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Abstract. Agent-based modeling is a method to model a system by autonomous 
entities. The proposed framework models single persons with personal beha-
vior, different health states and ability to spread the disease. Upon simulation, 
the epidemic emerges automatically. This approach is clear and easily unders-
tandable but requires extensive knowledge of the epidemic’s background. Such 
real-world model structures produce realistic epidemics, allowing detailed ex-
amination of the transmission process or testing and analyzing the outcome of 
interventions like vaccinations. Due to changed epidemic propagation, effects 
like herd immunity or serotype shift arise automatically. Beyond that, a modular 
structure splits the model into parts, which can be developed and validated sep-
arately. This approach makes development more efficient, increases credibility 
of the results and allows reusability and exchangeability of existing modules. 
Thus, knowledge and models can be easily and efficiently transferred, for ex-
ample to compute scenarios for different countries and similar diseases. 
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1 Introduction 

Simulation of epidemics has a long history in mathematics but also in medical fields. 
However, calculations vary a lot in addressed problems and accuracy. In the past 
years, new methods have emerged and became possible due to increasing computa-
tional power. The intention of this work is to integrate old and new methodologies in 
a newly developed framework to provide a flexible, standardized and easy-to-handle 
approach for modeling a wide class of infectious diseases. This framework consists of 
a model that relies on agent-based modeling, which is a promising young technique 
because it aims to simulate dynamic systems based on fundamental rules [1–3]. Its 
modular concept assures high flexibility. The approach should be able to produce 
accurate results by modeling epidemics in a realistic way, which helps to deal with 
uncertain dynamics and effects. It can be used for studies on a specific disease and is 
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suitable for current research on general issues concerning analysis of epidemics. The 
approach also supports handling of disputed effects like herd immunity [4, 5] and 
serotype shift [6–8], which make it hard to predict the outcomes of vaccination strate-
gies. In an agent-based model they automatically occur upon the fundamental rules 
and are not part of the model structure. 

2 Underlying Concepts 

2.1 Epidemic Modeling 

Classical approaches for epidemic modeling often use ordinary differential equation 
respectively system dynamics, where aggregated variables represent the population of 
interest that is being split by health and other attributes [9–13]. These models are easy 
to handle from a mathematical point of view but they are on a high abstraction level 
which makes it hard to go into details or calculate parameters from observed data. In 
contrast to that, another concept is simulating simplified individual people with their 
behavior and observing how an epidemic arises [3, 14, 15]. Such an approach is often 
referred to as agent-based modeling and creates an epidemic based on knowledge on 
individuals. 

2.2 Agent-Based Modeling 

Agent-based modeling is a method that emerged in the 1990s. It tries to model the 
world as it is observed, based on individual entities, which are called agents. These 
agents exist within an in-silico environment; they have attributes and behavior, can 
change themselves and also affect each other [1, 16–18]. For epidemics, this approach 
means to model single persons in their environment, give them the ability to be 
healthy or infected and assure that relevant contacts, which allow transferring the 
disease from infectious to susceptible persons, happen. Generally, it is important to 
incorporate all information relevant for the spread of an infectious disease such as 
personal attributes, social behavior concerning contacts and aspects about the disease. 
Then, one can simulate the model and observe the propagation of the disease. The 
outcome of single individuals in the model is usually not of interest which requires 
further computations. Results are commonly given by statistical analyses on the  
simulated population. 

It should be clear that agent-based modeling is not a well-defined method. It is ra-
ther a general concept that provides freedom for the modeler but requires extended 
research for specific models addressing different problems [18]. 

3 The Model Framework 

3.1 Aim 

We intend building a framework for epidemic simulation that should be flexible 
enough to be applied on different populations, different situations and on different 
diseases with different transmission paths. To support this aim, we focus on a modular 
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concept, introducing three different modules for population, contacts and disease, 
which can be developed and validated separately. Additionally, a protocol module 
tracks the agents and provides the results. 

The following chapters show an approach how to set up such a framework and how 
to read results and to interpret the dynamics of the system. The aim is to show the 
ideas, structures, challenges and potentialities, but it is not a programming instruction. 

3.2 The Population Module 

The agents, which represent people, are the most fundamental part of the model. In a 
first step, the population module has to create these people and equip them with basic 
attributes like age and gender and other relevant information about personal back-
ground or previous medical history. They might have behavior like getting older, 
eventually die, and women might give birth to children. Considering immigration and 
emigration assures an accurate population structure over long simulation periods. 

The module has to create the desired number of people and assign them these 
attributes according to their joint distribution. Additionally, it has to provide interfac-
es in a way that other modules can add more attributes and rules. Commonly, each 
interface is implemented as a reference to an object that handles all attributes and 
behavior assigned by a module. 

3.3 The Contact Module 

An infectious disease spreads by transmission from one person to another. It can be 
transmitted in various ways like for smear infections, sexually transmitted or airborne 
diseases. Pathogens can also be transmitted by food, water, or by animals like mos-
quitos. The duty of the contact module is to model all kind of events that can lead to 
transmission of the actual disease. 

