MD

    Google Scholar 

  • James SJ, Makinodan T (1990) T-cell potentiation by low dose ionizing radiation: possible mechanisms. Health Physics 59:29–34

    Article  PubMed  Google Scholar 

  • Jaruga P, Dizdaroglou M (1996) Repair of products of oxidative DNA base damage in human cells. Nucleic Acid Res 24:1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Joiner MC, Lambin P, Malaise EP et al (1996) Hypersensitivity to very low single radiation doses: its relationship to the adaptive response and induced radioresistance. Mutat Res 358:171–183

    Article  PubMed  Google Scholar 

  • Joiner MC, Lambin P, Marples B (1999) Adaptive response and induced resistance. Compt Rend Acad Sci Paris. Life Sci 322:167–175

    CAS  Google Scholar 

  • Joiner MC (2002) Personal communication

    Google Scholar 

  • Kawakita Y, Ikekita M, Kurozumi R, Kojima SP (2003) Increase of intracellular glutathione by low-dose gammaray irradiation is mediated by transcription factor AP-1 in RAW 264.7 cells. Biol Pharm Bull 26:19–23

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Matsuki O, Nomura T et al (1998) Induction of mRNAs for glutathione synthesis-related proteins in the mouse liver by low doses of γ-rays. Biochim Biophys Acta 1381:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Ishida H, Takahashi M et al (2002) Elevation of glutathione induced by low-dose gamma rays and its involvement in increased natural killer activity. Radiat Res 157:275–280

    Article  PubMed  CAS  Google Scholar 

  • Kondo S (1988) Altruistic cell suicide in relation to radiation hormesis. Int J Radiat Biol 53:95–102

    Article  CAS  Google Scholar 

  • Kondo S (1993) Health effects of low level radiation. Kinki Univ Press, Osaka, Japan; Medical Physics, Madison WI, USA

    Google Scholar 

  • Kondo S (1999) Evidence that there are threshold effects in risk of radiation. J Nucl Sci Technol 36:1–9

    Article  CAS  Google Scholar 

  • Le XC, Xing JZ, Lee J et al (1998) Inducible repair of thymine glycol detected by an ultrasensitive assay for DNA damage. Science 280:1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Lehnert BE, Iyer R (2002) Exposure to low-level chemicals and ionizing radiation: reactive oxygen species and cellular pathways. Hum Exp Toxicol 21:65–69

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1996) The Croonian Lecture, 1996: endogenous damage to DNA. Philos Trans R Soc Lond B Biol Sci 351:1529–1538

    Article  PubMed  CAS  Google Scholar 

  • Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21:397–404

    Article  PubMed  CAS  Google Scholar 

  • Makinodan T (1992) Cellular and subcellular alteration in immune cells induced by chronic, intermittent exposure in vivo to very low dose of ionizing radiation (ldr) and its ameliorating effects on progression of autoimmune disease and mammary tumor growth. In: Sugahara T, Sagan LA, Aoyama T (eds) Low-dose irradiation and biological defense mechanisms. Excerpta Medica, Amsterdam, pp 233–237

    Google Scholar 

  • Matsumoto H, Hayashi S, Hatashita M et al (2001) Induction of radioresistance by nitric oxide-mediated bystander effect. Radiat Res 155:387–396

    Article  PubMed  CAS  Google Scholar 

  • Mitchel REJ, Jackson JS, Morrison DP, Carlisle SM (2003) Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer prone, radiation sensitive Trp53 heterozygous mice. Radiat Res 159:320–327

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Abe K, Urano S, Furuse T, Noda Y, Tatsumi K, Suzuki S (2002) Adaptive response and influence of aging: effects of low-dose irradiation on cell growth of cultured glial cells. Int J Radiat Biol 78:911–921

    Article  Google Scholar 

  • Mothersill C, Seymour CB (1997) Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol 71:421–427

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52:6394–6396

    PubMed  CAS  Google Scholar 

  • Norimura T, Nomoto S, Katsuki M et al (1996) p 53 dependent apoptosis suppresses radiation teratogenesis. Nature Med 2:577–580

    Article  PubMed  CAS  Google Scholar 

  • Ohyama H, Yamada T (1998) Radiation-induced apoptosis: a review. In: Yamada T, Hashimoto Y (eds) Apoptosis, its roles and mechanisms. Business Center for Academic Societies, Japan, Tokyo, pp 141–186

    Google Scholar 

  • Pollycove M, Feinendegen LE (2001) Biologic response to low doses of ionizing radiation: detriment versus hormesis, part 2. Dose responses of organisms. J Nucl Med 42:26N–32N

    PubMed  CAS  Google Scholar 

  • Pollycove M, Feinendegen LE (2003) Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage. Hum Exp Toxicol (in press)

    Google Scholar 

  • Potten CS (1977) Extreme sensitivity of some intestinal crypt cells to X and y irradiation. Nature 269:518–521