We are going to present a place-based approach to build a social contact system, 
which differs from partly used contact networks [14, 19, 20]. This is done in 3 steps 
and is mostly suitable for diseases that spread directly through airborne and smear 
transmissions. Figure 1 shows an exemplary visualization of such a structure. 

(1) At first, all places where infectious contacts might happen need to be created. 
Studies often explicitly consider households, workplaces, schools, transportation and 
leisure places [21]. Based on national data, the modeler needs to identify how many 
places of each place type exist for the given population. Then, assignments to places 
indicate where people generally belong to. For example, each person gets assigned to 
exactly one household so that the household distribution by size and age of people is 
achieved [22]. Assignments to schools and workplaces tell where someone works or 
goes to school. 

(2) Step two builds a system of daily routines. In a time step, each person visits one 
or more places. Parameterization of daily routines can be tough since it usually com-
bines national data about places and social contact data. Time steps are considered to 
be atomic. This means that a person has only two options: Visiting a place within a 
time step or not. However, it makes sense to allow visiting multiple places during a 
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time step. For example, if a time step represents one day, then persons would visit all 
places of their whole daily routine. But then it is not possible any more to differentiate 
on a finer level when they go there or how much time they spend there. Desiring more 
detailed daily routines requires shorter time steps like hours or even minutes. The 
daily routine of a person depends on several factors: On personal attributes, if a per-
son is feeling sick, on the day of the week. Assigned places assure that people always 
go to the same household, school or workplace where they meet the same colleagues 
and friends, and variations, especially for transport and leisure, provide a mixing of 
random people. 

 

Fig. 1. Exemplary visualization of a person’s daily routine and contacts within a place. A per-
son visits several places each day, depending on many factors and influences. In places, con-
tacts happen between present people; number and distribution of contacts are according to 
knowledge on social studies. 

(3) This step finally creates contacts in every place between all present people 
within a time step. Social studies, often based on empirical research, serve as a basis 
for contact patterns [21]. This means to model contacts between random people in a 
place, so that contact numbers and age-distribution of studies are resembled. Depend-
ing on the place and the circumstances, contacts might be loose or close, short or 
long, physical or non-physical. 

3.4 The Disease Module 

The duty of the disease module is the handling of all aspects concerning the disease. 
An agent-based model involves information on an individual level, which can be split 
up into three parts: First, disease and health states of a person, second, state changes 
caused by contacts and third, state changes independent of contacts. Figure 2 shows 
an exemplary visualization of these tasks. 
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Fig. 2. Exemplary visualization of disease states and state changes. An infectious contact can 
cause an infection, resulting in an automatic disease process of different states until the person 
recovers. 

The states are attributes of persons to describe their condition concerning the dis-
ease. In simple models there might be only a few states like healthy and sick, and 
every person is in either one or the other state. In more detailed models, states can 
consist of a combination of attributes like susceptibility, being infected with the pa-
thogen, being infectious, symptoms severity, feeling pain or passed duration of an 
infection. The state also contains information about the immune system and about the 
patient’s medical history. State changes upon contacts typically define transmissions 
of the disease but technically can trigger any desired action. Whenever a contact hap-
pens, the involved persons can change their state, depending on their own and their 
contact person’s states, and also on the contact characteristics like duration or intensi-
ty. For complex diseases it is suggested to split this action into an attack phase, where 
the infected person transmits the disease with a probability, followed by a receive 
phase where the susceptible person either gets infected or defeats the disease. Often, 
transmission of a disease is not a deterministic process, but happens under special 
conditions with a certain probability. The other state changes might depend on the 
state of the person and their environment. They typically represent progression of a 
disease, recovery, or general changes of the personal health. 

Disease states can also affect other modules. For example, a disease might affect 
the daily routine of persons so that they only stay at home and do not go to work or 
school. Disease might cause the death of a person which is handled by the population 
module. 

3.5 The Protocol Module 

The protocol module keeps track of all information of interest to generate the desired 
results. There are two possible approaches. The first possibility is that the protocol 
permanently checks everything that happens and stores the information of interest. 
This approach can be extended to a so called VOMAS (Virtual Overlay Multi-Agent 
System), a well-known method where an overlay is added to the model containing 
another type of agents that watch and log [23]. The other approach is having a listen-
ing protocol module while it is the agents’ duty to report all information of interest. 
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and perform changes only between time steps. At first, contacts are created and con-
tact-based infections and changes are calculated. Then, other changes are created by 
the modules. Finally, every person has a set of proposed changes. The logical proce-
dure of deciding the personal state for the next time step highly depends on the actual 
disease. Generally it makes sense to apply all attributes that do not affect each other, 
while competitive changes within one time step, for example new infections, recove-
ries, infections with different diseases or vaccinations, might be chosen case depen-
dent. The only restriction is to find a well-defined state for every person for the next 
time step. The protocol module keeps track of the information of interest (e.g., per-
sonal states and proposed and performed state changes) and also of other relevant 
happenings (e.g., constructed contacts). This procedure is repeated for each time step 
and results in an evolving system. Finally, in the results phase the protocol module 
stores and represents the collected data in an appropriate format. Commonly this in-
cludes histograms and time series but, depending on the actual model, further  
statistical analyses and experimental visualizations might be possible and useful. 

4 Parameter Settings and Interpretation of Results 

Correct parameterization and interpretation of the model results are crucial aspects for 
modeling of epidemics. Most aspects are time related. The model itself does not pro-
vide any real timing like days, weeks or years. Instead, it calculates a number of time 
steps, which have to be interpreted as real time units. For example, for fast-evolving 
epidemics like ebola or influenza it makes sense to define a time step as a short inter-
val like some hours or days. Slow-evolving epidemics such as HIV do not require a 
daily simulation, hence one time step might represent a week, months or even years. 
Following the good practice in modeling to make a model as simple as possible and as 
complex as required, it is recommended to set the time steps short enough to obtain 
all desired dynamics and long enough to prevent unnecessary overhead [24]. 

Once the time steps are defined, the other parameter values can be set. Number of 
contacts and many disease parameters are given time-dependent; hence they need to 
correlate to the timing of the model. For example, if the recovery time is known to be 
two weeks and the model simulates day by day, then the recovery time has to be set as 
14 time steps. If the recovery time is known as a half day only then one might revise 
the timing and consider defining one time step as 12 hours.  

Wrong parameter settings might not only distort results, they can even change the 
dynamic of the whole system. Sensitivity analysis is a good way to overcome this 
issue, to show the impact of uncertain parameters and to analyze the range of possible 
results. Like for statistical calculations, processing results of agent-based models al-
ways leaves room for interpretation. Hence, it is crucial to scrutinize the way results 
are generated from agents’ data and discuss whether results correctly represent what 
they pretend. 
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5 Discussion and Outlook 

The agent-based concept offers great benefits. Constructing a system that produces an 
epidemic in a similar way as it happens in reality produces reliable results and allows 
a wide range of testing assumptions. A real-looking structure leads to a better under-
standing of the model so that it is easier to communicate, gains a higher acceptance 
and allows non-modelers to comment on it, which helps improving it. 

Consideration of vaccinations allows testing of various scenarios. In this context, a 
few interesting effects occur, which are represented accordingly in the agent-based 
model. Stochastic calculations and models are able to consider such effects only if 
they are known for every single parameter setting. Often, this is a severe issue be-
cause they cannot be measured for future scenarios and also cannot be extrapolated 
from available data. In the agent-based model, where the epidemic automatically 
emerges upon basic rules, herd immunity and serotype shift both occur and can even 
be examined without prior knowledge. This does not only make results more trusta-
ble, it even allows fundamental research on the spread of epidemics. Yet it is a matter 
of current research to find a definition and a standardized way for measurement of 
herd immunity and serotype shift [5]. Beyond that, observation and analysis of the 
basic reproduction rate R0, which commonly describes the strength of an epidemic, is 
possible [25]. 

However, the method also has an issue that requires additional effort: If a relevant 
basic factor is not considered or included in a wrong way, then the model might still 
produce epidemics, but the propagation of the disease will happen incorrectly. Hence, 
the results will be wrong. Validation is a term containing a wide class of methods to 
overcome this issue by asking whether the model is being developed according to the 
model question [26–28]. Hence, it helps to identify problems and errors and increases 
the credibility of the model. 

Another key benefit is the modular structure, especially for well-planned interfaces 
between the modules. First, the modular approach allows independent development of 
the modules, reusability of modules, combinations of existing modules. Thus, a pool 
of modules can be developed to create specific models just by assembling them. For 
example, various population modules representing different societies allow efficient 
transferability of the model to other countries. Development of new disease modules 
makes it possible to use an existing model for simulating other diseases. Second, it 
assures that changes only affect one specific module, which makes changes, adoptions 
and improvements easier. This highly supports an iterative modeling process. A third 
benefit is that separate validation of the single modules supports validating the whole 
model. Hence, validated modules might be reused for other projects, which decreases 
effort and increases accuracy. 

6 Conclusions 

Agent-based modeling is a promising way to simulate epidemics. It models individual 
people, their contacts and transmissions. The global spread of the disease is not  
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explicitly defined and happens automatically. Such a system has great benefits be-
cause it allows modeling complex dynamics based on simple rules. The structures, 
which finally lead to an epidemic, should correspond to reality. If these real-world 
structures incorporate all relevant basics then they result in a real-world behavior. 
This leads to direct calculation of different scenarios and high quality results and al-
lows examination of widely disputed and unknown effects. Studying the infection and 
propagation process and its impact on the overall spread is also possible. From a tech-
nical point of view, it is generally simple to make changes for different assumptions 
in agent-based models, especially modular ones, because they only affect a small part 
of the model while other model parts remain unchanged. 
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