    Article  PubMed  CAS  Google Scholar 

  • Ramana CV, Boldogh I, Izumi T et al (1998) Activation of apurinic/apyrimidinic endonudease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci USA 95:5061–5066

    Article  PubMed  CAS  Google Scholar 

  • Redpath JL, Antoniono RJ (1998) Introduction of an adaptive response against spontaneous neoplastic transformation in vitro by low-dose gamma radiation. Radiat Res 14:517–520

    Article  Google Scholar 

  • Sakamoto K, Myojin M, Hosoi Y et al (1997) Fundamental and clinical studies on cancer control with total or upper half body irradiation. J Jpn Soc Ther Radiol Oncol 9:161–175

    Google Scholar 

  • Sawant SG, Randers-Pehrson G, Geard CR et al (2001a) The bystander effect in radiation oncogenesis I. Transformation in C3H Tl/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res 155:397–401

    Article  PubMed  CAS  Google Scholar 

  • Sawant SG, Randers-Pehrson G, Metting NF et al (2001b) Adaptive response and the bystander effect induced in C3H 10T1/2 cells in culture. Radiat Res 156:177–180

    Article  PubMed  CAS  Google Scholar 

  • Sen K, Sies H, Baeurle P (eds) (2000) Redox regulation of gene expression. Academic Press, San Diego

    Google Scholar 

  • Shadley JD, Wiencke JK (1989) Induction of the adaptive response by X-rays is dependent on radiation intensity. Int J Radiat Biol 56:107–118

    Article  PubMed  CAS  Google Scholar 

  • Short SC, Woodcock M, Marples B, Joiner MC (2003) Effects of cell cycle phase on low-dose hyper-radiosensitivity. Int J Radiat Biol 79:99–105

    PubMed  CAS  Google Scholar 

  • Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Res 30:225–243

    Article  CAS  Google Scholar 

  • Sugahara T, Sagan LA, Aoyama T (eds) (1992) Low-dose irradiation and biological defense mechanisms. Excerpta Medica, Amsterdam

    Google Scholar 

  • Shu-Zheng L, Yin-Chun Z, Ying M, Xu S, Jian-Xiang L (1996) Thymocyte apoptosis in response to low-dose radiation. Mutation Res 358:185–191

    Article  Google Scholar 

  • Suzuki K, Kodama S, Watanabe M (1998) Suppressive effect of low-dose preirradiation on genetic instability induced by X rays in normal human embryonic cells. Radiat Res 150:656–662

    Article  PubMed  CAS  Google Scholar 

  • Tanooka H (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic β-irradiation experiments and a review of non-tumor doses. Int J Rad Biol 77:541–551

    Article  PubMed  CAS  Google Scholar 

  • UNSCEAR (1994) Sources and effects of ionizing radiation, Annex B, Adaptive responses to radiation in cells and organisms. United Nations, New York

    Google Scholar 

  • Vilenchik MM, Alfred G, Knudson AG Jr (2000) Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates. Proc Natl Acad Sci USA 97:5381–5386

    Article  PubMed  CAS  Google Scholar 

  • Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150 [Suppl]:60–79

    Article  Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35:95–125

    Article  PubMed  CAS  Google Scholar 

  • Wolff S (1998) The adaptive response in radiobiology: evolving insights and implications. Environ Health Perspect 106:277–283

    PubMed  Google Scholar 

  • Wolff S, Afzal V, Wienke JK et al (1988) Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA. Int J Radiat Biol 53:39–49

    Article  CAS  Google Scholar 

  • Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Hashimoto Y (eds) (1998) Apoptosis, its roles and mechanisms. Business Center for Academic Societies, Japan, Tokyo

    Google Scholar 

  • Yamamoto O, Seyama T, Jo T et al (1995) Oral administration of tritiated water (THO) in mouse II. Tumours development. Int J Radiat Biol 68:47–54

    Article  PubMed  Google Scholar 

  • Yamamoto O, Seyama T, Ito A et al (1998) Oral administration of tritiated water (THO) in mouse III. Low dose-rate irradiation and threshold dose-rate for radiation risk. Int J Radiat Biol 73:535–541

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka K (1991) Increased SOD activities and decreased lipid peroxide in rat organs induced by low X-irradiation. Free Radie Biol Med 11:3–7

    Article  Google Scholar 

  • Yamaoka K, Edamatsu R, Mori A (1992) Effects of low dose x-ray irradiation on old rats—SOD activity, lipid peroxide level, and membrane fluidity. In: Sugahara T, Sagan LA, Aoyama T (eds) Low-dose irradiation and biological defense mechanisms. Excerpta Medica, Amsterdam, London New York Tokyo, pp 419–422

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feinendegen, L.E. (2003). Biological Effects of Low Doses of Ionizing Radiation: Damage versus Protection. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics