
Artiom Alhazov
Svetlana Cojocaru

Marian Gheorghe

Yurii Rogozhin (Eds.)

14th International Conference
on Membrane Computing

CMC14, Chişinău, Moldova, August 20-23, 2013

Proceedings

The Conference is dedicated to the 50th

anniversary of the Institute of Mathematics
and Computer Science

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Copyright c© Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova, 2013.
All rights reserved.

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE
5, Academiei Str., Chişinău, Republic of Moldova, MD 2028
Tel: (373 22) 72-59-82, Fax: (373 22) 73-80-27,
E-mail: imam (at) math.md

WEB address: http://www.math.md

Editors: Dr. Artiom Alhazov1, Prof. Svetlana Cojocaru1, Dr. Marian
Gheorghe2, Prof. Yurii Rogozhin1.

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova, Chişinău, Moldova

2 Department of Computer Science
The University of Sheffield, Sheffield, UK

Authors are fully responsible for the content of their papers.

CZU 004+519.7(082)

I-58

Descrierea CIP a Camerei Naţionale a Cărţii

 "International Conference on Membrane Computing", conf. intern.
(14; 2013; Chişinău). 14th International Conference on Membrane
Computing: Proceedings: The Conference is dedicated to the 50th anniversary
of the Institute of Mathematics and Computer Science, CMC14, 20-23 aug.
2013, Chisinău, Moldova/ed.: Artiom Alhazov [et al.]. – Chişinău: Institute of
Mathematics and Computer Science, 2013 (Tipogr. "Valinex SRL"). – 333 p.
 Antetit.: Inst. of Mathematics and Computer Science, Acad. of Sciences
of Moldova. – Referinţe bibliogr. la sfârşitul art. – 50 ex.
 ISBN 978-9975-4237-2-4.

004+519.7(082)

ISBN 978-9975-4237-2-4

Preface

This volume contains the papers presented at the 14th International Confer-
ence on Membrane Computing, CMC14, (http://www.math.md/cmc14/), which
took place in Chişinău, Moldova, in the period of August 20−23, 2013.

The CMC series was initiated by Gheorghe Păun as the Workshop on Multi-
set Processing in the year 2000. Then two workshops on Membrane Computing
were organized in Curtea de Argeş, Romania, in 2001 and 2002. A selection of
papers of these three meetings were published as volume 2235 of the Lecture
Notes in Computer Science series, as a special issue of Fundamenta Informati-
cae (volume 49, numbers 1−3, 2002), and as volume 2597 of Lecture Notes in
Computer Science, respectively. The next six workshops were organized in Tar-
ragona, Spain (in July 2003), Milan, Italy (in June 2004), Vienna, Austria (in
July 2005), Leiden, The Netherlands (in July 2006), Thessaloniki, Greece (in
June 2007), and Edinburgh, UK (in July 2008), with the proceedings published
in Lecture Notes in Computer Science as volumes 2933, 3365, 3850, 4361, 4860,
and 5391, respectively. The 10th workshop returned to Curtea de Argeş in Au-
gust 2009 (LNCS volume 5957). From the year 2010, the series of meetings on
membrane computing continued as the Conference on Membrane Computing
with the 2010, 2011 and 2012 editions held in Jena, Germany (LNCS volume
6501), in Fontainebleau, France (LNCS volume 7184), and Budapest, Hungary
(LNCS volume 7762).

A Steering Committee takes care of the continuation of the CMC series which
is organized under the auspices of the European Molecular Computing Consor-
tium (EMCC). In 2013, also a regional version of CMC, the Asian Conference
on Membrane Computing, ACMC, takes place in Chengdu, China.

The Steering Committee of the CMC series consists of Gabriel Ciobanu (Iaşi,
Romania), Erzsébet Csuhaj-Varjú (Budapest, Hungary), Rudolf Freund (Vi-
enna, Austria), Pierluigi Frisco (Edinburgh, UK), Marian Gheorghe (Sheffield,
UK) - chair, Vincenzo Manca (Verona, Italy), Maurice Margenstern (Metz,
France), Giancarlo Mauri (Milan, Italy), Linqiang Pan (Wuhan, China), Gheo-
rghe Păun (Bucharest, Romania/Seville, Spain), Mario J. Pérez-Jiménez (Seville,
Spain), Petr Sosik (Opava, Czech Republic) and Sergey Verlan (Paris, France).

The CMC14 conference was organized by Institute of Mathematics and Com-
puter Science of the Academy of Sciences of Moldova Republic.

The Program Committee invited lectures from Jozef Gruska (Brno, Czech
Republic), Gheorghe Păun (Bucharest, Romania/Seville, Spain), Alberto Lepo-
rati (Milano, Italy), Marian Gheorghe (Sheffield, UK), Petr Sosik (Opava, Czech
Republic) and Sergey Verlan (Paris, France).

In addition to the texts or the abstracts of the invited talks, this volume
contains 19 full papers and an extended abstract, each of which was subject to

4

at least two referee reports. In addition the volume contains 4 short papers in a
progress.

The Program Committee of CMC13 consisted of Artiom Alhazov (Chişinău,
Moldova) co-chair, Gabriel Ciobanu (Iaşi, Romania), Alexandru Colesnicov (Chi-
şinău, Moldova), Erzsébet Csuhaj-Varjú (Budapest, Hungary), Giuditta Franco
(Verona, Italy), Rudolf Freund (Vienna, Austria), Marian Gheorghe (Sheffield,
UK) co-chair, Tomas Hinze (Jena, Germany), Florentin Ipate (Iaşi, Romania),
Alberto Leporati (Milano, Italy), Vincenzo Manca (Verona, Italy), Maurice Mar-
genstern (Metz, France), Giancarlo Mauri (Milan, Italy), Radu Nicolescu (Au-
cland, New Zealand), Linqiang Pan (Wuhan, China), Gheorghe Păun (Bucharest,
Romania and Seville, Spain), Dario Pescini (Milan, Italy), Agustin Riscos-Núñez
(Seville, Spain), Yurii Rogozhin (Chişinău, Moldova) co-chair, Francisco J. Ro-
mero-Campero (Seville, Spain), Petr Sosik (Opava, Czech Republic), György
Vazsil (Debrecen, Hungary), Sergey Verlan (Paris, France) and Claudio Zan-
dron (Milan, Italy).

The Organizing Committee consisted of Artiom Alhazov, Lyudmila Burtseva,
Svetlana Cojocaru, Alexandru Colesnicov, Ludmila Malahov, Olga Popcova and
Yurii Rogozhin.

The editors warmly thank the Program Committee, the invited speakers, the
authors of the papers, the reviewers, and all the participants, as well as all who
contributed to the success of CMC14.

Chişinău, July 2013 Artiom Alhazov
Svetlana Cojocaru
Marian Gheorghe
Yurii Rogozhin

Contents 5

Contents

Preface 3

Invited Papers 7

Marian Gheorghe, Florentin Ipate: Kernel P Systems - A Survey . . . 9

Jozef Gruska: New Vision and Future of Informatics. Extended abstract 11

Alberto Leporati: Computational Complexity of P Systems with Active
Membranes . 15

Gheorghe Păun: Some Open Problems About Catalytic, Numerical,
and Spiking Neural P Systems 25

Petr Sośık: Computational Complexity in Membrane Computing: Is-
sues and Challenges . 35

Sergey Verlan: Using the Formal Framework for P Systems 37

Regular Papers 39

Artiom Alhazov, Svetlana Cojocaru, Alexandru Colesnicov, Ludmila
Malahov, Mircea Petic: A P System for Annotation of Romanian
Affixes . 41

Bogdan Aman, Gabriel Ciobanu: Behavioural Equivalences in Real-
Time P Systems . 49

I.T. Banu-Demergian, G. Stefanescu: The Geometric Membrane Struc-
ture of Finite Interactive Systems Scenarios 63

Luděk Cienciala, Lucie Ciencialová, Miroslav Langer: Modelling of
Surface Runoff using 2D P colonies 81

Alex Ciobanu, Florentin Ipate: Implementation of P Systems by using
Big Data Technologies . 95

Erzsébet Csuhaj-Varjú, György Vaszil: On Counter Machines versus
dP Automata . 117

Ciprian Dragomir, Florentin Ipate, Savas Konur, Raluca Lefticaru,
Laurentiu Mierla: Model Checking Kernel P Systems 131

Rudolf Freund: Purely Catalytic P Systems: Two Catalysts Can Be
Sufficient for Computational Completeness 153

Zsolt Gazdag: Solving SAT by P Systems with Active Membranes in
Linear Time in the Number of Variables 167

Nestine Hope S. Hernandez, Richelle Ann B. Juayong, Henry N. Adorna:
Solving Hard Problems in Evolution-Communication P systems
with Energy . 181

Sergiu Ivanov, Sergey Verlan: About One-Sided One-Symbol Insertion-
Deletion P Systems . 199

Alberto Leporati, Luca Manzoni, Antonio E. Porreca: Flattening and
Simulation of Asynchronous Divisionless P Systems with Active
Membranes . 213

6 Contents

Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Claudio Zan-
dron: Enzymatic Numerical P Systems Using Elementary Arith-
metic Operations . 225

Tamás Mihálydeák, Zoltán Ernő Csajbók, Péter Takács: Communica-
tion Rules Working in Generated Membrane Boundaries 241

Radu Nicolescu, Florentin Ipate, Huiling Wu: Towards High-level P
Systems Programming using Complex Objects 255

Adam Obtu lowicz: In Search of a Structure of Fractals by using Mem-
branes as Hyperedges . 277

M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera:
The Relevance of the Environment on the Efficiency of Tissue P
Systems . 283

Short Papers 297

Bogdan Aman, Gabriel Ciobanu: Expressing Active Membranes by
using Priorities, Catalysts and Cooperation 299

Gabriel Ciobanu, Dragoş Sburlan: Causal Sequences and Indexed Mul-
tisets . 303

Henning Fernau, Rudolf Freund, Sergiu Ivanov, Marion Oswald, Markus
L. Schmid, K.G. Subramanian: Undecidability and Computa-
tional Completeness for P Systems with One- and Two-dimensional
Array Insertion and Deletion Rules 309

Miklós Fésüs, György Vaszil: Chemical Programming and Membrane
Systems . 313

Rudolf Freund, Marion Oswald, Gheorghe Păun: Catalytic and Purely
Catalytic P Systems and P Automata: Control Mechnisms for
Obtaining Computational Completeness 317

Rudolf Freund, Yurii Rogozhin, Sergey Verlan: Computational Com-
pleteness with Generating and Accepting P Systems Using Mini-
mal Left and Right Insertion and Deletion 321

Alberto Leporati, Lyudmila Burtseva: A Quantum Inspired UREM P
System for Solving a Linguistic Problem 325

Petr Sośık: A Catalytic P System with Two Catalysts Generating a
Non-Semilinear Set . 329

Author Index 333

Invited Papers

7

Kernel P Systems - A Survey

Marian Gheorghe1 and Florentin Ipate2

1
Department of Computer Science

University of Sheffield

Portobello Street, Regent Court, Sheffield, S1 4DP, UK

m.gheorghe@sheffield.ac.uk
2

Department of Computer Science

University of Bucarest

Str Academiei, 14, Bucarest, Romania

florentin.ipate@ifsoft.ro

Different classes of P systems have been introduced and studied for their
computational power or for modelling various problems, like solving simple al-
gorithms, NP-complete problems, or various applications in biology, graphics,
linguistics etc. More recently various distributed algorithms and problems have
been studied with a new variant of P systems. In many cases the specification
of the system investigated requires features, constraints or types of behaviour
which are not always provided by the model in its initial definition. It helps in
many cases to have some flexibility with modelling approaches, especially in the
early stages of investigating a problem, as it might simplify the model, shorten
associated processes and clarify more complex or unknown aspects of the system.
The downside of this is the lack of a coherent and well-defined framework that
allows us to analyse, verify and test this behaviour and simulate the system. In
this respect the concept of kernel P system (kP system) has been introduced
in order to include the most used concepts from P systems with the aim of
modelling a large class of problems and systems.

This new class of P systems use a graph-like structure (so called, tissue P

systems) with a set of symbols, labels of membranes, and rules of various types.
A broad range of strategies to run the rules against the multiset of objects avail-
able in each compartment is provided. The rules in each compartment will be
of two types: (i) object processing rules which transform and transport objects
between compartments or exchange objects between compartments and envi-
ronment and (ii) structure changing rules responsible for changing the system’s
topology. Each rule has a guard resembling activators and inhibitors associated
with certain variants of P systems. We consider rewriting and communication
rules, membrane division, dissolution, bond creation and destruction.

The kP system discussed in this work represents a low level modelling lan-
guage which are complex enough to describe various problems in a relatively
efficient and adequate way. Its key features will be illustrated by examples. Con-
nections of various other classes of P systems with kernel P systems will be
discussed and the efficient way of solving various problems within this context
will be presented. Its syntax and informal semantics will be introduced and
analysed. Finally, some implementation issues will be identified and references
to the case of a specific implementation of the entire kP systems language, allow-

10 M. Gheorghe et al

ing simulation and formal verification will be made and a discussion regarding
efficient implementations of its backend on a parallel hardware platform will be
presented.

The work reported here includes developments undertaken by other groups
and future plans for further steps in this field.

Acknowledgement. The work of MG and FI was partially supported by
the MuVet project, Romanian National Authority for Scientific Research (CNCS
– UEFISCDI), grant number PN-II-ID-PCE-2011-3-0688.

New Vision and Future of Informatics.

Extended abstract

Jozef Gruska

Faculty of Informatics, Masaryk University

Brno, Czech Republic

Currently dominating perception of computer science has its origin in a very
cleverly written, and much influential, paper of Newel, Simon and Perlis, pub-
lished in Science in 1967, that well captured the perception of the field at that
time.

The basic ideas presented in their paper were:
”Whenever there are phenomena there can be a science dealing with these

phenomena. Phenomena breed sciences. Since there are computers, there is com-

puter science. The phenomena surrounding computers are varied, complex and

rich.”

Since that time there have been numerous attempts to modernize such a view
of computer science. However, such a computer-centric view of computer science
still dominates.

There are nowadays a variety of reasons why such a computer-centric view of
the field should be seen as very obsolete and actually damaging the development
of the field. They will be discussed in details in the talk. Here are some of them.

– An understanding starts to be developed that information processing plays
key role both in physical and biological nature. For example, quantum, DNA,
molecular information processing.

– Natural sciences are increasingly seen as being to a large extend information
processing driven.

– It starts to be clear that in the future any very significant innovation will
use advanced informatics tools, methods and paradigms.

All that requires that a much broader and deeper view of the field should be
developed.

A new perception of the informatics presented in the talk will see the field
as consisting of four much interleaved components: (a) scientific informatics; (b)
technological informatics; (c) new methodology; (d) application informatics. As a
scientific discipline of a very broad scope and deep nature, Informatics has many
goals. Its main task is Main tasks of scientific informatics are to discover, explore
and exploit in depth, the laws, limitations, paradigms, concepts, models, theories,
phenomena, structures and processes of both natural and virtual information
processing worlds.

To achieve its tasks, scientific Informatics concentrates on new, information
processing based, understanding of universe, evolution, nature, life (both natural
and artificial), brain and mind processes, intelligence, creativity, information

12 Jozef Gruska

storing, processing and transmission systems and tools, complexity, security,
and other basic phenomena of information processing worlds.

One way to illustrate such a broad and deep perception of scientific informat-
ics will be in the talk through presentation and analysis of its grand challenges.
The same will be for technological informatics and applied informatics.

Of a key importance for a new perception of informatics is an understand-
ing that informatics, as a symbiosis of a scientific and a technology discipline,
develops also basic ingredients of a new, in addition to theory and experiments,
third basic methodology for all sciences, technologies and society in general.

This new, informatics-based, methodology provides a new way of think-
ing and a new language for sciences and technologies, extending the Galilean
mathematics-based approach to new heights.

Informatics-driven methodology subsumes and extends the role and improves
tools mathematics used to play in advising, guiding and serving other scientific
and technology disciplines and society in general.

Power of new methodology will be discussed in the paper in details. Here are
only few of the reasoning:

– It brings new dimension to both old methodologies;
– It brings into new heights an enormous power of modeling, simulations and

visualisation;
– It utilises an enormous exploratory and discovery power of automata, algo-

rithms and complexity considerations.
– It utilizes enormous discovery and exploratory power of the correctness and

truth searching considerations and tools.
– It utilizes an enormous potential that the study of virtual worlds brings for

understanding of the real world.

Because of its enormous guiding power for practically all areas of science,
technology and the whole society and an enormously powerful tools informatics
offers, we can see informatics as a new queen and at the same time a new powerful
servant for all of society.

In particular informatics is expected to play the key role in dealing with two
main megachallenges of current science, technology and society. Namely:

– To beat natural human intelligence. More exactly, to create super-
powerful non-biological intelligence and its merge with biological intelligence.

– To beat natural human death. More exactly, to increase much longevity
for human bodies and to achieve uploading for human minds. In more details,
to fight natural death as another disease and to find ways to upload human
mind to non-biological substrate.

There starts to be enough reasons to see the above megachallenges as being
currently realistic enough. Here are some of them.

– Since information processing keeps developing exponentially we can assume
to have soon (2045?) laptops with information processing power and capacity
larger than of all human brains.

New Vision and Future of Informatics 13

– Exponential scaling up in genetic and nanotechnologies and AI create a basis
for making two megachallenges as already feasible ones.

– Exponential developments of information processing technologies are be-
lieved to imply enormous speed up developments in science and technology.

– Tools and efforts to reverse engineering brains keep also developing exponen-
tially and so we can assume to have quite soon ways to simulate functionality
of human brains.

– Society starts to put enormous effort to develop genome engineering, to
model human brains and minds as well as to vastly extend human longevity.

– A vision starts to be accepted to see the development of superintelligent
machines as the next stage of evolution.

Some related food for thoughts.

– There is nothing in biology found yet that indicates the inevitability of death.
Richard Feynman

– It seems probable that once the machine thinking method had started, it will
not take long to outstrip our feeble power. They would be able to converse
with each other to sharpen their wits. At some stage therefore, we should
have to expect machine to take control. Alan M. Turing

– Let an ultraintelligent machine be defined as a machine that can far sur-
pass all intellectual activities of any man, however clever. Since the design
of machines is one of intellectual activities, an ultraintelligent machine could
design even better machines; there would then unquestionably be and ”intel-
ligent explosion” and the intelligence of man would be left far behind. Thus
the first ultraintelligent machine is the last invention that man needs ever
make. I. J. Good, 1965, a British mathematician

– Since there is a real danger that computers will develop intelligence and take
over we urgently need to develop direct connections to brains so that com-
puters can add to human intelligence rather than be in opposition. Stephen

Hawking

Computational Complexity of P Systems
with Active Membranes

Alberto Leporati

Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano-Bicocca

Viale Sarca 336/14, 20126 Milano, Italy

alberto.leporati@unimib.it

Abstract. P systems with active membranes constitute a very inter-

esting model of computation, defined in the framework of Membrane

Computing. Since their appearance, they have been used to solve compu-

tationally difficult problems (usually in the classes NP and PSPACE),

due to their ability to generate an exponential size workspace in a polyno-

mial number of time steps. Several computational complexity techniques

have thus been applied to study their computing power and efficiency.

During the talk, I will survey some of the techniques and the main re-

sults which have been obtained in the last few years by the group of

Membrane Computing at the University of Milano-Bicocca (also known

as the “Milano Team”), sometimes in collaboration with colleagues from

the international Membrane Computing community.

1 Introduction

P systems with active membranes are a very interesting and stimulating model
of computation, defined in the framework of membrane systems [9]. They were
first introduced in [10] to attack NP-complete problems. Since then, they have
generated several variants; a general survey of these can be found in chapters 11
and 12 of [11].

In this model of P systems, also the membranes play an active role in the
computations: they possess an electrical charge that can inhibit or activate the
rules that govern the evolution of the system, and they can also increase expo-
nentially in number via division rules. This latter feature makes them extremely
efficient from a computational complexity standpoint: using exponentially many
membranes that evolve in parallel, they can be used to solve NP-complete and
even PSPACE-complete problems [22, 1] in polynomial time. Surprisingly, po-
larizations are not even needed (provided that division rules are powerful enough)
to solve these kinds of problems, as shown in [28, 4]. On the other hand, when
the ability of dividing membranes is limited the efficiency apparently decreases:
the so-called Milano theorem [27] tells us that no NP-complete problem can be
solved in polynomial time without using division rules, unless P = NP holds.

Needless to say, several computational complexity techniques have been ap-
plied to investigate the computational power and efficiency of P systems with

16 Alberto Leporati

active membranes. During my talk, I will survey some of these techniques as well
as the main results which have been obtained in the last few years by the group
of Membrane Computing at the University of Milano-Bicocca (the so-called “Mi-
lano team”), sometimes in collaboration with colleagues from the international
Membrane Computing community.

This extended abstract is organized as follows. In Section 2 I recall the formal
definition and operation of P systems with active membranes, as well as the
definition of time and space complexity. Section 3 summarizes the results on the
complexity of P systems with active membranes that will be illustrated during
the talk.

2 P Systems with Active Membranes

We start by recalling the definition of P systems with active membranes that
will be used in the rest of this paper (and during the talk as well). For a more
formal definition we refer the reader to chapter 12 of [11].

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a

tuple Π = (Γ,Λ, µ,w1, . . . , wd, R), where:

– Γ is a finite alphabet of symbols (the objects);

– Λ is a finite set of labels for the membranes;

– µ is a membrane structure (i.e., a rooted unordered tree) consisting of d
membranes, enumerated by 1, . . . , d; furthermore, each membrane is labeled

by an element of Λ, not necessarily in a one-to-one way;

– w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed

in the d regions of µ;

– R is a finite set of rules.

As usual in Membrane Computing, the membrane structure of a P system
is represented symbolically as a string of balanced nested brackets, where each
pair of corresponding open/close ones represents an individual membrane. The
nesting of brackets corresponds to the ancestor-descendant relation of nodes in
the tree; brackets at the same nesting levels can listed in any order.

Each membrane possesses, besides its label and position in µ, another at-
tribute called electrical charge (or polarization), which can be either neutral (0),
positive (+) or negative (−) and is always neutral before the beginning of the
computation.

The rules are of the following kinds:

– Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

Computational Complexity of P Systems with Active Membranes 17

– Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β.

– Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

– Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

– Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

– Nonelementary division rules, of the form

[

[]+h1
· · · []+hk

[]−hk+1
· · · []−hn

]α

h
→

[

[]δh1
· · · []δhk

]β

h

[

[]ǫhk+1
· · · []ǫhn

]γ

h

They can be applied to a membrane labeled by h, having charge α, con-
taining the positively charged membranes h1, . . . , hk, the negatively charged
membranes hk+1, . . . , hn, and possibly some neutral membranes. The mem-
brane h is divided into two copies having charge β and γ, respectively; the
positive children are placed inside the former, their charge changed to δ,
while the negative ones are placed inside the latter, their charges changed
to ǫ. Any neutral membrane inside h is duplicated and placed inside both
copies.

Each instantaneous configuration of a P system with active membranes is
described by the current membrane structure, including the electrical charges,
together with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane any number of evo-
lution rules can be applied simultaneously).

– The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary divi-
sion must be subject to exactly one of them (unless the current charge of
the membrane prohibits it). The same reasoning applies to each membrane

18 Alberto Leporati

that can be involved to communication, dissolution, elementary or nonele-
mentary division rules. In other words, the only objects and membranes that
do not evolve are those associated with no rule, or only to rules that are not
applicable due to the electrical charges.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– While all the chosen rules are considered to be applied simultaneously during
each computation step, they are logically applied in a bottom-up fashion:
first, all evolution rules are applied to the elementary membranes, then all
communication, dissolution and division rules; then we proceed towards the
root of the membrane structure. In other words, each membrane evolves only
after its internal configuration has been updated.

– The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of a P system is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
by Ci via a single computation step, and no rules can be applied anymore in Ck.
A non-halting computation consists of infinitely many successive configurations
C = (Ci : i ∈ N).

P systems can be used as recognisers by employing two specified objects yes

and no; exactly one of these must be sent out from the outermost membrane dur-
ing each computation, in order to signal acceptance or rejection respectively; we
also assume that all computations are halting. If all computations starting from
the same initial configuration are accepting, or all are rejecting, the P system is
said to be confluent. If this is not necessarily the case, we have a non-confluent

P system, and the overall result is established as for nondeterministic Turing
machines: it is acceptance iff an accepting computation exists.

In order to solve decision problems (i.e., decide languages), we use families

of recogniser P systems Π = {Πx : x ∈ Σ⋆} for some finite alphabet Σ. Each
input x is associated with a P system Πx that decides the membership of x in the
language L ⊆ Σ⋆ by accepting or rejecting. The mapping x 7→ Πx is restricted,
in order to be computable efficiently; usually one of the following uniformity

conditions is imposed.

Definition 2. A family of P systems Π = {Πx : x ∈ Σ⋆} is said to be semi-
uniform if the mapping x 7→ Πx can be computed in polynomial time by a deter-

ministic Turing machine.

The Turing machine can encode its output Πx by describing the membrane
structure with brackets, the multisets as strings of symbols (in unary notation)
and listing the rules one by one. However, any explicit encoding of Πx is allowed
as output, as long as the number of membranes and objects represented by it
does not exceed the length of the whole description, and the rules are listed one
by one. We pose this restriction in order to enforce the initial membranes, initial

Computational Complexity of P Systems with Active Membranes 19

objects and rules to be at most polynomial in number, as they can be super-
polynomial if more compact representations (e.g., binary numbers) are used;
this mimics a (hypothetical) realistic process of construction of the P systems,
where membranes and objects are presumably placed one by one, and require
actual physical space in proportion to their number (see also how the size of a
configuration is defined in the following, and [7]).

Definition 3. A family of P systems Π = {Πx : x ∈ Σ⋆} is said to be uniform
if the mapping x 7→ Πx can be computed by two deterministic polynomial-time

Turing machines M1 and M2 as follows:

– The machine M1, taking as input the length n of x in unary notation, con-

structs a P system Πn with a distinguished input membrane (the P system

Πn is common for all inputs of length n).

– The machine M2, on input x, outputs a multiset wx (an encoding of the

specific input x).

– Finally, Πx is simply Πn with wx added to the multiset placed inside its

input membrane.

Notice how the uniform construction is just a restricted case of semi-uniform
construction. The relations between the two kinds of uniformity have not com-
pletely been clarified yet; see [11, 7] for further details on uniformity conditions
(including even weaker constructions).

Finally, we describe how time and space complexities for families of recogniser
P systems are measured.

Definition 4. A uniform or semi-uniform family of P systems Π = {Πx : x ∈

Σ⋆} is said to decide the language L ⊆ Σ⋆ in time f : N → N iff, for each

x ∈ Σ⋆,

– the system Πx accepts if x ∈ L, and rejects if x /∈ L;

– each computation of Πx halts within f(|x|) computation steps.

The notion of space complexity has been formally introduced in the Mem-
brane Computing setting in [14], in order to analyse the time/space trade-off
that is common when solving computationally hard problems via P systems.
The size |C| of a configuration C of a P system is given by the sum of the num-
ber of objects and the number of membranes; this definition assumes that every
component of the system requires some fixed amount of physical space, thus ap-
proximating (up to a polynomial) the size of a real cell. The space required by a
halting computation C = (C0, . . . , Ck) is then given by |C| = max{|C0|, . . . , |Ck|},
and the space required by a P system Π is

|Π| = max{|C| : C is a computation of Π}.

We can finally give the following definition.

Definition 5. A uniform or semi-uniform family of P systems Π = {Πx : x ∈

Σ⋆} operates in space f : N → N if |Πx| ≤ f(|x|) for all x ∈ Σ⋆.

20 Alberto Leporati

Several complexity classes can be defined referring to the languages recog-
nized by P systems with active membranes (possibly with restrictions on their
rules), when a polynomial, exponential, logarithmic (or other) bound is fixed
on the amount of time or space allowed in computations. Here we do not recall
them, so as not to burden the exposition. For precise definitions, we refer the
reader to the cited papers.

3 The Complexity of P Systems with Active Membranes

During the talk I will focus on techniques and results concerning the time and
space complexity of P systems with active membranes, that is, the amount of
time and/or space needed to solve a given problem. The leading question will be:
“When we bound the amount of time and/or space by this quantity, what is the
class of decision problems (resp., languages) we can solve (resp., recognize)?”.

Referring to [26], I will first show that a deterministic single-tape Turing
machine, operating in polynomial space with respect to the input length, can
be efficiently simulated (both in terms of time and space) by a semi-uniform
family of P systems with active membranes and three polarizations, using only
communication rules. Basing upon this simulation, a result similar to the space

hierarchy theorem [21] can be obtained for P systems with active membranes:
the larger the amount of space we can use during the computations, the harder
the problems we are able to solve.

We then continue to consider the case in which only communication rules
and nonelementary division rules (which apply to membranes containing other
membranes) are allowed. It turns out that the resulting P systems are not com-
putationally universal, neither in the uniform nor in the semi-uniform setting;
nonetheless, they are very powerful, as they characterize the class of languages
decidable by Turing machines using time (or, equivalently, space) bounded by an
exponential function iterated polynomially many times (known as tetration) [13].

The computing power of polynomial-time P systems with division rules oper-
ating only on elementary membranes (that is, membranes not containing other
membranes) is possibly the most interesting case. It is a known fact that elemen-
tary division rules suffice to efficiently solve NP-complete problems (and, due
to closure under complement, also coNP-complete ones). This result dates back
to 2000 in the semi-uniform case [27], and to 2003 in the uniform case [12]. Since
these results do not require membrane dissolution rules, they hold also for the
so-called P systems with restricted elementary active membranes [1], where dis-
solution is avoided. Although a PSPACE upper bound was proved in 2007 [23],
no significant improvement on the NP∪coNP lower bound for these P systems
has been found until 2010. Following [16] and [17], I will show that there ex-
ists a uniform family of P systems with restricted elementary active membranes
that solves the PP-complete problem Sqrt-3sat: given a Boolean formula of
m variables in 3CNF, do at least

√
2m among the 2m possible truth assignments

satisfy it? The ability to solve all decision problems in the complexity class PP

will follow by an analogous solution of the NP-hard problem Threshold-3sat:

Computational Complexity of P Systems with Active Membranes 21

Given a Boolean formula of m variables in 3CNF, and a non-negative integer
k < 2m, do more than k assignments (out of 2m) satisfy it? Note that the com-
plexity class PP appears to be larger than NP, since it contains NP as a subset
and it is closed under complement: thus NP ∪ coNP ⊆ PP. However, neither
the upper bound proved in [23] nor the lower bound proved in [16] are known to
be strict.

The existence of the uniform family of P systems with restricted elementary
active membranes shown in [16, 17] has an interesting consequence. As shown in
[19], it is possible to use the P systems that solve Threshold-3sat (presented in
[17]) as modules inside a larger P system; this allows us to simulate subroutines
or oracles. In this way, the class PPP turns out to be solvable in polynomial time
by P systems, without requiring nonelementary division or dissolution rules. This
result, together with Toda’s theorem [25], allows us to conclude that P systems
with restricted elementary active membranes are able to solve all the decision
problems residing in the polynomial hierarchy PH [24].

I will then pass to consider the characterization of P systems with active
membranes occurring in polynomial, exponential and logarithmic space.

Concerning polynomial space, we will focus our attention on recognizer P
systems with active membranes (that, in this context, means associating three
polarizations to the membranes, whereas division and dissolution rules are for-
bidden). Following [15], I will show that these P systems are able to efficiently
simulate deterministic register machines, using only communication and evolu-
tion rules. Such a simulation will then be used to illustrate the following result:
recognizer P systems with active membranes are able to solve, in a uniform way,
the PSPACE-complete problem Quantified-3sat, using a polynomial amount
of space (and an arbitrary amount of time — in a sense, we are here trading time
for space). This means that the complexity class PSPACE is contained into the
class of decision problems which can be solved in polynomial space by the above
kind of recognizer P systems; furthermore, such P systems can solve in arbitrary
time (and polynomial space) problems which cannot be solved in polynomial
time unless P = PSPACE. On the contrary, in [18] it has been proved that
P systems with active membranes can be simulated by Turing machines with
only a polynomial increase in space complexity. By combining this result with
the above stated ability of P systems to solve PSPACE-complete problems in
polynomial space, we obtain a characterization of PSPACE in terms of mem-
brane systems. An interesting aspect is that this result holds for both confluent
and non-confluent systems, and even when strong features such as division rules
are used.

A similar result can be obtained for P systems with active membranes work-
ing in exponential space. In particular, in [2] it is shown that exponential-space P
systems with active membranes characterise the complexity class EXPSPACE.
This result is proved by simulating Turing machines working in exponential space
via uniform families of P systems with restricted elementary active membranes;
the simulation is efficient, in the sense that the time and space required are at
most polynomial with respect to the resources employed by the simulated Turing

22 Alberto Leporati

machine. In fact, it should be noted that the simulation technique used in [18]
does not seem to be applicable when the space bound is exponential (or even
super-exponential). Indeed, we would need to use P systems with an exponential
number of membranes with distinct labels, and such systems cannot be built in a
polynomial number of steps by a deterministic Turing machine — as required by
the notion of polynomial-time uniformity usually employed in the literature [12].

Finally, investigation on P systems with active membranes working in log-

arithmic space is currently in progress. Here a new notion of uniformity is
needed, which is weaker than the P systems themselves, otherwise one could
cheat by letting the Turing machine that builds the P systems solve the prob-
lem directly. Inspired by Boolean circuits complexity [6] we have thus introduced
DLOGTIME-uniformity [20], and we have proved that DLOGTIME-uniform
families of P systems with active membranes working in logarithmic space (not
counting their input) can simulate logarithmic-space deterministic Turing ma-
chines. It remains to be established whether these P systems may or not char-
acterize the class L of problems solvable in logarithmic space by deterministic
Turing machines, or maybe solve harder problems like, for instance, those in NL.

Acknowledgements I warmly thank the organizers of the 14th International
Conference on Membrane Computing for inviting me. The research here de-
scribed was partially supported by Università degli Studi di Milano-Bicocca,
Fondo di Ateneo (FA) 2011.

References

1. Alhazov, A., Mart́ın-Vide, C., Pan, L.: Solving a PSPACE-complete problem by

recognizing P systems with restricted active membranes. Fundamenta Informaticae

58(2), 67–77 (2003)

2. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: The computa-

tional power of exponential-space P systems with active membranes. In: Mart́ınez-

del-Amor, M.A. et al (eds.), Proceedings of the Tenth Brainstorming Week on

Membrane Computing, Sevilla, January 30 – February 3, 2012, Volume I, pp. 35–

60. Research Group on Natural Computing, Seville (2012)

3. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory

of NP-completeness. W.H. Freeman & Co. (1979)

4. Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J., Zandron, C.: Complex-

ity aspects of polarizationless membrane systems. Natural Computing 8, 703–717

(2009)

5. Mauri, G., Leporati, A., Porreca, A.E., Zandron, C.: Recent complexity-theoretic

results on P systems with active membranes. Journal of Logic and Computation,

online first, doi: 10.1093/logcom/exs077 (2013)

6. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC
1
.

Journal of Computer and System Sciences 41(3), 274–306 (1990)

7. Murphy N., Woods D.: The computational power of membrane systems under tight

uniformity conditions. Natural Computing 10(1), 613–632 (2011)

8. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1993)

Computational Complexity of P Systems with Active Membranes 23

9. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences

1(61), 108–143 (2000)

10. Păun, Gh.: P systems with active membranes: attacking NP-complete problems.

Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

11. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford handbook of membrane

computing. Oxford University Press (2010)

12. Pérez-Jiménez, M.J., Romero Jiménez, A., Sancho Caparrini, F.: Complexity

classes in models of cellular computing with membranes. Natural Computing 2(3),

265–285 (2003)

13. Porreca, A.E., Leporati, A., Zandron, C.: On a powerful class of non-universal P

systems with active membranes. In: Gao, Y. et al. (eds.), Developments in Lan-

guage Theory, DLT 2010, London, ON, Canada, August 17–20, 2010. Lecture Notes

in Computer Science, vol. 6224, pp. 364–375. Springer (2010)

14. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complex-

ity measure for P systems. International Journal of Computers, Communications

& Control 4(3), 301-310 (2009)

15. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-

branes: trading time for space. Natural Computing 10(1), 167–182 (2011)

16. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with elementary

active membranes: beyond NP and coNP. In Gheorghe, M. et al. (eds.), Membrane

Computing, Eleventh International Conference, CMC 2010, Jena, Germany, Au-

gust 24–27, 2010, Revised Selected Papers. Lecture Notes in Computer Science,

vol. 6501, pp. 383–392. Springer (2010)

17. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Elementary active membranes

have the power of counting. International Journal of Natural Computing Research

2(3), 35–48 (2011)

18. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-

branes working in polynomial space. International Journal of Foundations of Com-

puter Science 2(1), 65–73 (2011)

19. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems simulating oracle

computations. In Gheorghe M. et al. (eds.), Membrane Computing: Twelfth In-

ternational Conference, CMC 2011, Fontainebleau, France, August 23–26, 2011,

Revised Selected Papers. Lecture Notes in Computer Science, vol. 7184, pp. 346–

358. Springer (2012)

20. Porreca, A.E., Zandron, C., Leporati, A., Mauri, G.: Sublinear-space P systems

with active membranes. In Csuhaj-Varjú E. et al. (eds.), Membrane Computing:

Thirteenth International Conference, CMC 2012, Budapest, Hungary, August 28–

31, 2012, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7762,

pp. 342–357. Springer (2012)

21. Sipser M.: Introduction to the theory of computation. Third edition. Cengage

Learning (2012)

22. Sośık, P.: The computational power of cell division in P systems: beating down

parallel computers? Natural Computing 2(3), 287–298 (2003)

23. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: a

characterization of PSPACE. Journal of Computer and System Sciences 73(1),

137–152 (2007)

24. Stockmeyer, L.J.: The polynomial hierarchy. Theoretical Computer Science 3, 1–22

(1976)

25. Toda, S.: PP is as hard as the polynomial–time hierarchy. SIAM Journal on Com-

puting 20(5), 865–877 (1991)

24 Alberto Leporati

26. Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: An efficient

simulation of polynomial-space Turing machines by P systems with active mem-

branes. In: Păun, Gh. et al (eds.) Membrane Computing, 10
th

International Work-

shop, WMC 10, Revised Selected and Invited Papers. Lecture Notes in Computer

Science, vol. 5957, pp. 461–478. Springer (2010)

27. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P sys-

tems with active membranes. In: Antoniou, I. et al. (eds.), Unconventional Models

of Computation, UMC2K: Proceedings of the Second International Conference,

pp. 289–301. Discrete Mathematics and Theoretical Computer Science. Springer

(2001)

28. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J.: On the

Computational Efficiency of Polarizationless Recognizer P Systems with Strong

Division and Dissolution. Fundamenta Informaticae 87(1), 79–91 (2008)

Some Open Problems About Catalytic,
Numerical, and Spiking Neural P Systems

Gheorghe Păun

Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania, and

Department of Computer Science and Artificial Intelligence

University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

gpaun@us.es, ghpaun@gmail.com

Abstract. Some open problems and research topics are pointed, about

three classes of P systems: catalytic, numerical, and spiking neural P sys-

tems. In each case, several issues are briefly discussed, in general, related

to questions already formulated as open problems in the literature and

also related to recent results dealing with these questions. With respect

to spiking neural P systems, a new variant is proposed, systems with the

evolution rules associated with the synapses, not with the neurons; the

universality of this new class of SN P systems is proved.

1 Introduction

In spite of the large bibliography accumulated in the almost fifteen years since
this research area was initiated, [26], membrane computing still exhibits a lot of
open problems and research topics, some of them “going back to basics”, others
being related to more recent branches of the theory. We recall here three sets of
such problems, from both categories mentioned above.

First, we start from the already “classic” question whether or not catalytic P
systems with one catalyst, or purely catalytic P systems with two catalysts are
computationally universal, and we add to this basic issue three related research
topics: (i) give an example of a P system with two catalysts computing a non-
trivial (e.g., non-semi-linear) set of numbers, find additional features to be added
to (ii) P systems with one catalyst or to (iii) purely catalytic P systems with two
catalysts in order to get universality. Recent results in this respect were reported
– see, e.g., [11], [8].

Then, we consider the numerical P systems. Besides the basic question, of
constructing a complexity theory for these systems, especially related to and
important for applications, open problems related to a recent important progress
concerning the power of enzymatic numerical P systems ([20]) are formulated. In
particular, an interesting question concerns of the computing power of numerical
P systems with a small number of enzymes.

Finally, with respect to the spiking neural (SN) P systems, we mention two
problems already mentioned elsewhere (e.g., in [15]) and we also introduce a new

26 Gheorghe Păun

class of SN P systems, where the spiking and the forgetting rules are associated
with the synapses, not with the neurons. The universality of this class of SN P
systems is proved – and the move of rules on synapses seems to be useful, the
proof is simpler than in the case of rules placed in neurons.

In view of the assumed non-Turing computing power/behavior of the brain,
an interesting issue would be to find SN P systems able to compute beyond
Turing barrier; suggestions from the hypercomputation area could be useful.

The reader is assumed to be familiar with membrane computing (e.g., from
[28], [33], [40]), hence we recall no prerequisites. Instead, for the use of the reader,
we indicate a series of primary references, without being complete from this point
of view; further references can be found in the above mentioned comprehensive
sources of information in membrane computing.

2 Catalytic P Systems

P systems with catalytic rules were already introduced in [26], with their com-
puting power left open.

We denote by NPm(catr) the family of sets of numbers computed (generated)
by P systems with at most m membranes, using catalytic or non-cooperative
rules, containing at most r catalysts. When all the rules of a system are catalytic,
we say that the system is purely catalytic, and the corresponding families of sets
of numbers are denoted by NPm(pcatr). When the number of membranes is not
bounded by a specified m (it can be arbitrarily large), then the subscript m is
replaced with ∗.

The following fundamental results are known:

Theorem 1. (i) NP2(cat2) = NRE, [10];
(ii) NREG = NP

∗
(pcat1) ⊆ NP

∗
(pcat2) ⊆ NP2(pcat3) = NRE, [13], [14].

Two intriguing open problems appear here, related to the borderline between
universality and non-universality: (1) are catalytic P systems with only one cat-
alyst universal? (2) are purely catalytic P systems with two catalysts universal?
The conjecture is that both these questions have a negative answer, but it is also
felt that “one catalyst is almost universal”: many features which look “innocent”
at the first sight are enough to lead P systems with one catalyst to universality
(see [11]) – and similar results were obtained also for purely catalytic P systems
with two catalysts (see [8]).

Here we briefly recall the universality results for one catalyst P systems with
additional ingredients:

– Introducing a priority relation among rules, [26].
– Using promoters and inhibitors associated with the rules.
– Controlling the computation by means of controlling the membrane per-

meability, by actions δ (decreasing the permeability) and τ (increasing the
permeability), [27].

– Besides catalytic and non-cooperating rules, also using rules for membrane

creation, [22].

Open Problems About Catalytic, Numerical and Spiking Neural P Systems 27

– Considering, instead of usual catalysts, bi-stable catalysts, [34], or mobile

catalysts, [18].
– Imposing target restrictions on the used rules, [11]; the universality was ob-

tained for P systems with 7 membranes, and it is an open problem whether
or not the number of membranes can be diminished).

– Imposing to P systems the idea from time-varying grammars and splicing
systems, [11]; the universality of time-varying P systems is obtained for one
catalyst P systems with only one membrane, having the period equal to 6,
and it is open the question whether the period can be decreased.

– Using in a transition only (labeled) rules with the same label – so-called label

restricted P systems, [19].

Several of these results were extended in [8] to purely catalytic P systems
with two catalysts. It remains open to do this for all the previous results, as well
as to look for further ingredients which, added to one catalyst P systems or to
purely catalytic P systems with two catalysts, can lead to universality. It would
be interesting to find such ingredients which work for one catalyst systems and
not for purely catalytic systems with two catalysts, and conversely. Suggestions
from the regulated rewriting area [6] or the grammar systems area [3] in formal
language theory can be useful.

We end this section with a somewhat surprising issue: we know that
NP2(cat2) = NRE, but no example of a P system with two catalysts which
generates a non-trivial set of numbers (for instance, {2n | n ≥ 1}, {n2 | n ≥ 1})
is known. In fact, the problem is to find a system of this kind as simple as pos-
sible (otherwise, just repeating the construction in the proof from [10], starting
from a register machine computing a set as above, we get an example, but of a
large size).1

3 Numerical P Systems

Numerical P systems form an “eccentric” class of P systems, because of their
“non-syntactic” character, far from language and automata theory, but closer
to numerical analysis. This is probably one of the reasons for which only a
few papers were accumulated in this area. However, because of the economic
motivations, [31], and of the recent applications in robot control, [24], [25], [38],
[37], the subject started to call the attention. There are many questions to be
investigated in this framework (see a list of such questions in [30]).

Two recent papers, making important steps ahead in the study of numerical P
systems are [20] and [21]. The first paper considerably improves the universality
results for enzymatic numerical P systems. We do not recall here the definitions,
but we only mention that one deals with enzymatic numerical P systems working
in the so-called all-parallel or one-parallel modes introduced in [39].

1
Petr Sośık told me recently that he is progressing in finding such a simple/readable

example.

28 Gheorghe Păun

Thus, two immediate questions are to consider also the case of (i) numerical
P systems without enzymes and (ii) of sequential numerical P systems (with or
without enzymes).

Then, let us remember that the enzyme variables behave like catalysts (ac-
tually, they are closer to promoters) in catalytic P systems. This suggests the
problem of considering numerical P systems with a small number of enzymes.
Which is the smallest number of enzyme variables for which enzymatic numerical
P systems (working in a specified manner: sequential, all-parallel, or one-parallel)
is universal?

4 Spiking Neural P Systems

The SN P systems area contains many open problems and research topics. We
have mentioned in the Introduction the paper [15]. Three main problems are
recalled there:

– To further investigate the power and the properties of SN dP systems, that
is, to combine the idea of distributed P systems introduced in [6] with that
of spiking neural P systems from [17]. SN dP systems were introduced in
[16], but only briefly investigated.

– To investigate the possibility of using SN P systems as pattern recognition
devices, in general, in handling 2D patterns. One of the ideas is to consider
a layer of input neurons which can read an array line by line and the array
is recognized if and only if the computation halts.

– In some sense, the SN P systems is the only class of P systems which have
only a few and somewhat metaphoric applications in the study of the “real”
brain, of interest for biologists, and this is an important issue: should we
change the definition of an SN P system in order to have such applications,
or we simply failed to find them in the present setup?

Actually, several modifications in the initial definition of SN P systems were
considered already. We only mention the SN P systems with astrocytes ([29],
[1]), the SN P systems with request rules ([5]), the SN P systems with anti-
spikes ([23]), and the axon computing systems ([4]).

Here we introduce one further modification in the initial definition, namely,
we move the firing rules (they can be both spiking and forgetting rules, of the
standard forms in SN P systems) on the synapses. The neurons contain spikes;
when the number of spikes in a given neuron is “recognized” by a rule on a
synapse leaving from that neuron, then the rule is fired, a number of spikes
are consumed and a number of spikes are sent to the neuron at the end of the
synapse. Precise details will be given immediately. Using one rule per synapse,
with all synapses firing in parallel, we get computations, in the usual style of SN
P systems.

In what follows, we prove the universality of SN P systems with rules on
synapses (with the result of a computation being the number of spikes stored in
a designated neuron, the output one, in the end of the computation).

Open Problems About Catalytic, Numerical and Spiking Neural P Systems 29

Formally, an SN P system with rules on synapses is a construct

Π = (O, σ1, . . . , σm, syn, io),

where O = {a} contains the spike symbol, σi, 1 ≤ i ≤ m, are the neurons, of the
form σi = (ni) (the number of spikes initially present in neuron σi), io is the
output neuron (usually labeled by out), and syn is the set of synapses, i.e., pairs
of the form ((i, j), R(i,j)), where i, j ∈ {1, 2, . . . ,m}, with i 6= j, and R(i,j) is a
finite set of rules of the following forms:

1. E/ac → ap; d, with E a regular expression over O, c ≥ p ≥ 1, d ≥ 0;
2. as → λ, for s ≥ 1.

The rules of the first form are spiking rules: if E/ac → ap; d ∈ R(i,j) and the

neuron σi contains k spikes such that ak ∈ L(E), k ≥ c, then the rule is enabled,
k spikes from σi are consumed and p spikes are sent to neuron σj after a delay
of d steps. The rules of the latter form are usual forgetting rules; as → λ ∈ R(i,j)

is applied only if σi contains s spikes, which are removed by the use of this rule.
We start from the initial configuration, (n1, n2, . . . , nm). As usual in the SN

P area, we work sequentially on each synapse (at most one rule from each set
R(i,j) can be used), in parallel at the level of the system (if a synapse has at
least one rule enabled, then it has to use a rule).

A delicate problem appears when several synapses starting in the same neu-
ron have rules which can be applied. We work here with the restriction that all
rules which are applied consume the same number of spikes from the given neu-
ron. Let us assume that the applied rules on the synapses leaving from σi are of
the form Eu/ac → apu ; du; then c spikes are removed from σi (and not a multiple
of c, according to the number of applied rules). Of course, this restriction can
be replaced by another strategy: various rules can consume various numbers of
spikes and in this way the sum of these numbers of spikes is removed from the
neuron.

Actually, we choose this restriction because this is the case in the proof below,
where, furthermore, no delay and no forgetting rule is used.

We denote by NsSNn
mP the family of sets of numbers computed (generated)

by SN P systems with at most m neurons and at most n rules associated with a
synapse; as usual, the indices n,m are replaced with ∗ when no bound is imposed
on the respective parameter.

Theorem 2. NsSN2

∗

P = NRE.

Proof. We only prove the inclusion NRE ⊆ NsSN2

∗

P and to this aim se con-
struct an SN P system with rules on synapses which simulates a register machine
M = (m,H, l0, lh, I) (number of registers, set of instruction labels, initial label,
halt label, set of instructions). We assume that register 1, the one where the
result is obtained, is never decremented.

As usual, for each instruction of M we construct a module of our SN P system
Π. With each register of M we associate a neuron; if register r contains the

30 Gheorghe Păun

number n, then this is encoded in the associated neuron σr by means of 2n spikes.
With each l ∈ H we also associate a neuron σl. Further neurons are present in the
modules below. There are two distinguished neurons, σg (a “garbage collector”)
and σout (the output neuron). Initially, all neurons are empty, with the exception
of σl0 , where we place two spikes. In general, a neuron σl, l ∈ H, is active if it
gets two spikes; rules on the synapses leaving σl can then be used. When some
neuron σl is active, then the instruction labeled with l starts to be simulated.

Here are the mentioned modules (we give them in the graphical form, with
the obvious meaning: neurons are represented by circles, with the number of
spikes specified inside, and the synapses have the rules written near them):

The module associated with an ADD instruction li : (ADD(r), lj , lk) is given in
Figure 1. It works as follows. After introducing two spikes in σli , both synapses
leaving this neuron fire. One of them sends two spikes to σr (and this corresponds
to increasing by one the value of this register), and the other one sends one or
two spikes to neuron ci1. Depending on this number, one of the neurons σlj , σlk

gets two spikes and in this way the modules associated with those neurons/labels
become active.

��
��

��
��

��
��

��
��

��
��

��
��

��
��?

@
@

@
@@R

?

�
�

�
�

��+

Z
Z

Z
ZZ~

@
@@R

�
��	

li

r

a2
→ a2

a2
→ a

a2
→ a2

ci1

ci2

a→ a
a2
→ a2

lj

a→ a

ci3

a→ a a→ a

lk

Fig. 1. The ADD module.

The module associated with a SUB instruction li : (SUB(r), lj , lk) is given in
Figure 2.

After activating neuron σli , both σr and σci1
receive one spike. In this way,

σr contains an odd number of spikes and its synapses can fire. If there is only one
spike in σr (hence the neuron was empty), then a spike is sent to σci2

, and σlk

gets two spikes. If the register r is not empty, then neuron σlj gets two spikes,
through neuron ci3 (while 3 spikes are removed from σr). In both cases, the
continuation of the simulation of the register machine is correct.

Open Problems About Catalytic, Numerical and Spiking Neural P Systems 31

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�

�
�

�
��+

Q
Q

Q
Q

Q
Qs

?

?

?

?

PPPPPPPPPPPPPPPq

���������������)

Q
Q

Q
Q

Q
QQs

�
�

�
�

�
��=

li

a2
→ a

r

a2
→ a

ci1

ci2

a→ a

a2
→ a2

lk

a→ a a→ a

a2k+1/a3
→ a

ci3

a2
→ a2

lj
g

a→ a a→ a

Fig. 2. The SUB module.

Note the important detail that if any of the neurons ci2, ci3 receives only one
spike, the synapse having associated the rule a → a must be enabled, and in
this way the spike is removed (and one spike is added to the “garbage collector”
σg). This is useful also in ensuring that the SUB modules do not interfere in an
unwanted way: several SUB instructions can send a spike to the same register
r; if the spike does not come from the neuron σli , then neurons ci2, ci3 will get
only one spike, which is immediately moved in the “garbage collector”, hence no
neuron σlj , σlk is activated.

The module associated with the HALT instruction lh : HALT is given in Figure
3. If σlh receives two spikes, its synapse send one spike to neuron σ1 (which is
never decreased during the computation of M , hence this is the first time when
this neuron contains an odd number of spikes). Each pair of spikes will send
one spike to neuron σout, and the process stops when only one spike remains in
σ1. Thus, in the end, the output neuron will contain the number stored in the
halting configuration by register 1 of M .

In conclusion, M and Π compute the same set of numbers. ⊓⊔

It is worth mentioning that the maximal number of rules associated with
each synapse in the previous proof is two, because of the need of having non-
determinism in the functioning of the system. If we will use an SN P system in
the accepting mode (start the computation by introducing a number of spikes in
a neuron and accept that number if the computation halts), then we can have
only one rule associated with each synapse.

32 Gheorghe Păun

��
��

��
��

��
��

?

?
-

lh

a2
→ a

1

a2k+1/a2
→ a

out

Fig. 3. The HALT module.

The result of a computation can be also defined as the number if steps elapsed
between the first and the second spike sent to the environment by the output
neuron (a “pseudo-synapse” should be considered, having rules associated, be-
tween the output neuron and the environment); the necessary changes in the
HALT module from the previous proof remains as an exercise for the reader.

A natural problem which appears in this framework is to find small universal
SN P systems with rules on synapses, a direction of research with many results
in terms of usual SN P systems.

We end this section with one further research idea: changing the definition
of SN P systems in such a way to obtain hypercomputations, going beyond the
Turing barrier. In membrane computing there are are, as far as we know, only two
papers dealing with this subject (but not with SN P systems), the accelerated
P systems with membrane creation from [2], and the lineages of P systems from
[35]. Suggestions from the general hypercomputation area could be useful – see,
e.g., the survey from [36].

5 Final Remarks

We end this note by recalling the attention about the “mega-paper” [12], where a
lot of open problems and research topics in membrane computing can be found.

Acknowledgements. Work supported by Proyecto de Excelencia con Investi-
gador de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. A. Binder, R. Freund, M. Oswald, L. Vock: Extended spiking neural P systems

with excitatory and inhibitory astrocytes. Proc. Eighth WSEAS Intern. Conf. on

Evolutionary Computing, Vancouver, Canada, 2007, 320-325.

2. C. Calude, Gh. Păun: Bio-steps beyond Turing. BioSystems, 77 (2004), 175–194.

Open Problems About Catalytic, Numerical and Spiking Neural P Systems 33

3. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun: Grammar Systems. A Gram-

matical Approach to Distribution and Cooperation. Gordon and Breach, London,

1994.

4. H. Chen, T.-O. Ishdorj, Gh. Păun: Computing along the axon. Progress in Natural

Science, 17, 4 (2007), 418–423.

5. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems

with extended rules. Proc. Fourth Brainstorming Week on Membrane Computing,

Sevilla, 2006, RGNC Report 02/2006, 241–265

6. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-

Verlag, Berlin, 1989.

7. R. Freund: Particular results for variants of P systems with one catalyst in one

membrane. Proc. Fourth Brainstorming Week on Membrane Computing, Fénix

Editora, Sevilla, 2006, vol. II, 41–50.

8. R. Freund: Purely catalytic P systems: Two catalysts can be sufficient for compu-

tational completeness. In the present volume.

9. R. Freund, O.H. Ibarra, A. Păun, P. Sośık, H.-C. Yen: Catalytic P systems. Chapter

4 of [33].

10. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems

without priorities: two catalysts are sufficient. Theoretical Computer Science, 330

(2005), 251–266.

11. R. Freund, Gh. Păun: Universal P systems: One catalyst can be sufficient. Proc.

11th Brainstorming Week on Membrane Computing, Sevilla, 4-8 February 2013,

Fénix Editora, Sevilla, 2013.

12. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Frontiers of mem-

brane computing: Open problems and research topics, Intern. J. Found. Computer

Sci., 2013 (first version in Proc. Tenth Brainstorming Week on Membrane Com-

puting, Sevilla, January 30 – February 3, 2012, vol. I, 171–249).

13. O.H. Ibarra, Z. Dang, O. Egecioglu: Catalytic P systems, semilinear sets, and

vector addition systems. Th. Computer Sci., 312 (2004), 379–399.

14. O.H. Ibarra, Z. Dang, O. Egecioglu, G. Saxena: Characterizations of catalytic

membrane computing systems. 28th Intern. Symp. Math. Found. Computer Sci.,

2003 (B. Rovan, P. Vojtás, eds.), LNCS 2747, Springer, 2003, 480–489.

15. M. Ionescu, Gh. Păun: Notes about spiking neural P systems. Proc. Ninth Brain-

storming Week on Membrane Computing, Sevilla, January 31 – February 4, 2011,

Fénix Editora, Sevilla, 2011, 169–182.

16. M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori: Spiking neural dP sys-

tems. Fundamenta Informaticae, 11, 4 (2011), 423–436.

17. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta In-

formaticae, 71, 2-3 (2006), 279–308.

18. S.N. Krishna, A. Păun: Results on catalytic and evolution-communication P sys-

tems. New Generation Computing, 22 (2004), 377–394.

19. K. Krithivasan, Gh. Păun, A. Ramanujan: On controlled P systems. Fundamenta

Informaticae, to appear.

20. A. Leporati, A.E. Porreca, C. Zandron, G. Mauri: Improving universality results

on parallel enzymatic numerical P systems. Proc. 11th Brainstorming Week on

Membrane Computing, Sevilla, 4-8 February 2013, Fénix Editora, Sevilla, 2013.

21. A. Leporati, A.E. Porreca, C. Zandron, G. Mauri: Enzymatic numerical P systems

using elementary arithmetic operations. In the present volume.

22. M. Mutyam, K. Krithivasan: P systems with membrane creation: Universality and

efficiency. Proc. MCU 2001 (M. Margenstern, Y. Rogozhin, eds.), LNCS 2055,

Springer, Berlin, 2001, 276–287.

34 Gheorghe Păun

23. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. Intern. J. Computers,

Comm. Control, 4, 3 (2009), 273–282.

24. A.B. Pavel, O. Arsene, C. Buiu: Enzymatic numerical P systems – a new class

of membrane computing systems. The IEEE Fifth Intern. Conf. on Bio-Inspired

Computing. Theory and applications. BIC-TA 2010, Liverpool, Sept. 2010, 1331–

1336.

25. A.B. Pavel, C.I. Vasile, I. Dumitrache: Robot localization implemented with en-

zymatic numerical P systems. Proc. Conf. Living Machines 2012, LNCS 7375,

Springer, 2012, 204–215.

26. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci., 61 (2000), 108–143

(see also TUCS Report 208, November 1998, www.tucs.fi).

27. Gh. Păun: Computing with membranes – A variant. Intern. J. Found. Computer

Sci., 11, 1 (2000), 167–182.

28. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

29. Gh. Păun: Spiking neural P systems with astrocyte-like control, JUCS, 13, 11

(2007), 1707–1721.

30. Gh. Păun: Some open problems about numerical P systems. Proc. 11th Brain-

storming Week on Membrane Computing, Sevilla, 4-8 February 2013, Fénix Edi-

tora, Sevilla, 2013.

31. Gh. Păun, R. Păun: Membrane computing and economics: Numerical P systems.

Fundamenta Informaticae, 73 (2006), 213–227.

32. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane

computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2

(2010), 238–252.

33. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.

34. Gh. Păun, S. Yu: On synchronization in P systems. Fundamenta Informaticae, 38,

4 (1999), 397–410.

35. P. Sośık, O. Valik: On evolutionary lineages of membrane systems. Membrane Com-

puting, International Workshop, WMC6, Vienna, Austria, 2005, Selected and In-

vited Papers, LNCS 3850, Springer, Berlin, 2006, 67–78.

36. A. Syropoulos: Hypercomputation: Computing Beyond the Church-Turing Barrier.

Springer, Berlin, 2008.

37. C.I. Vasile, A.B. Pavel, J. Kelemen: Implementing obstacle avoidance and follower

behaviors on Koala robots using numerical P systems. Tenth Brainstorming Week

on Membrane Computing, Sevilla, 2012, vol. II, 215–227.

38. C.I. Vasile, A.B. Pavel, I. Dumitrache: Universality of enzymatic numerical P sys-

tems. Intern. J. Computer Math., in press.

39. C.I. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun: On the power of enzymatic

numerical P systems. Acta Informatica, 49, 6 (2012), 395–412.

40. The P Systems Website: http://ppage.psystems.eu.

Computational Complexity in Membrane
Computing: Issues and Challenges

Petr Sośık1,2

1
Departamento de Inteligencia Artificial, Facultad de Informática,

Universidad Politécnica de Madrid, Campus de Montegancedo s/n,

Boadilla del Monte, 28660 Madrid, Spain,
2

Research Institute of the IT4Innovations Centre of Excellence,

Faculty of Philosophy and Science, Silesian University in Opava

74601 Opava, Czech Republic, petr.sosik@fpf.slu.cz

Abstract

We resume computational complexity aspects of various models of membrane
systems. The scope of studied models include P systems with active membranes,
P systems with proteins on membranes, tissue P systems both with membrane
separation and membrane division, and spiking neural P systems. A sequence of
common types of problems is studied in relation to these P system models.

The first studied problem is a condition guaranteeing the polynomial equiva-
lence of P systems and Turing machines. This problem is not completely trivial
as many models of P systems can store information in unary mode, resem-
bling counter machines which, however, are exponentially slower than Turing
machines.

Perhaps the most focused problem in this area is the ability of the system
to solve NP/co-NP complete problems in polynomial time. Interesting charac-
terizations of the borderline between tractability and intractability, i.e., P/NP,
has been recently shown. Many of these models can process, in polynomial time,
both problems in NP and co-NP, using the popular strategy of trading space for
time. However, their exact relation to these complexity classes remains open.

Similarly important, although less popular, is the relation between NP/co-
NP and PSPACE. Several models of P systems has been shown to character-
ize the class PSPACE, giving an opportunity to characterize the NP/PSPACE
borderline. The class PSPACE itself characterizes parallel computations with an
unlimited number of processors but a limited propagation of data between them.
A relation of P systems to the classes of the polynomial hierarchy would be very
interesting. There are also studies investigating the power of P systems work-
ing in sublinear time. Finally, a relation between spatial complexity of Turing
machines and P systems has been recently studied.

Last, but not least, we question the role of families of P systems, their uni-
formity conditions and their necessity to solve computationally hard problems
in polynomial time.

Using the Formal Framework for P Systems

Sergey Verlan

1
Laboratoire d’Algorithmique, Complexité et Logique,

Université Paris Est – Créteil Val de Marne,

61, av. gén. de Gaulle, 94010 Créteil, France
2

Institute of Mathematics and Computer Science,

Academy of Sciences of Moldova,

Academiei 5, Chisinau, MD-2028, Moldova

email: verlan@u-pec.fr

Abstract

In this presentation we focus on the model called formal framework for P

systems introduced in [2] and later developed in [1]. It aims to provide a concrete
model of P systems that can act as descriptional language powerful enough to
represent in a simple way most of the variants of P systems with the goal of
better understanding and comparison of different models of P systems.

Informally speaking, a definition of a P system consists of:

– a description of the initial structure (indicating the graph relation between
the compartments and any additional information like labels, charges, etc),

– a list of the initial multisets of objects present in each compartment at the
beginning of the computation,

– a set of rules, acting over objects and / or over the structure.

A computation of a P system can be defined as a sequence of transitions between
configurations ending in some halting configuration. To give a more precise de-
scription of the semantics we must define the following 4 notions (functions):

– Applicable(Π, C, δ) – the set of multisets of rules of Π applicable in the
configuration C, according to the derivation mode δ.

– Apply(Π, C, R) – the configuration obtained by the (parallel) application of
the multiset of rules R to the configuration C.

– Halt(Π, C, δ) – a predicate that yields true if C is a halting configuration of
the system Π evolving in the derivation mode δ.

– Result(Π, C) – a function giving the result of the computation of the P
system Π, when the halting configuration C has been reached. Generally
this is an integer function, however it is possible to generalize it, allowing
e.g. Boolean or vector functions.

The transition of a P system Π according to the derivation mode δ (gener-
ally this is the maximally parallel mode) is defined as follows: we pass from a
configuration C to C′ (written as C ⇒ C′) iff

C′ = Apply(Π, C, R), for some R ∈ Applicable(Π, C, δ)

38 Sergey Verlan

In general, the result of the computation of a P system is interpreted as the
union of the results of all possible computations (in the same way as the lan-
guage generated by a grammar is defined in formal language theory, gathering
all possible derivations). Note that this is a theoretical (non-constructive) defini-
tion, since there may exist an infinite number of halting configurations reachable
from a single initial configuration C0.

The precise definition of the four functions above depends on the selected
model of P systems. The goal of works [1–3] is to provide a concrete variant of
P systems (hence with concrete definitions of these functions), called a formal

framework, such that most of existing models of P systems could be obtained by
a restriction (eventually using a simple encoding) of this formal framework with
respect to different parameters.

The configuration of the formal framework is a list of multisets corresponding
to the contents of membranes of a P system and the rules generalize most kind
of rules used in the P systems area. Based on this general form of rules, the
applicability and the application of a (group of) rule(s) are defined using an
algorithm. This permits to compute the set of all applicable multisets of rules
for a concrete configuration C (Applicable(Π, C)). Then this set is restricted
according to the derivation mode δ (Applicable(Π, C, δ)). For the transition, one
of the multisets from this last set is non-deterministically chosen and applied,
yielding a new configuration. The result of the computation is collected when
the system halts according to the halting condition.

The aim of the presentation is not to present the framework itself, but rather
several examples of its application for the description and the comparison of
different variants of P systems with static structure, with probabilities and with
dynamic structure. We also show how these investigations lead to new research
ideas and open problems.

References

1. R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, S. Verlan (2013), A formalization

of membrane systems with dynamically evolving structures, International Journal

of Computer Mathematics. Vol. 90(4), pp. 801-815.

2. R. Freund, S. Verlan, A Formal Framework for Static (Tissue) P Systems, In Mem-

brane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece,

June 25-28, 2007 Revised Selected and Invited Papers. Lecture Notes in Computer

Science, Vol. 4860, pp. 271-284, 2007.

3. S. Verlan. Study of language-theoretic computational paradigms inspired by biol-

ogy. Habilitation thesis, University of Paris Est, 2010.

Regular Papers

39

A P System for Annotation of Romanian Affixes

Artiom Alhazov, Svetlana Cojocaru, Alexandru Colesnicov, Ludmila Malahov,
Mircea Petic

Institute of Mathematics and Computer Science,

Academy of Sciences of Moldova

Academiei 5, Chişinău, MD-2028, Moldova

E-mail: {artiom,Svetlana.Cojocaru,

kae,mal,mirsha}@math.md

Abstract. This paper describes membrane computational models pars-

ing affixed Romanian words with prefixes, suffixes, terminations, alter-

ations in the root, and continues previous works on word derivation mod-

eling. An algorithm for Romanian affixes extraction is given, and several

models of P systems are proposed.

Keywords: affixation, morphemes, parsing, P system models, mem-

brane computing, linguistic resources.

1 Introduction

Linguistic resources are necessary to solve different problems in natural language
processing (NLP). They can exist as text collections, corpora, or dictionaries
containing a lot of information. Processing of big volume of information takes
the corresponding computer resources. Many problems in computer linguistics
could be solved more effectively using parallel computations. Formal models
based on principles of bio-molecular computations have inherent parallelism.
Therefore, we found it natural to use these models to solve such problems. Models
of membrane systems [10] for Romanian word derivation were proposed in [5, 4,
2, 1].

This paper discusses construction of membrane, or P systems to parse Ro-
manian words with affixes. This is important because it permits to solve the
inverse problem of creation of affixed linguistic. This contributes to replenish-
ment of corpora and dictionaries, and to formation of morphological word nest
for derivation.

Affixation is the most productive technique to form new Romanian words as
the Romanian language possesses 86 prefixes and approximately 600 suffixes [8].
Nevertheless, this process has its peculiarities. Using inflexion, we get a priori
correct words and know their morphological categories. Affixation as a mecha-
nism of new word production cannot guarantee their correctness and does not
permit to preview their semantic and morphological categories. This character-
izes affixation as a totally non-regular process that complicates word generation.

42 A. Alhazov, S. Cojocaru, A. Colesnicov, L. Malahov, M. Petic

That is why automated affixation is a difficult task as compared with other
methods of word derivation.

Using data extracted from accessible lexicographical resources, we developed
methods to check affixed words [6, 9]. We found their quantitative and qualitative
characteristics. We developed a technique to produce affixed words, and got a
set of restrictions that permits to filter inappropriate words.

We proposed in [1] several models of P systems to select affixed Romanian
words based on these results. This is a continuation of that work, where we allow
a derivation step to have more than one root alternation, addition of a prefix
and a suffix, replacement of a termination with another one, as well as all of the
above.

The paper consists of introduction, two sections, and conclusion. Sec. 2 gives
main definitions of membrane systems and word derivation model. Sec. 3 of this
paper discusses automated affix selection inside a word. An algorithm to solve
this problem is given. A model of P system with replication is constructed to
automatically analyze derived words with affixes. The model uses the matrix of
rules taking into account alterations in the root in dependence of fixed prefixes
and suffixes that we proposed. Sec. 4 gives examples of the constructed model
work at affixed Romanian words parsing.

2 Definitions

2.1 Word derivation model

Consider a finite alphabet V . We assume that we are given a finite set of word
pairs A of root alternations and finite languages Pref of prefixes, RR of roots,
Suf of suffixes and T of terminations (T may include the empty word), all over

V . We also write elements of A in the form x → y. We use Pref, ̂Suf to denote
the sets Pref, Suf, where all symbols of each word have lines or hats over them.
These two cases correspond to operations of adding a prefix and adding a suffix.

We denote the marked terminations by T = { t | t ∈ T}, and the termination

rewriting rules by
�

T= { t1 → t2 | t1, t2 ∈ T}. Let Op = Pref ∪ ̂Suf ∪
�

T ∪A.

The fourth case (A) corresponds to an operation of performing an alternation.
Moreover, we assume we are given a finite language M over Op. A derivation

step corresponding to a control word s = oi1 · · · oik
∈ M consists of k operations

from a set described above. We now define them more formally, using the syntax
o(w) to denote the result of operation o over a word w (note that the result of
some operations may be undefined on some words, the corresponding choice not
leading to any result):

– p(w) = pw,

– ŝ(w t) = wŝ t ,
– (x → y)(w x) = w y ,

– (x → y)(w1xw2) = w1yw2,
– (oi1 · · · oim

)(w) = oi1(· · · (oim
(w)) · · ·).

A P System for Annotation of Romanian Affixes 43

We will speak about the problem of accepting a language obtained by re-
moving the prefix, suffix and termination marks from the words of the minimal
language L, such that

– if wt ∈ RR, then w t ∈ L, and
– if w ∈ L and s ∈ M then s(w) ∈ L is defined.

Moreover, we would like the acceptor to also produce the lexical decomposition
of the input.

2.2 Computing by P systems

Membrane computing is a recent domain of natural computing started by Gh.
Păun in 1998. The components of a membrane system are a cell-like membrane
structure, in the regions of which one places multisets of objects which evolve
in a synchronous maximally parallel manner according to given evolution rules
associated with the membranes. The necessary definitions are given in the fol-
lowing subsection, see also [11] for an overview of the domain and to [12] for the
comprehensive bibliography.

Let O be a finite set of elements called symbols, then the set of words over
O is denoted by O∗, and the empty word is denoted by λ.

Definition 1. A P system with string-objects and input is a tuple

Π =
(

O,Σ, µ,M1, · · · ,Mp, R1, · · · , Rp, i0
)

, where:

– O is the working alphabet of the system whose elements are called objects,

– Σ ⊂ O is an input alphabet,

– µ is a membrane structure (a rooted tree) consisting of p membranes,

– Mi is an initial multiset of strings over O in region i, 1 ≤ i ≤ p,
– Ri is a finite set of rules defining the behavior of objects from O∗ in region

i, 1 ≤ i ≤ p, as described below,

– i0 identifies the input region.

In this paper we consider string rewriting with target indications. A rule
x → (y, tar) ∈ Ri can be applied to a string uxv in region i, resulting in a string
uyv in region specified by tar ∈ {inj | 1 ≤ j ≤ p}∪ {here, out}. The target here
may be omitted, together with a comma and parentheses.

We assume the following computation mode: whenever there are multiple
ways to apply different rules (or the same rule) to a string, all possible results
are produced (each possible result is performed on a different copy of the string;
the string is either replicated, or assumed to be present in sufficient number of
copies to allow this).

In our model of P systems, the membrane structure does not change. A
configuration of a P system is its “snapshot”, i.e., the multisets of strings of
objects present in regions of the system. While initial configuration is C0 =
(M1, · · · ,Mp), each subsequent configuration C ′ is obtained from the previous
configuration C by maximally parallel application of rules to objects, denoted by

44 A. Alhazov, S. Cojocaru, A. Colesnicov, L. Malahov, M. Petic

C ⇒ C ′ (no further rules are applicable together with the rules that transform
C into C ′). A computation is thus a sequence of configurations starting from
C0, respecting relation ⇒ and ending in a halting configuration (no rule is
applicable).

If S is a multiset of strings over the input alphabet Σ ⊆ O, then the initial

configuration of a P system Π with an input S over alphabet Σ and input region
i0 is

(M1, · · · ,Mi0−1,Mi0 ∪ S,Mi0+1 · · · ,Mp).

We consider the strings sent out of the skin membrane into the environment
as the result of the computation.

3 Main construction

We proceed with parsing as the reverse process of the generation. For each
possible decomposition of the string, the system sends outside a string, obtained
from the input by erasing the endmarkers and inserting hyphens (for technical
reasons, letters in prefixes and suffixes are marked, the reverse alternations are
performed in both the termination and the rest of the word, and the termination
is moved to the left of suffixes). In the notation below, we use ′ as a morphism:
u′ is a string obtained from u by priming all its letters.

We construct the following P system for accepting words x given in form
$1x$2. We use an enumeration of elements of Op and T : Op = {o1, · · · , ok} and
T = {t1, · · · , tn}. We recall that elements oj , 1 ≤ j ≤ k are of the following forms:

p, ŝ, t1 → t2 , and x → y, where p ∈ Pref, s ∈ Suf, t1, t2 ∈ T and x, y ∈ V ∗.

We also define a set W = Suf(Mr) of suffixes of the mirror language of M ;
words from W may appear in angular brackets. This corresponds to operations
remaining to be undone at possible points of the parsing process.

Π = (O,µ,Σ,w1, w2, wo1
, · · · , wok

, wt1 , · · · , wtn
,

R1, R2, Ro1
, · · · , Rok

, Rt1 , · · · , Rtn
, i0 = 2),

O = V ∪ V ∪ ̂V ∪ T ∪ Op ∪ {$1, $2,−, 〈, 〉}, V = {a, · · · , z},

Σ = V ∪ {$1, $2}, V = {a, · · · , z}, ̂V = {â, · · · , ẑ},

µ = [[]2[]o1
· · · []ok

[]t1 · · · []tn
]1,

wi = λ, i ∈ {1, 2} ∪ Op ∪ T,

R1 = {〈〉 → 〈w〉 | w ∈ Mr} ∪ {〈o → (〈, ino) | o ∈ Op},

∪ {〈〉 t → (λ, int) | t ∈ T},

∪ {$1q − t$2 → (q − t, out) | qt ∈ RR, t ∈ T},

R2 = {t$2 → ($2〈〉 t , out) | t ∈ T},

Rp = {$1p → (p − $1, out)}, p ∈ Pref,

Rŝ = {s$2 → ($2 − ŝ, out)}, s ∈ Suf,

A P System for Annotation of Romanian Affixes 45

Rq = { t2 → (t1 , out)}, q = t1 → t2 , t1, t2 ∈ T.

Ra = {(y → x, out)}, a = (x → y) ∈ A,

Rt = {$2 → (−t$2, out)}, t ∈ T.

Indeed, the work of Π consists of the reverse application of operations of adding
affixes and alternations in terminations and the rest of the word, according to the
control words from M . The role of endmarkers $1 and $2 consists of ensuring that
prefixes from Pref and suffixes from Suf are only removed from the appropriate
ends of the word.

The first step consists in marking of a termination in the word, sending the
string out to region 1. The subsequent evolution is reduced to selecting and
performing reverse derivation steps in regions corresponding to the operations;
region 1 serves to control the substeps of the process. At any time, the system
sends a copy of the word into a region corresponding to its termination, and
back to region 1, effectively unmarking the termination and moving it to the left
of all suffixes, separated by a hyphen from the root, in case the control word was
emptied to 〈〉. If the word between the markers (the root and the termination)
matches some word in RR, the resulting word is sent out.

Besides accepting words, the system also produces the decomposition of the
word. In order to do so, instead of removing prefixes and suffixes, they are moved
outside of the interval between $1 and $2.

3.1 A finer algorithm

We propose a variation of the algorithm above, fulfilling the following goal: the
alternations are only allowed in the root of the word, not in the prefixes or suffixes
to be removed. We proceed as follows: all reverse alternations are replaced with
the prime version of the letters. Once the choice is made to stop performing the
operations (the string is in a region corresponding to its termination and the
control symbol is removed), every letter can be unprimed, and then the result
is sent out if some word from RR is obtained between the markers. We present
the resulting P system.

Π = (O,µ,Σ,w1, w2, wo1
, · · · , wok

, wt1 , · · · , wtn
,

R1, R2, Ro1
, · · · , Rok

, Rt1 , · · · , Rtn
, i0 = 2),

O = V ∪ V ′ ∪ V ∪ ̂V ∪ T ∪ Op ∪ {$1, $2,−}, V = {a, · · · , z},

V ′ = {a′, · · · , z′}, V = {a, · · · , z}, ̂V = {â, · · · , ẑ}, Σ = V ∪ {$1, $2},

µ = [[]2[]o1
· · · []ok

[]t1 · · · []tn
]1,

wi = λ, i ∈ {1, 2} ∪ Op ∪ T,

R1 = {〈〉 → 〈w〉 | w ∈ Mr} ∪ {〈o → (〈, ino) | o ∈ Op},

∪ {〈〉 t → (λ, int) | t ∈ T},

∪ {$1q − t$2 → (q − t, out) | qt ∈ RR, t ∈ T},

46 A. Alhazov, S. Cojocaru, A. Colesnicov, L. Malahov, M. Petic

R2 = {t$2 → ($2〈〉 t , out) | t ∈ T},

Rp = {$1p → (p − $1, out)}, p ∈ Pref,

Rŝ = {s$2 → ($2 − ŝ, out)}, s ∈ Suf,

Rq = { t2 → (t1 , out)}, q = t1 → t2 , t1, t2 ∈ T.

Ra = {(z → x′, out) |′−1 (z) = y}, a = (x → y) ∈ A,

Rt = {a′ → a | a ∈ V } ∪ {$2 → (−t$2, out)}, t ∈ T.

The notation ′−1 means removing all primes from the letters of the argument.
Although it assumes an exponential number of rules with respect to the size of
a root alternation, this size is never too long.

4 Parsing in the Romanian language

We start by illustrating the work of the last P system by an example of a
fragment of a computation where Pref = {des}, RR = {praf}, Suf = {ui,re},

T = {λ} and M = {(d e s), (a → ă)(û̂i), (r̂ê)}, and the system processes input
$1desprăfuire$2. For conciseness, we only list the first evolution of the copies of
the string leading to the output, using the notation (string,region). (The other
two are obtained if the prefix des is marked before both suffixes or after one of
them, yielding the same results, while for technical reasons some strings remain
blocked in the system, not contributing to the result).

($1desprăfuire$2, 2) ⇒ ($1desprăfuire$2〈〉 λ , 1) ⇒

($1desprăfuire$2〈(r̂ê)〉 λ , 1) ⇒ ($1desprăfuire$2〈〉 λ , (r̂ê)) ⇒

($1desprăfui$2 − r̂ê〈〉 λ , 1) ⇒ ($1desprăfui$2 − r̂ê〈(û̂i)(a → ă)〉 λ , 1) ⇒

($1desprăfui$2 − r̂ê〈(a → ă)〉 λ , (û̂i) ⇒ ($1desprăf$2 − û̂i − r̂ê〈(a → ă)〉 λ , 1)

⇒ ($1desprăf$2 − û̂i − r̂ê〈〉 λ , (a → ă) ⇒ ($1despra′f$2 − û̂i − r̂ê〈〉 λ , 1)

⇒ ($1despra′f$2 − û̂i − r̂ê〈(d e s)〉 λ , 1) ⇒

($1despra′f$2 − û̂i − r̂ê〈〉 λ , (d e s)) ⇒ (d e s − $1pra′f$2 − û̂i − r̂ê〈〉 λ , 1)

⇒ (d e s − $1pra′f$2 − û̂i − r̂ê, λ) ⇒ (d e s − $1praf$2 − û̂i − r̂ê, λ) ⇒

(d e s − $1praf-$2 − û̂i − r̂ê, 1) ⇒ (d e s−praf- -û̂i − r̂ê, 0).

By inspecting the examples, we have come to the conclusion that a derivation
step can include, in the worst case, a prefix, a suffix, two root alternations
and replacing a termination with another one. Some of the above mentioned
operations may be absent.

We should note that the division of a word into morphemes may sometimes
differ from the one commonly accepted in linguistics. However, this should not
restrict the generality of the approach, and we did so in order to simplify the
explanation.

In the parsing process described above, we accounted for the prefixes, suffixes,
root alternations and the terminations. As we have already stated, Romanian

A P System for Annotation of Romanian Affixes 47

language has 86 prefixes and about 600 suffixes, see, e.g., [8]. Processing the dic-
tionary [7] (not claiming its comprehensiveness) let us distinguish the following
types of root alternations during the word derivation:

– of vowels: a→ ă, a→ e, e→ ă, o→ u, ı̂→ i, ă→ e,
ea→ e, e→ ea, oa→ o, oa→ u, ia→ ie

– of consonants: t→ ţ, d→ z, h→ ş, z→ j, d→ j, t→ c, t→ ci

Note that, if desired, we can use the context information to refine the scope of
the the root alternation rules, e.g., if we only wanted to perform the alternation
a→ ă between letters t and r, we could write this as a rule tar→ tăr, which does
not affect the model at all.

The set of terminations that we use in our algorithm (set T) consists of
terminations for nouns and adjectives (ă, e, ea, a, i, ică, the empty termination
λ, u, o, a, l, iu, ui, iu, ie, uie) and those for verbs (a, ea, e, i, ı̂).

We now proceed with some more examples of input and output, so let us
agree that

Pref ⊇ {im,̂ın,de,re,des},

RR ⊇ {pune,flori,flex,scrie,cicl,fac,tânăr,fată,mult,deştept,brad,praf},

Suf ⊇ {ere, are, ibil, re, ire, i, iţ, im, uţ, ui},

T ⊇ {λ, ă, e},

A ⊇ {â → i, ă → e, a → e, t → ţ, e → ea, a → ă},

M ⊇ {(̂ı m), (i n), (d e), (r e), (d e s), (êr̂ê), (âr̂ê), (̂îb̂îl), (r̂ê), (̂ir̂ê),

(â → i)(ă → e)(̂ın)(̂i), (a → e)(̂îţ), (t → ţ)(̂im̂), (λ → e)

(e → ea)(λ → ă), (a → ă)(û̂ţ), (a → ă)(û̂i)}.

Examples without root alternations: words
$1̂ınflorire$2, $1flexibil$2, $1descriere$2, $1reciclare$2, $1desfacere$2 (burst

into blossom, flexible, description, recycling, disassembling) will yield output

ı̂ n-flori--r̂ê, flex--̂îb̂îl, d e-scrie--r̂ê, r e-cicl--âr̂ê, and d e s-fac-êr̂ê, respectively.
Examples with root alternations: words $1̂ıntineri$2, $1fetiţă$2, $1mulţime$2,

$1deşteaptă$2, $1brăduţ$2 and $1desprăfuire$2 (youthen, little girl, multitude,

dignified (fem.), small spruce, undusting) will yield output ı̂n-tânăr--̂i, fat-ă-̂îţ,

mulţ--̂im̂, deştept-, brad-û̂ţ, and d e s-praf--û̂i − r̂ê, respectively.

5 Conclusions

The paper discussed P systems used to word derivation in Romanian, namely,
affixation of nouns, adjectives, and verbs as most productive parts of speech
at lemmas affixation. We proposed variants of membrane parsing model taking
into account alternations in the root dependent of fixed prefixes and suffixes.
We may deduce that these models can be used not only for Romanian but for

48 A. Alhazov, S. Cojocaru, A. Colesnicov, L. Malahov, M. Petic

other languages with analogous type of word derivation. These models can also
be integrated into another NLP applications to solve more complicated problems
in computer linguistics.

Acknowledgements

This work was supported by project STCU-5384 “Models of high performance
computations based on biological and quantum approaches”, and project ref.
nr. 12.819.18.09A “Development of IT support for interoperability of electronic
linguistic resources” from Supreme Council for Science and Technological Devel-
opment of the Republic of Moldova.

References

1. A. Alhazov, E. Boian, S. Cojocaru, A. Colesnicov, L. Malahov, M. Petic, C. Ciubo-

taru: Membrane Models of Romanian Word Affixation. In: Applied linguistics and

linguistic technologies: MegaLing-2012. Kyiv: 2013 (in print) - In Russian.

2. A. Alhazov, E. Boian, S. Cojocaru, Yu. Rogozhin: Modelling Inflections in Roma-

nian Language by P Systems with String Replication. Computer Science Journal

of Moldova 17, 2(50), 2009, 160–178.

3. A. Alhazov, S. Cojocaru, L. Malahova, Yu. Rogozhin: Dictionary Search and Up-

date by P Systems with String-Objects and Active Membranes. International Jour-

nal of Computers, Communications & Control IV, 3, 2009, 206–213.

4. E. Boian, C. Cojocaru, A. Colesnicov, L. Malahov, C. Ciubotaru: Modeling of

Romanian Word Derivation by Membrane Computations. In: Applied linguistics

and linguistic technologies: MegaLing-2011, Kyiv, 2012, 57–72 - In Russian.

5. E. Boian, C. Cojocaru, A. Colesnicov, L. Malahov, C. Ciubotaru: P Systems in

Computer Linguistics. In: Applied linguistics and linguistic technologies: MegaLing-

2009, Kyiv, 2009, 62–70 - In Russian.

6. S. Cojocaru, E. Boian, M. Petic: Stages in Automatic Derivational Morphology

Processing. In: Knowledge Engineering, Principles and Techniques, KEPT2009,

Cluj-Napoca University Press, 2009, 97–104.

7. S. Constantinescu: Dictionary of Derived Words, HERRA, Bucharest, 2008. 288

pp. - In Romanian.

8. Al. Graur, M. Avram: Word formation in Romanian, vol. II, Romanian Academy

Press, Bucharest, 1978, 310 pp. - In Romanian.

9. M. Petic: Automatic Derivational Morphology Contribution to Romanian Lexi-

cal Acquisition. In: Natural Language Processing and its Application. Research in

Computing Science. Mexico, vol. 46, 2010, 67–78.

10. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag. 2002, 420 pp.

11. Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2010, 118–143.

12. P systems webpage. http://ppage.psystems.eu

Behavioural Equivalences in
Real-Time P Systems

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science

Blvd. Carol I no.8, 700506 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. We present a real-time extension of P systems in which each

membrane and each object has a lifetime attached to it, and we use these

lifetimes to define and to study various behavioural equivalences. We also

establish sufficient conditions for guaranteeing progression over time.

1 Introduction

Biologists are becoming increasingly aware that formal methods can help to avoid
resources consumption in lab experiments [3]. The field of “computational meth-
ods in system biology” provides formal frameworks which are able to faithfully
describe the behaviour of complex systems, to provide qualitative and quan-
titative reasoning, as well as to compare the similar behaviour of two related
systems. During the last years, membrane computing [9, 14] has been applied
to biology and could have an important impact in understanding how biological
systems work, giving at the same time a way to describe, manipulate, analyse
and verify them.

In this paper we define and study a real-time extension of P systems, inspired
by the P systems with lifetimes defined in [1]. Inspired from biology where cells
and intracellular proteins have a well-defined lifetime, we assign real-time life-
times to each membrane and to each object. In order to simulate the passage of

time, we use rules of the form (a, t)
d
 (a, t−d) for objects, and [](i,t)

d
 [](i,t−d)

for membranes, for d ∈ R and d ≤ t. If the lifetime of an object a reaches 0 then
the object is used to create a new multiset of objects u by applying a rule of the
form (a, 0) → u, while if the lifetime of a membrane i reaches 0 then the mem-
brane is marked for dissolution by applying a rule of the form [](i,0) → [δ](i,0).
After dissolving a membrane, all objects and membranes previously contained in
it become elements of the immediately upper membrane. A similar idea has been
considered for spiking P systems, where a life duration was added for spikes, but
not for cells [11]. If a spike has a lifetime equal to zero, it is removed.

A time-independent P system is a P system that always produces the same
result, independently of the execution times of the rules [6]. If one assumes the
existence of two time scales (an external time for the user, and an internal time
for the device), then it is possible to construct accelerated P systems [5].

50 Bogdan Aman and Gabriel Ciobanu

Behavioural equivalence is an important concept in biology, necessary for
comparing the behaviour of various (sub)systems. For example, an artificial or-
gan should be the functional equivalent of a natural organ, meaning that both
behave in a similar manner up to a given time; e.g. the artificial kidney has the
same functional characteristics as an “in vivo” kidney. Recently, it was shown
in [12] that the vas deferens’ of the human, canine and bull are equivalent in many
ways, including histological similarities. In [10], different methods are presented
for comparing protein structures in order to discover common patterns.

When choosing which equivalence relation to adopt for a given model, we
need to decide what properties are to be preserved by the equivalence rela-
tion. In membrane computing, two P systems (also called membrane systems)
are considered to be equivalent whenever they have the same input/output be-
haviour [14]. Such an equivalence does not consider the temporal evolution of
the two systems. Behavioural equivalences (bisimulations) for membrane systems
were defined in [2, 4, 8]. As a novelty, we are looking for systems with equivalent
timed behaviour. By defining several equivalences, we offer flexibility in selecting
the right one when verifying biological systems and comparing them.

In computer science, theoretical methods are used to implement software
tools able to verify the properties of complex concurrent systems. It is reason-
able to expect that, for real-time P systems, we can create or adapt some tools
based on verification techniques using temporal logics. What we do in this paper
represents a first step in this direction, namely establishing the formal framework
used in software verifications for biological systems sensitive to timeouts.

2 Real-Time P Systems

Membrane systems are essentially parallel and nondeterministic computing mod-
els inspired by the compartments of eukaryotic cells and their biochemical reac-
tions. The structure of the cell is represented by a set of hierarchically embed-
ded membranes which are all contained inside a skin membrane. The molecular
species (ions, proteins, etc.) floating inside cellular compartments are represented
by multisets of objects described by means of symbols over a given alphabet.
The objects can be modified or communicated between adjacent compartments.
Chemical reactions are represented by evolution rules which operate on the ob-
jects, as well as on the compartmentalised structure (by dissolving, dividing,
creating, or moving membranes).

A membrane system can perform computations in the following way: starting
from an initial configuration (the initial membrane structure and the initial mul-
tisets of objects placed inside the membranes), the system evolves by applying
the evolution rules of each membrane in a nondeterministic manner. A rule is
applicable when all the objects which appear in its left hand side are available
in the membrane where the rule is placed.

Several variants of membrane systems are inspired by different aspects of liv-
ing cells (communication through membranes, membrane mobility, etc.). Their
computing power and efficiency have been investigated using the approaches of

Behavioural Equivalences in Real-Time P Systems 51

formal languages, grammars, register machines and complexity theory. Mem-
brane systems are presented together with many variants and examples in [13].
Several applications of these systems are presented in [9]. An updated bibliog-
raphy can be found at the P systems web page http://ppage.psystems.eu.

For an alphabet V = {a1, . . . , an}, we denote by V ∗ the set of all strings
over V ; λ denotes the empty string and V + = V ∗\{λ}. We use the string
representation of multisets that is widely used in the field of membrane sys-
tems. An example of such a representation is the multiset u = aba, where
u(a) = 2, u(b) = 1. Given two multisets u, v over V , for any a ∈ V , we have
(u⊎v)(a) = u(a)+v(a) as the multiset union, and (u\v)(a) = max{0, u(a)−v(a)}
as the multiset difference. We use R+ to denote the non-negative reals.

Next we define real-time P systems, a variant of P systems with lifetimes [1].

Definition 1. A real-time P system of degree n ≥ 1 is a construct

Π = (Vt,Ht, µt, w1, . . . , wn,L, (R1, ρ1), . . . , (Rn, ρn)), where:

1. Vt ⊆ V × (R ∪ ∞) is a set of pairs of the form (a, ta), where a ∈ V is an

object and ta ∈ (R ∪∞) is the lifetime of the object a;
2. Ht ⊆ H × (R ∪ ∞) is a set of pairs of the form (h, th), where h ∈ H is a

membrane label and th ∈ (R ∪∞) is the lifetime of the membrane h;

3. µt ⊆ Ht × Ht is a tree that describes the membrane structure, such that

((i, ti), (j, tj)) ∈ µt denotes that the membrane labelled by j with lifetime tj
is contained in the membrane labelled by i with lifetime ti; this structure does

not depend on the lifetimes of the involved membranes;

4. wi ⊆ (Vt)
∗ is a multiset of pairs from Vt assigned initially to membrane i;

5. L is a set of labels that attaches a unique label to each rule from R1, . . . , Rn;

6. Ri, 1 ≤ i ≤ n, is a finite set of evolution rules from membrane i of the

following forms:
(a) r : u → v, with u ∈ V +

t , either v = v′ or v = v′δ, v′ ∈ ((Vt ×

{here, out}) ∪ (Vt × {inj | 1 ≤ j ≤ n}))∗, r ∈ L; δ is a special sym-

bol not appearing in V ;
Considering that the multiset of objects u was placed inside membrane i,
the targets indicate where, in the membrane structure, the multiset of

objects v obtained from u should be placed: here - it remains in i; out
- is placed in the parent membrane of i; inj - is moved in a child of i
labelled by j.

(b) r : (a, 0) → u, for all a ∈ V , u ∈ V +

t , r ∈ L
If an object a has the lifetime 0 then the object is replaced with the

multiset u, thus simulating the degradation of proteins and the fact that

new compounds are obtained.
(c) r : [](i,0) → [δ](i,0), for all 1 ≤ i ≤ n, r ∈ L

If the lifetime of a membrane i reaches 0 the membrane is dissolved.
7. ρi, for all 1 ≤ i ≤ n, is a partial order relationship defined over the rules in

Ri specifying a priority relation between these rules.

Therefore, a real-time P systems consists of a membrane structure µ containing
n ≥ 1 membranes, where each membrane i gets assigned a finite multiset of ob-
jects wi and a finite set of evolution rules Ri. The sets Vt and Ht are potentially

52 Bogdan Aman and Gabriel Ciobanu

uncountable, but at any moment a real-time P system contains just a finite num-
ber of objects and membranes. An evolution rule can produce the special object
δ to specify that, after the application of the rule, the membrane containing δ
has to be dissolved. After dissolving a membrane, all objects and membranes
previously present in it become elements of the immediately upper membrane,
while the rules of the dissolved membrane are removed. When no rule from Ri,
1 ≤ i ≤ n, is applicable, all clocks of a real-time P system are decreased with
the same value (the minimum value of the present delays), such that a new rule
from Ri, 1 ≤ i ≤ n, is applicable.

Definition 2. For a real-time P system Π the initial configuration is defined as

C0 = (µt, w1, . . . , wn). The set of all configurations over a real-time P system Π
is denoted by CΠ .

Example 1. Consider the following real-time P system of degree 2:
Π1 = (a × (R ∪ ∞), {1 × ∞, 2 × (R ∪ ∞}), {(1,∞), (2, 5)}, ∅, (a, 2), {r}, ∅,

({r : (a, 0) → (a, 6)})). Graphically this looks like this:

(2, 5)

(a, 2)

r : (a, 0) → (a, 6)

(1,∞)

The initial configuration for Π1 is C0

1
= ({(1,∞), (2, 5)}, ∅, (a, 2)). Starting from

this initial configuration, Π has the following evolution:

C0

1

2
 ({(1,∞), (2, 3)}, ∅, (a, 0))

r
→ ({(1,∞), (2, 3)}, ∅, (a, 6))

3
 . . .

Graphically this steps of evolution are represented as

(2, 5)

(a, 2)

r : (a, 0) → (a, 6)

(1,∞)

2

(2, 3)

(a, 0)

r : (a, 0) → (a, 6)

(1,∞)

r
→

(2, 3)

(a, 6)

r : (a, 0) → (a, 6)

(1,∞)

3

 . . .

The label of
2
 is determined by comparing the lifetime of object a (namely 2)

with the lifetime of membrane 2 (namely 5), and then taking the minimum value

(namely 2). Similar for the label of
3
 , that is the minimum between 6 and 3.

3 Timed Labelled Transition Systems

The operational semantics of a formalism is typically defined by using labelled
transition systems. For formalisms involving time, modelling the passage of time
may be encoded in timed labelled transition systems that distinguish between
transitions due to rules and those due to passage of time.

Definition 3. A timed labelled transition system (shortly TLTS) is a

tuple (CΠ , C0,L,→,) where CΠ is a set of configurations, C0 is the initial

Behavioural Equivalences in Real-Time P Systems 53

configuration, L is a set of labels, →⊆ CΠ×L×CΠ is a rule transition relation

and ⊆ CΠ ×R+ ×CΠ is a timed transition relation. We write C
r
→ C ′ for

(C, r, C ′) ∈→ and C
d
 C ′ for (C, d,C ′) ∈ . If there is no such C ′ ∈ CΠ such

that C
r
→ C ′ (C

d
 C ′), then we write C 6

r
→ (C 6

d
).

The timed labelled transition system of Definition 3 is general and can be
applied to any formalism involving time. A particular system for real-time P
systems is given by Table 1 and Definition 4.

Table 1. Rule Transitions (left column) and Timed Transitions (right column)

(OBJ)

r : (a, 0) → u ∈ Ri, (a, 0) ∈ wi,
C = (µt, w1, . . . , wn)

C
r
→ C′

= (µ′

t, w
′

1, . . . , w
′

n), with µ′

t = µt,
w′

i = (wi\(a, 0)) ⊎ {ut | (ut, here) ∈ u}
w′

j = wj ⊎ {ut | (ut, out) ∈ u, ((j, tj), (i, ti)) ∈ µt}

w′

k = wk ⊎ {ut | (ut, ink) ∈ u, ((i, ti), (k, tk)) ∈ µt}

w′

m = wm, m 6= i, j, k

(TOBJ)

(a, t) ∈ Vt,
0 ≤ d ≤ t

(a, t)
d
 (a, t − d)

(TMULT)

0 ≤ d ≤ t

∀(a, t) ∈ wi, (a, t)
d
 (a, t − d)

wi
d
 w′

i, with w′

i = {(a, t − d) | (a, t) ∈ wi}

(MEM)

r : [](i,0) → [δ](i,0),
((j, tj), (i, 0)) ∈ µt C = (µt, w1, . . . , wn)

C
r
→ C′

= (µ′

t, w
′

1, . . . , w
′

n)

with w′

i = ∅, w′

j = wi ⊎ wj

w′

k = wk, for k 6= i, k 6= j
and µ′

t = ((µt\((i, ti), (j, tj)))

\{(i, 0), (k, tk)}) ⊎ {(j, tj), (k, tk))

(TMEM)
(i, t) ∈ Ht, 0 ≤ d ≤ t

(i, t)
d
 (i, t − d)

(TSTRUCT)

0 ≤ d ≤ ti, 0 ≤ d ≤ tj ∀((i, ti), (j, tj)) ∈ µt,

(i, ti)
d
 (i, ti − d) (j, tj)

d
 (j, tj − d)

µt
d
 µ′

t

with µ′

t = {((i, ti − d), (j, tj − d)) | ((i, ti), (j, tj)) ∈ µt}

(EVOL)

r : u → v ∈ Ri, u ∈ wi,
C = (µt, w1, . . . , wn)

C
r
→ C′

= (µ′

t, w
′

1, . . . , w
′

n)

with w′

j = wj , for j 6= i
and w′

i = (wi\u) ⊎ v

(TEVOL)

d ∈ R+, µt
d
 µ′

t,

∀1 ≤ i ≤ n, wi
d
 w′

i

C = (µt, w1, . . . , wn)

C
d
 C′

= (µ′

t, w
′

1, . . . , w
′

n)

54 Bogdan Aman and Gabriel Ciobanu

The transition relation → describes rule application and a sequence of such
transitions describes an execution within the same instant of real-time, whereas
the timed transition relation describes the passage of real-time. The opera-
tional semantics of a real-time P system Π is:

Definition 4. For a membrane system Π the TLTS is (CΠ , C0,L,→,) where

the relations → and are the smallest relations satisfying the inference rules

from Table 1, the priority relations ρi of Π, and the following constraint express-

ing that → has a higher priority than and guaranteeing maximal progress:

if there exists C ′ such that C
r
→ C ′, then C 6

d
 for all d > 0.

In Table 1, in rule (OBJ) an object (a, 0) ∈ wi is replaced by a multiset u
and the membrane structure remains unchanged, thus the configuration C =
(µt, w1, . . . , wn) is transformed into the configuration C ′ = (µ′

t, w
′

1
, . . . , w′

n) with
µ′

t = µt, and the objects distributed among membranes according to the struc-
ture µt and the targets from u. Rules (EVOL) and (TEVOL) are similar to
(OBJ). In rule (MEM) a membrane i is dissolved and thus wi, wj (i is placed
inside j) and µt are modified to w′

i = ∅, w′

j = wi ⊎ wj and µ′

t (identical to
µt excepting that the pair ((i, ti), (j, tj)) is removed and all (i, it) are replaced
by (j, jt)).

Proposition 1. For any C,C ′, C ′′ ∈ CΠ , and any d, d′ ∈ R+,

1. (Zero time advance) C
0
 C.

2. (Time determinacy) If C
d
 C ′ and C

d
 C ′′, then C ′ = C ′′.

3. (Time continuity) C
d+d′

 C if and only if there is a C ′′ such that C
d
 C ′′

and C ′′
d′

 C ′.

4 Timed Equivalences

Behavioural equivalence should be used to compare systems behaviour; whenever
two systems are shown to be identical, no observer or context can distinguish
between them. A good behavioural equivalence guarantees that, in any context,
a system can be safely replaced by an equivalent system, thus allowing compo-
sitional reasoning. A suitable notion of equivalence between timed systems is
obtained by extending the standard notion of bisimilarity to take into account
timed transitions [7].

The notions defined in this section are generally applicable to all formalisms
involving time than can be encoded in TLTS. Since in the previous section we
defined a specific TLTS for real-time P systems, we use their corresponding
behavioural equivalences to compare membrane systems (e.g., as in Example 1).

Definition 5. Let (CΠ1, C01,L1,→,) and (CΠ2, C02,L2,→,) be two TLTS.

A binary relation R ⊆ CΠ1 × CΠ2 is called a strong timed simulation (ST

simulation) if whenever (C,D) ∈ R, then:

Behavioural Equivalences in Real-Time P Systems 55

1. for any r ∈ L, C ′ ∈ CΠ1, if C
r
→ C ′, then there exists some D′ ∈ CΠ2 such

that D
r
→ D′ and (C ′, D′) ∈ R;

2. for any d ∈ R+, C ′ ∈ CΠ1, if C
d
 C ′, then there exists some D′ ∈ CΠ2 such

that D
d
 D′ and (C ′, D′) ∈ R.

If R and R−1 are strong timed simulations, then R is called a strong timed

bisimulation (ST bisimulation). We define strong timed bisimilarity by

∼
def
= {(C,D) ∈ CΠ1 × CΠ2 | thereexists a ST bisimulation R and (C,D) ∈ R}

The definition treats timed transitions as rule transitions and thus the strong
timed bisimilarity coincides with the original notion of bisimilarity over two
labelled transition systems (CΠ1, C01,L1 ∪ R+,→ ∪) and (CΠ2, C02,L2 ∪

R+,→ ∪).

Remark 1. ∼ is an equivalence relation and the largest ST bisimulation.

4.1 Bounded Timed Equivalence

Strong timed bisimilarity is too strong since all behaviours that violate time con-
straints are considered failures. An alternative is to weaken comparison criteria
to behaviours up to a given deadline, ignoring the behaviours after the deadline.

Example 2. Consider the following systems:
Π1 = (a × (R ∪ ∞), {1 × ∞, 2 × (R ∪ ∞}), {(1,∞), (2, 5)}, ∅, (a, 2), {r}, ∅,

({r : (a, 0) → (a, 6)})) and
Π2 = (a × (R ∪ ∞), {1 × ∞, 2 × (R ∪ ∞}), {(1,∞), (2, 7)}, ∅, (a, 4), {r}, ∅,

({r : (a, 0) → (a, 6)})).
The initial configuration for Π1 is C0

1
= ({(1,∞), (2, 5)}, ∅, (a, 2)), while for Π2

is C0

2
= ({(1,∞), (2, 7)}, ∅, (a, 4)). Before time 2, both Π1 and Π2 have exactly

the same evolutions. If we don’t care about the behaviour of the systems beyond
time 2 it makes sense to identify the two systems up to time 2. Nevertheless,
these systems cannot be identified by strong timed bisimulation. We can see
that Π1 has the following evolution:

C0

1

2
 ({(1,∞), (2, 3)}, ∅, (a, 0))

r
→ ({(1,∞), (2, 3)}, ∅, (a, 6))

but this cannot be matched by the evolution of Π2:

C0

2

2
 ({(1,∞), (2, 5)}, ∅, (a, 2))

2
 ({(1,∞), (2, 3)}, ∅, (a, 0))

r
→

({(1,∞), (2, 3)}, ∅, (a, 6)).
Hence, Π1 and Π2 cannot be identified by strong timed bisimulation. We need a
notion of equivalence that allows us to identify systems whose behaviours match
up to a given deadline.

A notion of timed bisimilarity up to time t is introduced in [18] to compare the
behaviour of timed CSP processes. This notion can be applied to any pair of
TLTS and thus to our formalism. In order to define an equivalence up to time t
we need the following terminology:

56 Bogdan Aman and Gabriel Ciobanu

A binary relation over CΠ1 and CΠ2 is a relation R ⊆ CΠ1 × CΠ2, where

CΠ1 and CΠ2 can be equal. The identity relation is id
def
= {(C,C) |C ∈ CΠ1 ∩

CΠ2}. The inverse of a relation R is R−1
def
= {(D,C) | (C,D) ∈ R}. The

composition of relations R1 and R2 is R1R2

def
= {(C,C ′′) | ∃C ′ ∈ CΠ1 ∩

CΠ2 such that (C,C ′) ∈ R1 ∧ (C ′, C ′′) ∈ R2}.

Definition 6. The binary relation Rt, t ∈ R+, over CΠ1 and CΠ2 is called a

strong time-bounded simulation (STB simulation) if whenever (C,D) ∈ Rt,

then:

1. for any r ∈ L, C ′ ∈ CΠ1, if C
r
→ C ′, then there exists D′ ∈ CΠ2 such that

D
r
→ D′ and (C ′, D′) ∈ Rt;

2. for any d ∈ R+, d < t, C ′ ∈ CΠ1, if C
d
 C ′, then there exists D′ ∈ CΠ2

such that D
d
 D′ and (C ′, D′) ∈ Rt−d.

If Rt and R−1

t , t ∈ R+ are STB simulations, then Rt is called a strong time-

bounded bisimulation (STB bisimulation). We define STB bisimilarity by

≃t
def
= {(C,D) ∈ CΠ1 × CΠ2 | for t ∈ R+ there exists a STB bisimulation Rt

and (C,D) ∈ Rt}

We also define the union of all STB bisimilarities ≃t, as

≃=
⋃

t∈R+

≃t

The first clause states that the derived configurations are matched up to
the same time t. The second clause states that the derived configurations are
matched up to time t− d, namely when they advance in time (by d time units),
the bound is reduced accordingly.

Now let us come back to Example 1.

Example 3. We have that C0

1
≃2 C0

2
, as the two configurations C0

1
and C0

2
have

a timed transition at any time d < 2, namely C0

1

d
 Cd

1
and C0

2

d
 Cd

2
. Note that

bisimilarity up to time 2 does not include bisimilarity at time 2 since C0

1

2
 C2

1

and C2

1

r
→ C ′

1
, but C0

2

2
 C2

2
and C2

2
6
r
→ C ′

2
.

This bisimilarity up to time t satisfies the following property that states how
equivalence up to a deadline t includes equivalence up to any bound u ≤ t.

Proposition 2. For any TLTS (CΠ1, C01,L1,→,) and (CΠ2, C02,L2,→,),
t, u ∈ R+, C ∈ CΠ1, C ′ ∈ CΠ1 ∩ CΠ2 and C ′′ ∈ CΠ2:

1. If C ≃t C ′′ then for any u ≤ t, C ≃u C ′′.

2. If C ≃t C ′ and C ′ ≃u C ′′ then C ≃min{t,u} C ′′.

Furthermore, we also have the following properties.

Proposition 3. For any TLTS (CΠ1, C01,L1,→,) and (CΠ2, C02,L2,→,),

Behavioural Equivalences in Real-Time P Systems 57

1. ≃ is a STB bisimulation.

2. ≃ is closed to identity, inverse, composition and union.

3. ≃ is the largest STB bisimulation.

4. ≃ is an equivalence.

Proof (Sketch).

1. Assume that C ≃ D. By definition of ≃, there must be a STB bisimulation
≃t such that (C,D) ∈≃t. We need to check that ≃ and ≃−1 satisfy the
conditions of STB simulations.

2. (a) The identity timed relation id is a STB bisimulation because any C can
match its own transitions up to any time t.

(b) Since ≃ is a STB bisimulation, the inverse ≃−1 also is one by definition.
(c) If R1 and R2 are STB bisimulations ≃, then we need to show that their

composition R1R2 is a STB bisimulation as well.
(d) Finally, we obtain that the union ∪i∈IRi of STB bisimulations Ri is a

STB bisimulation, as follows. Let (C,D) ∈ ∪i∈IRi∩ ≃t. Therefore, for

some i ∈ I, (C,D) ∈ Ri∩ ≃t. If C
r
→ C ′ then D

r
→ D′ and (C ′, D′) ∈

Ri∩ ≃t and therefore, (C ′, D′) ∈ ∪i∈IRi∩ ≃t⊆ ∪i∈IRi. Similarly, if

C
d
 C ′ for some d < t then D

d
 D′ with (C ′, D′) ∈ Ri∩ ≃t and so

(C ′, D′) ∈ ∪i∈IRi∩ ≃t⊆ ∪i∈IRi as required.
3. Suppose that there is a STB bisimulation R =

⋃

t∈R+
Rt larger than ≃, i.e.

≃ R. So there are C, D and t for which (C,D) ∈ Rt while C 6≃t D. But
C 6≃t D is only possible if there is no STB bisimulation Rt that contains
(C,D), contradicting the assumption.

4. To show that ≃ is an equivalence, we should prove that ≃ is reflexive, sym-
metric and transitive.

⊓⊔

4.2 Bounded Timed Bisimulation “up to” Techniques

In what follows we provide some techniques that extend the “up to” techniques
from [17] to the context of bounded timed bisimulations. The standard proof
technique to establish that C1 and C2 are bisimilar is to find a bisimulation
R such that (C1, C2) ∈ R and R is closed under transitions: the derivatives
(C ′

1
, C ′

2
) of (C1, C2) are also in R. Since such derivatives are added to R without

the possibility of manipulating them, a bisimulation relation often contains many
strongly related pairs. As an example, a bisimulation relation might contain pairs
of configurations obtainable from other pairs through application of algebraic
laws (e.g., composition). These redundancies can make both the definition and
the verification of a bisimulation relation annoyingly heavy and tedious. This
means that sometimes is difficult to find directly such a relation R.

A property that we naturally expect to hold is that symbols which do not
appear in the left-hand side of the evolution rules, do not influence the evolution
of real-time P systems when added to the initial configurations. Consider the
configuration C0 = (µt, w0, w1), and two objects (b, 3) and (c, 3) that appear

58 Bogdan Aman and Gabriel Ciobanu

only in time passing rules. To prove that C01 = (µt, w0(b, 3), w1) and C012 =
(µt, w0(c, 3), w1) are bisimilar, we would like to use the binary relation

R
def
= {(C01, C02)}

But, according to Definition 6, R is not a bisimulation relation. If we add
pairs of configurations to R in order to turn it into a bisimulation relation, then
we might find that the simplest solution is to take the relation

R′

def
= {(C,D) | C ≃ C01, D ≃ C02}

The size of R′ is rather discouraging. However, this extension is unnecessary
since the bisimilarity between the two configurations in R already implies the
bisimilarity between the configurations of all pairs of R′. The notions defined
in the current section aim to simplify the bisimulation proof method. The new
technique would allow for the above example to prove that C01 and C02 are
bisimilar simply using the relation R. In this sense, we generalise the bisimulation
proof method by relaxing Definition 6. There is an useful alternative technique,
the so-called bisimulation “up to” some relation R′: for a relation R, which is
not a bisimulation, if (C1, C2) ∈ R, then the derivatives (C ′

1
, C ′

2
) are in R′.

Under certain conditions we can establish that C1 and C2 are bisimilar. For
this technique, a general framework that works on untimed labelled transition
systems is presented in [16]. We cannot use directly that framework, but the
framework can be extended to timed labelled transition systems. We begin by
introducing a notion of a timed relation “progressing” towards another timed
relation:

Definition 7. Let (CΠ1, C01,L1,→,) and (CΠ2, C02,L2,→,) be two TLTS

and let Rt, R
′

t, t ∈ R+ be any timed relations. We say that Rt strongly pro-

gresses to R′

t, written Rt 7→ R′

t, if for any C,D ∈ CΠ , whenever (C,D) ∈ Rt,

then:

1. for any r ∈ L, C ′ ∈ CΠ1, C
r
→ C ′, then there exists D′ ∈ CΠ2 such that

D
r
→ D′ and (C ′, D′) ∈ R′

t;

2. for any d ∈ R+, d < t, C ′ ∈ CΠ1, C
d
 C ′, then there exists D′ ∈ CΠ2 such

that D
d
 D′ and (C ′, D′) ∈ R′

t−d.

The definition is similar to that of STB bisimulation, except that the derivatives
(C ′, D′) must be in R′

t′ rather than in Rt′ . In fact, STB bisimulation can be
seen as a specific case:

Remark 2. R is a STB bisimulation if and only if R 7→ R.

Proposition 4. If Rt 7→ R′

t and R′

t is a STB bisimulation, then Rt ⊆≃.

Hence, to establish that C ≃t D it is enough to find a relation Rt with
(C,D) ∈ Rt which strongly progresses to a known STB bisimulation R′

t. The
choice of R′

t depends on the particular equivalence we are trying to establish.
One of the most common cases is when R′

t =≃t. However, in general we may not
have at hand a relation R′

t known to be a bisimulation. Nevertheless we may find
that Rt progresses to a relation R′

t = F(Rt) for some function F on relations.

Behavioural Equivalences in Real-Time P Systems 59

The idea is that if Rt progresses to F(Rt) and F satisfies certain conditions,
then Rt is included in ≃t. Thus, to establish C ≃t D we need to find such F

and Rt containing (C,D).
Before we can characterise F functions, we need the following:

Proposition 5. Let Rt,R
′

t,R
′′

t ,R′′′

t ⊆ CΠ×CΠ , t ∈ R+ be some timed relations.

1. If Rt ⊆ R′

t and R′

t 7→ R′′

t then Rt 7→ R′′

t .

2. If Rt 7→ R′

t and R′

t ⊆ R′′

t then Rt 7→ R′′

t .

3. If Rt 7→ R′′

t and R′

t 7→ R′′′

t then RtR
′

t 7→ R′′

t R
′′′

t .

Proof (Sketch).

1. Assume Rt ⊆ R′

t and R′

t 7→ R′′

t . Let (C,D) ∈ Rt. Then (C,D) ∈ R′

t and
since R′

t 7→ R′′

t , we have that

(a) C
r
→ C ′ implies D

r
→ D′ with (C ′, D′) ∈ R′′

t , (and vice-versa)

(b) C
d
 C ′ for d < t implies D

d
 D′ with (C ′, D′) ∈ R′′

t−d (and vice-versa)

This shows that Rt 7→ R′′

t .

The other two cases are treated in a similar manner. ⊓⊔

Proposition 6. Let {Ri}i∈I and {R′

j}j∈J be two sets of timed relations, and

define the relations R
def
=

⋃

i∈I Ri and R′

def
=

⋃

j∈J R′

j. Then

1. If for each i ∈ I there is a j ∈ J such that Ri 7→ R′

j, then R 7→ R′.

2. If for each i ∈ I there is a i′ ∈ I such that Ri 7→ Ri′ , then R is a STB

bisimulation.

These functions on relations are characterised as follows:

Definition 8 (Safe functions). A function F on timed relations is sound if

for any timed relations R, if R 7→ F(R) then R ⊆≃.

However, using this definition it is hard to check whether a function is safe.
An example of a function that is not safe is the function that maps every re-
lation to the universal relation CΠ × CΠ . In what follows we define a class of
sound functions for which membership is easy to check. We define strongly safe
functions:

Definition 9 (Strongly safe functions). A function F on timed relations is

strongly safe if for any timed relations R,R′, if R ⊆ R′ and R 7→ R′ then

F(R) ⊆ F(R′) and F(R) 7→ F(R′).

Proposition 7. The following functions are safe:

1. Fid(R)
def
= R;

2. Fid(R)
def
= id;

3. F
≃

(R)
def
= ≃.

60 Bogdan Aman and Gabriel Ciobanu

The main property, the core of the technique, is the following:

Lemma 1. If R 7→ F(R) for some strongly safe function F then R ⊆≃ and

F(R) ⊆≃.

This technique relies on having a safe function F on timed relations. We have
given a few basic safe functions Fid, Fid and F

≃
, but often these are not enough.

As shown in [16, 17], it is possible to start from basic safe functions and build
more complex ones. The following proposition gives us some basic operators on
these functions which preserve the safety property.

Proposition 8. If Fi, F and G are strongly safe, so are ∪i∈IFi, F ◦G and FG,

where (∪i∈IFi)(R)
def
= ∪i∈IFi(R), (F ◦ G)(R)

def
= F(G(R)) and (FG)(R)

def
=

F(R)G(R).

This gives us some commonly used safe functions:

Lemma 2. The following functions are safe:

1. Fius

def
= Fid ∪ F

≃
;

2. Fsis

def
= F

≃
FidF≃

.

For example using Fius we can prove C ≃t D by finding a relation Rt containing
(C,D) which progresses to Fius(RT) = Rt∪ ≃, namely its derivatives (C ′, D′)
are in either Rt or in ≃. Another common example is using Fsis(Rt) =≃ Rt ≃.
In this case, proving C ≃t D requires finding an Rt containing (C,D) which
progresses to ≃ Rt ≃, namely for its derivatives (C ′, D′) there are C1 and C2

such that C ′ ≃t′ C1, (C1, C2) ∈ Rt′ and C2 ≃t′ D′.

5 Conclusion

In this paper we proposed a real-time extension of P systems, in which the
semantics is given by two types of rules: the transition relation → describes rule
application and a sequence of such transitions describes an execution within the
same instant of real-time, whereas the timed transition relation describes the
passage of real-time.

Over this class of membrane systems we have define timed bounded equiv-
alences using timed labelled transition systems, and an extended Sangiorgi “up
to” technique. An important goal of defining these bisimulations is to offer flexi-
bility in selecting the right one when verifying biological systems and comparing
them. A good behavioural equivalence guarantees that, in any context, a mem-
brane system can be safely replaced by an equivalent membrane system.

Acknowledgements. Many thanks to the reviewers for their useful com-
ments. The work was supported by a grant of the Romanian National Authority
for Scientific Research, project number PN-II-ID-PCE-2011-3-0919.

Behavioural Equivalences in Real-Time P Systems 61

References

1. B. Aman, G. Ciobanu. Adding Lifetime to Objects and Membranes in P Systems.

International Journal of Computers, Communication & Control, vol.V (2010) 268–

279.

2. O. Andrei, G. Ciobanu, D. Lucanu. A Rewriting Logic Framework for Operational

Semantics of Membrane Systems. Theoretical Computer Science, vol.373 (2007)

163–181.

3. J. Bachman, P. Sorger. New Approaches to Modelling Complex Biochemistry.

Nature Methods, vol.8 (2011) 130–131.

4. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, S. Tini. Compositional Seman-

tics and Behavioural Equivalences for P Systems. Theoretical Computer Science,

vol.395 (2008) 77–100.

5. C.S. Calude, Gh. Păun. Bio-Steps Beyond Turing. Biosystems, vol.77 (2004) 175–

194.

6. M. Cavaliere, D. Sburlan. Time and Synchronization in Membrane Systems. Fun-

damenta Informaticae, vol.64 (2005) 65–77.

7. G. Ciobanu. Behaviour Equivalences in Timed Distributed Π-Calculus. Lecture

Notes in Computer Science vol.5380 (2008) 190–208.

8. G. Ciobanu. Semantics of P Systems. The Oxford Handbook of Membrane Com-

puting (2010) 413–436.

9. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.). Applications of Membrane

Computing. Springer, Natural Computing Series, 2006.

10. I. Eidhammer, I. Jonassen, W. Taylor. Structure Comparison and Structure Pat-

terns. Journal of Computational Biology, vol.7 (2000) 685–716.

11. R. Freund, M. Ionescu, M. Oswald. Extended Spiking Neural P Systems with

Decaying Spikes and/or Total Spiking. International Journal of Foundations of

Computer Science, vol.19 (2008) 1223–1234.

12. D.E. Leocadio, A.R. Kunselman, T. Cooper, J.H. Barrantes, J.C. Trussell.

Anatomical and Histological Equivalence of the Human, Canine, and Bull Vas

Deferens. The Canadian Journal of Urology, vol.18 (2011) 5699–5704.

13. Gh. Păun. Membrane Computing. An Introduction, Springer, 2002.

14. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.). The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.

15. D. Sangiorgi. A Theory of Bisimulation for the Π-Calculus. Lecture Notes in

Computer Science, vol.715 (1993) 127–142.

16. D. Sangiorgi. On the Bisimulation Proof Method. Journal of Mathematical Struc-

tures in Computer Science, vol.8 (1998) 447–479.

17. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes, Cam-

bridge University Press, 2001.

18. S. Schneider. An Operational Semantics for Timed CSP. Information and Com-

putation, vol.116 (1995) 193–213.

The Geometric Membrane Structure of Finite
Interactive Systems Scenarios

I.T. Banu-Demergian and G. Stefanescu

Department of Computer Science, University of Bucharest, Romania

th iulia84@yahoo.com; gheorghe.stefanescu@fmi.unibuc.ro

Abstract. Finite interactive systems (FIS) are one of many equivalent

presentations of regular 2-dimensional languages (2Reg). Known regu-

lar expressions for 2Reg (denoted 2RE) are based on intersection and

renaming, giving little insight on the structure of regular languages. Re-

cently, the authors have introduced a new type of regular expressions

for 2-dimensional languages using arbitrary shapes and tiling operations

parametrized by restrictions on the connection interfaces. Their result on

the representation of FIS languages with this type of regular expressions

(a Kleene theorem) is based on an unexpected connection between the

shapes of scenarios in finite interactive systems and membrane systems.

Compared with the usual P systems, these FIS-based membrane systems

are more rigid (geometric) and they lack the dynamics; probably, the lat-

ter issue can be solved by adding a new dimension in the model, going

to 3-dimensional shapes. The paper provides a detailed analysis of the

FIS-based membrane systems.

Keywords: parallel programming, interactive programming, finite in-

teractive systems, regular expressions, regular algebra, two-dimensional

languages, scenarios, Kleene theorem, membrane computing, P systems

1 Introduction

Natural computing gathers a diversity of powerful and precise models of compu-
tation, sharing the same source of inspiration, the lows of nature. In particular,
membrane computing [19–21], a recent branch of natural computing, takes its
roots from the study of cellular membranes.

Various types of membrane systems, called P systems, have been proposed
as distributed and parallel computing models and also related to other classic
models of interactive computation. For instance, relationship with Petri nets
has been studied in [23]; the possibility of having P systems generating regu-
lar languages has been investigated in [8]. It is proved that regular languages
are inverse-morphic images of languages of finite spiking neural P systems, and
recursively enumerable languages are projections of inverse-morphic images of
languages generated by spiking neural P systems.

Kleene originally introduced regular expressions [13] in connection with neu-
ral networks and finite automata. Kleene theorem states that finite automata

64 I.T. Banu-Demergian and G. Stefanescu

and regular expressions are equivalent (i.e., they specify the same language).
In the meantime, regular expressions became a core formalism for many other
models of sequential computation. In particular, they provide the backbone of
a rich algebraic theory of automata, see, e.g. [24, 9, 16, 14, 4, 15, 5]. For parallel
computation, enrichment of the sequential models with mechanisms for modeling
process interaction are needed. We only mention a Kleene theorem for Petri nets
[22, 10]: Petri nets and a class of concurrent regular expressions are equivalent.

A robust class of “regular two dimensional languages” (2Reg) had been pro-
posed in [11, 18]. It may be specified by many equivalent formalisms: a class
of monadic second-order formulas; a type of cellular automata; a class of 2-
dimensional regular expressions, using intersection and renaming (2RE); a tile
system; etc.

In [7, 6] a type of tissue-like P systems with active membranes is used as a
generative device for rectangular picture languages, arising from tiling in the
integer plane Z

2. The result of a computation is read from all membranes of
the system, each membrane corresponding to a pixel of the picture. The com-
munication graph of the system is a rectangular grid in which an inner node
is connected with four neighbours, a marginal node with three neighbours and
a corner node with two neighbours. The membrane labels, elements of (d +

r)*, hold informations for generating the grid, using two evolution directions: d
(“down”) and r (“right”).

A new representation for two-dimensional languages was introduced in [1].
It is based on contours and their composition (see also [2]). Roughly speaking,
a contour is a closed, non-overlapping line over a Z

2 grid, formed by a list of
oriented segments (“right”, “down”, “left” , “up”), starting at a particular point.
The role of a contour is to describe a finite set of cells as its interior area. The
region delimited by a contour holds a general 2-dimensional word, the cells being
filled with letters from a given alphabet. The operation of merging two adjacent
contours is called contour composition. Based on contour composition a new type
of regular expressions for two dimensional languages n2RE was introduced in [1].
In this new formalism n2RE, the intersection and renaming of 2RE are replaced
with a powerful tiling system that builds the words step by step, being closer in
spirit with classical 1-dimensional regular expressions.

The question of finding an n2RE-like representation of FIS languages has
been addressed in [3]. It was shown that a slight extension x2RE of n2RE,
considering compositions involving the extreme cells of the words, is powerful
enough to represent FIS languages. The main technical result is a representation
theorem for scenarios in finite interactive systems which shows that FIS scenarios
have a rich and unexpected recursive membrane structure.

In this paper we explore the FIS-based membrane structures in connection
with P systems. Compared with the usual P systems, these FIS-based membrane
systems are more rigid (geometric). A more important difference is that they lack
the dynamics. However, this latter issue probably can be solved by adding a new
dimension in the model, going to 3-dimensional shapes. The paper provides a

Membrane structure of FIS scenarios 65

detailed analysis of the scenarios and the membrane system corresponding to a
small FIS representing Pascal triangle words.

The paper is organized as follows. Section 2 briefly reviews basic informations
on finite automata, regular expressions, finite interactive systems and classical
2-dimensional regular expressions. Section 3 gives a detailed presentation of the
new type of regular expressions and Section 4 describes the recursive membrane
tiling mechanism for recognizing complete 2x2 FISs languages. Section 5 ad-
dresses the question on the relationship with P systems. Related and future
works and references conclude the paper.

2 Preliminaries

In this section we introduce the basic definitions and results regarding finite
automata and finite interactive systems (the latter is an extension of finite au-
tomata in two dimensions).

2.1 Finite automata and regular expressions

Finite automata. To describe the informal model of finite state automata let us
consider the example given in Fig. 1.

��
�-

�

 �6

i?
i il

ili

i

i
?

�
�

�	 @
@

@I

- �

6

?

6

�-

���*

HHHj

A

B C F

D E G

a
a

a

a

a

b

bb

b

b

b

b

a

a

Fig. 1. A (complete, deterministic) finite state automaton

Such an automaton is used to recognise words. A word over an alphabet V is
accepted if starting from an initial state (a state with a small incoming arrow)
and following transitions associated to the letters in the word eventually a final
state is reached (a state bearing a double-circle notation). For instance, the word
bbab is accepted, while bbaaa is not accepted. An automaton is complete if in each
state there is at least one outgoing arrow for each element in V . An automaton
is deterministic if in each state there is at most one outgoing arrow for each
element in V.

Regular expressions.

Definition 1. (regular expressions [13]) Regular expressions over an alphabet
V are obtained applying the rules (1) and (2) below a finite number of times:

66 I.T. Banu-Demergian and G. Stefanescu

(1) 0, 1 and a(∈ V) are regular expressions;
(2) if E,F are regular expressions, then E +F,E ·F and E∗ are regular expres-

sions.

The language (or event) |E|, specified by a regular expression E, is inductively
defined as follows: |0| = ∅; |1| = {λ}; |a| = {a}; |E+F | = |E|∪|F |; |E ·F | =
|E| · |F |; |E∗| = |E|∗. 2

The relationship between regular languages and regular expressions is given
by the following fundamental theorem of Kleene.

Theorem 1. (Kleene, 1956) A language is regular (e.g., it is recognized by a

nondeterministic finite automaton) iff it may be specified by a regular expression.

An algebraic proof for this result can be found in [26]. It is based on an
algebraic proof of the following identity:

[

a b
c d

]

∗

=

[

a∗ + a∗bwca∗ a∗bw
wca∗ w

]

where w = (ca∗b + d)∗.

2.2 Finite interactive systems (FISs)

Finite interactive systems are a two-dimensional extension of finite automata,
well suited for recognising two-dimensional words.

A finite interactive system [27, 28] is defined by:

– a set S of states (denoted by numbers 1, 2, ...) and a set C of classes (denoted
by capital letters A, B, ...);

– a set T of transitions of the fallowing form: (A, 1) → a → (B, 2), where a is
a letter of a given alphabet Σ and A, B, 1, 2 are as above;

– specification of the initial/final states and classes.

A FIS is complete if it specifies a transition (c1, s1) → t → (c2, s2) for any
pair ((c1,s1),(c2,s2)) in ((C × S) × (C × S)).

A useful cross/tile representation may be used; it is based on showing the
transitions and stating which states and classes are initial/final. An example is

S1: A

2

1

BA

1

2

Ba

2

A

1

Bc b with 1, A initial and 2, B final.

The FISs recognizing procedure is via accepted scenarios. A scenario alter-
nates class/state information and letters according to the transitions. It is an
accepting scenario if the northern border has initial states, the western border
has initial classes, the eastern border has final classes, and the southern border
has final states.

Graphically, a scenario may be easily obtained using the crosses representing
the transitions and identifying the matching classes or states of the neighbouring
cells. Below, we show a few examples of scenarios for the FIS S1 above.

Membrane structure of FIS scenarios 67

word accepting S1 scenario word not-accepting S1 scenario
(on south, 1 is not final)

a b b
c a b
c c a

1
a b b

c a

a

b

c c

1 1

2 1 1

2 2 1

2 2 2

A

A

A

B

A

A

B

B

B

B

B

A a b b
c a b

1
a b b

c a b

1 1

2 1 1

2 2 1

A

A

B

A

B

B

B

B

2.3 A known class of 2-dimensional regular expressions - 2RE

We start with “classical” 2-dimensional regular expressions (2RE). They are
introduced below into two stages.

First, simple 2-dimensional regular expressions (simple 2RE) are defined by
two sets of regular operators (one for the vertical direction, the other for the
horizontal direction) which share the additive part. Formally, they use:

1. the additive operators: 0 (for empty set) and + (for union)
2. the vertical composition operators:

— I v (vertical identity), ; v (vertical composition) and * v (iterated vertical

composition)
— our preferred textual notations are: |, ; and *

3. the horizontal composition operators:
— I h (horizontal identity), ; h (horizontal composition) and * h (iterated
horizontal composition)
— our preferred textual notations are: -, > and ^

Next, 2-dimensional regular expressions are obtained adding intersection and
renaming to simple 2RE. Formally, they use the following additional operators

1. intersection: our preferred textual notation is /\
2. renaming via a letter-to-letter homomorphism rho:V->V’ (V and V’ are the

old and the new alphabets, respectively)

Notation: As usual, the set of words specified by an expression E is denoted
by |E|.

A few examples of regular expressions and words satisfying these expressions
are presented below. They are related to the following expression:

E = (b* ; a ; c*)^ /\ (c^ > a > b^)*.

Subexpressions and represented words:

b* ; a ; c* (b* ; a ; c*)^ c^ > a > b^ (c^ > a > b^)*

a
b

c
c

a

b

c c

b b
b b b

a

b a
a c

c
c

c c c c a bcc

a
b

c
b b

a
b

a
a

c
c c

cc

b b
b

b b bbb
b b

It can be proved that the intersection has only square words with a on the

68 I.T. Banu-Demergian and G. Stefanescu

diagonal, b on the top right area and c on the bottom left area. To conclude,

(b* ; a ; c*)^ /\ (c^ > a > b^)* represents words as
a
b

c
b b

a

a
a

c

c c
c

c

b b

b .

The first part of the expression constrains the column patterns, while the second
the rows. Intersection does the magic action of selecting only the wished 2-
dimensional words.

The connection between 2RE and FIS languages is formulated in the following
theorem:

Theorem 2. ([11, 28, 25]) The languages represented by finite interactive sys-

tems and those specified by 2-dimensional regular expressions 2RE are the same.

The inconveniences of this approach mostly come from the use of renaming
and intersection. For instance the 2RE formalism is not robust under renaming,
i.e one can find two expression E1, E2 over V1, V2 respectively and a renaming
rho:V -> V’ such as |E1|=|E2| but rho(|E1|) != rho(|E2|). Notice that the
expression E3 = (a* ; a ; a*)^ /\ (a^ > a > a^)*, obtained by syntacti-
cally renaming a,b,c as a into the expression E above, represents all rectangular
words of a’s, not only the square ones as one expects. Moreover, intersection and
renaming are difficult to handle and non-intuitive operations.

Hence we propose an alternative formalism based on a system of tiling shapes
and a powerful set of composition operators for these shapes (extending verti-
cal/horizontal compositions, and their iterated versions).

3 A new type of regular expressions - n2RE

This section is devoted to a new type of regular expressions for representing
two-dimensional words.

3.1 General 2-dimensional words

A general 2-dimensional word is a set of unit cells in the 2-dimensional space
filled with letters from the given alphabet. An example is below, also showing
how the recognizing procedure may be extended to non-rectangular words.

a non-rectangular word accepting S1 scenario

a b
c a

c a

1
a b

c a

ac

1

2 1

2 2 1

2 2

A

A

B

A

B

B

B

AA

It is also possible to have words with several disconnected components.

Membrane structure of FIS scenarios 69

3.2 General composition

We define a general composition operator on 2-dimensional words as follows:
given two words, get new words by putting them together such that no interior
cell of the first word may overlap an interior cell of the other.

Actually this is a particular form of tiling. What is perhaps different here
is that no restriction to have a physical contact between the words (via side
borders or corners) is required.

For a graphical example, notice that

C1 C2 C1 . C2 (valid composition)

shows a valid composition, while

C1 C2 C1 . C2 (not valid - overlapping)

shows an example of composition leading to an invalid result (the result has
overlapping areas). In this example, the black points (little black filled squares)
on the contours show how the words are linked: identify these black points to
get the composed words. This composition via identification of black points is
extended to two-dimensional words as follows. For two words W1, W2, consider
arbitrary contours C1, C2 representing them (having as internal areas the shapes
of the words) and arbitrary positions as black points (starting points for repre-
senting these contours). Then, W1 . W2 consists of all words resulting from valid
compositions of such contours and placing the letters of the words W1, W2 in the
corresponding positions of the resulting composites. E.g., the composite a . a

contains, among other, the following words
a

a
a
a

a a
a a More

on contour representation of 2-dimensional words may be found in [1, 2].

3.3 Particular composition operators

The new type of 2-dimensional regular expressions, to be defined below, puts
constraints on the connection points on the borders of the composed words.
These constraints act on the following three types of elements: side borders, land

corners (turning points on the border contour having 3 neighbouring cells outside
the word and one neighbouring cell inside), and golf corners (turning points on
the border contour with 3 neighbouring cells inside and one neighbouring cell
outside). The resulting restricted composition operators extend the usual vertical
and horizontal composition operators on rectangular words.

70 I.T. Banu-Demergian and G. Stefanescu

Points of interest on the words borders. A point is represented as a pair p =
(x, y) ∈ Z

2. A vertical line segment ((x, y), (x, y + 1)) is specified by its middle
point l = (x, y + 0.5); similarly, a horizontal line segment ((x, y), (x + 1, y)) is
denoted by l = (x + 0.5, y). Finally, a unit cell with the corners {(x, y), (x +
1, y), (x+1, y+1), (x, y+1)} is specified by its center point c = (x+0.5, y+0.5).

Let us use the following notation (their meaning is explained right after the
listing):

– side borders: elements in C1={w,e,n,s}, where w stands for “west border”,
e for “east border”, n for “north border”, and s for “south border”;

– land corners: elements in C2={nw,ne,sw,se}, where nw stands for “north-
west land corner”, ne for “north-east land corner”, sw for “south-west land
corner”, and se for “south-east land corner”;

– golf corners: elements in C3={nw’,ne’,sw’,se’}, where nw’ stands for
“north-west golf corner”, ne for “north-east golf corner”, sw for “south-west
golf corner”, and se for “south-east golf corner”;

– extreme side borders: elements in C4={xw,xe,xn,xs};
– extreme land corners: elements in C5={xnw,xne,xsw,xse}

A line specified by the point l = (x, y + 0.5) is on the east border of a word f
if the cell represented by the point c = (x − 0.5, y + 0.5) is in the internal area
of f , while the cell represented by c = (x + 0.5, y + 0.5) is in the external area
of f . For the other west, north, and south directions, the definition is similar.
A point p = (x, y) ∈ Z

2 is on the south-east land corner of a word f if the cell
represented by c = (x − 0.5, y + 0.5) is in the area of f , while the other 3 cells
around are not in the area of f (they are in the external area of f). For the other
3 types of land corners the definition is similar. A point p = (x, y) ∈ Z

2 is on the
south-east golf corner of a word f if the cell specified by c = (x − 0.5, y + 0.5)
is not in the area of f (it is in the external area of f), while the other 3 cells
around are in the area of f . For the other 3 types of golf corners the definition
is similar.

A cell is an extreme cell if it touches at most one other cell in the interior
area. A side (i.e., north, west, east, south) or a corner on the border of a word
is extreme if it belongs to an extreme cell and does not touch another cell (side
elements with an end point touching another cell are also excluded - they are
not extreme).

Glueing combinations. The constraints on glueing the borders are independently
put on one or more of the following combinations (x, y):

x and y are different and either they are both in {e, w}, or both in {s, n}, or
both are land corners in {nw, ne, sw, se}, or both are combinations golf-land
corners for the same directions.

Spelling out the resulting combinations we get the following lists:

– linking side borders: L1={(w,e), (e,w), (n,s), (s,n)};

Membrane structure of FIS scenarios 71

– linking land corners: L2={(nw,ne), (nw,se), (nw,sw), (ne,nw),

(ne,se), (ne,sw), (se,nw), (se,ne), (se,sw), (sw,nw), (sw,ne),

(sw,se)};
– linking golf-land corners: L3={(nw’,nw), (nw,nw’),

(ne’,ne), (ne,ne’), (se’,se), (se,se’), (sw’,sw), (sw,sw’)}.

Let EL1, EL2, EL3 denote linking-combinations where all side borders and land
corners are restricted to be extreme. (e.g. EL1={(xw,xe), (xe,xw), (xn,xs),

(xs,xn)})
The set of all combinations in L1 ∪ L2 ∪ L3 ∪ EL1 ∪ EL2 ∪ EL3 is denoted

by Connect.

Constricting formulas. On each of the above eligible glueing combinations (x, y)
we put a constraint consisting of a propositional logic formula 1 F ∈ PL(φ1, φ2,
φ3, φ4), i.e., a boolean formula built up starting with the following atomic for-
mulas:

φ1(x, y) = “x < y”, φ2(x, y) = “x = y”, φ3(x, y) = “x > y”, and φ4(x, y) =
“x # y”.

The meaning of the connectors is the following: “<” - left is included into the
right; “=” - left is equal to the right; “>” - left includes the right; “x # y” - left
and right overlaps, but no one is included in the other.

For instance: f(e = w)g means “restrict the general composition of f and g
such that the east border of f is identified to the west border of g”; f(e > w)g -
the east border of f includes all the west border of g, but some east borders of
f may still be not covered by west borders of g; etc.

We also use the notation

φ0(x, y) = “x ! y”, where “!” means empty intersection.

Actually, this is a derived formula ¬(φ1(x, y) ∨ φ2(x, y) ∨ φ3(x, y) ∨ φ4(x, y)).

Particular composition operators. We are now in a position to introduce the
particular composition operators induced by the above constricting formulas.

Definition 2. (restricted compositions)
A restriction formula φ is a boolean combination in PL(F1, . . . , Fn), where Fi are
constricting formulas involving certain eligible glueing combinations (xi, yi) ∈

Connect. A restricted composition operation (F) is the restriction of the general
composition to composite words satisfying F . A word h ∈ f . g belongs to f (F) g
if for all glueing combinations (xi, yi) occurring in F the contact of the xi border
of f and yi border of g satisfies Fi. 2

1 PL(Atom) denotes the set of propositional logic formulas built up with atomic for-

mulas in Atom. For typing reasons, the boolean operations “not”, “and”, and “or”

are denoted by “¬”, “&”, and “V”, respectively.

72 I.T. Banu-Demergian and G. Stefanescu

The non-restricted general composition f.g is the same as f (.) g.
Notice that the restricted composition operations are not always associative;

e.g.,

((a (s=n) a) (e>w) b) (e>w) c 6= (a (s=n) a) (e>w) (b (e>w) c).

When some parentheses are missing, we suppose a left-parentheses order applies,
as in ((C1 op C2) op C3).

On expressiveness. One can easily show that the side borders (east/west) or
land corners alone are less expressive than acting together. The example below
shows golf-corner points add to the expressive power of the composition as well:
the left composite can not be expressed without golf-corner constraints.

blue (nw’<nw) yellow: blue (s#n & e#w) yellow

b
y

y

y

yy
y

y
b b b

b
b b b

b
y

y

y

yy
y

y
b b b

b
b b b

b

y

y

y

yy
y

y

b b b
b
b b b

Not specified glueing combinations. The interpretation we just introduced shows
that the constricting formulas act on the involved glueing combinations, while
for the glueing combinations (xj , yj) not occurring in the formula no constraints
are imposed, at all. One can also introduce a stricter interpretation (F)s

where the not-occurring combinations are considered to have no contact at all
(empty intersection). In this latter interpretation, the contacts are only those
directly specified in the formula. For instance, a (e=w) s b is empty; to have
the same result as in a (e=w) b, one has to specify all contacts elements as in
a ((e=w)&(ne=nw)&(se=sw)) s b.

Iterated composition operators. The iterated composition operators are denoted
by

() ∗ (F), for a restriction formula F .

Definition 3. The set of expressions obtained using all the operators defined
so far are denoted by x2RE; they represent two-dimensional regular expressions

extended with composition operators on extreme cells. Dropping the operators
involving the extreme cells we get n2RE, the basic new type of regular expressions

for two-dimensional words. 2

Examples The examples below are related to S1, the original FIS we have consid-
ered in the beginning of the section. We first show the expressions, then include
samples of words associated to these expressions.

Ea1 = a (se=nw) a: Ea2 = (a)*(se=nw)

a
a

a
a

aa
a

a, ,

Membrane structure of FIS scenarios 73

Eb1 = b (.) b: Eb2 = (b)*(.)

, ,bb
b

b b
b

...

, ,
b

b
b b

b
b

...

b
b
b

b

b

Ec1 = c (.) c: Ec2 = (c)*(.)

, , ...

c
c c c

c
c

, , ...

c
cc

c c
c
c

c
c
c

c

Eab = Ea2 (e>w & n>s) Eb2

, , ...

a b b
a

a
a
ba

ba a
b

b
a

a
a

b

Eabc = Ec2 (e<w & n<s) Eab

, , ...

a b b
a

a
a
ba

ba a
b

b
a

a
a

b

c c
c

c
cc

Combined with the constraint to have rectangular words, the regular expres-
sion Eabc specifies the language of S1. For instance a word in Eabc is accepted
if the result of the expression

Eabc (n=s) s Lx (s=n) s Lx (e=w) s Cx (w=e) s Cx

is not empty, where Lx=(x)*(e=w) and Cx=(x)*(n=s).

Chains, and pretzel-like shapes. A pretzel word is a set of cells such that each
cell has precisely 2 touching cells around and no proper subset has this property.

The construction of pretzels is in two stages: (1) first, we give a procedure for
generating chains; (2) then, a pretzel is produced by an appropriate connection
of two chains.

For constructing a chain, we use the strict interpretation of the composi-
tion, i.e., the one where the only connecting elements are those specified in the
constricting formula. This, combined with the restriction to make composition
for extreme elements only, leads to a formula for iterative generation of chains:
start with a cell and iteratively add one cell at a time, connected via an extreme
element.

Finally, a pretzel is obtained composing two chains via their extreme elements
and asking for equality, to avoid having only one end of a chain connected.

Example Expression recognizing chain words over the alphabet V = {a, b, c}:

C = (a + b + c) ∗ [(xse > xnw) ∨ (xsw > xne) ∨ (xne > xsw) ∨ (xnw >
xse) ∨ (xe > xw) ∨ (xn > xs) ∨ (xw > xe) ∨ (xs > xn)] s.

An expression recognizing pretzel words over the alphabet V = {a, b, c}:

74 I.T. Banu-Demergian and G. Stefanescu

P = C[(xse = xnw) ∨ (xsw = xne) ∨ (xne = xsw) ∨ (xnw = xse)] s C.

a

b

c
b

c
c

c
a

b

ca
a

b
b

c
b

a
b b

c

c

a

b

c
b

c
c

c
a

b

a
a

cb
b

c
b

a
b b

c

c

4 Tiling cells, chains, and membranes in complete 2 × 2
finite interactive systems

This section describes a two-dimensional version of the procedure used in Theo-
rem 1. A key ingredient is the expression (a+bd∗c)∗, for the complete automation

with transitions 1
a

−→ 1, 1
b

−→ 2, 2
c

−→ 1, 2
d

−→ 2, describing the passing from
state 1 to itself. Actually, it shows there are two indecomposable paths from 1
to 1 which are freely combined. These paths are the following: (1) a, giving a
direct transition from 1 to 1; and (2) bd∗c, corresponding to going from 1 to 2,
looping there, and finally, going back to 1.

The question we are discussing in this section is on the extension of the above
mechanism to two dimensions. Notice that finite interactive systems are much
more complex than finite automata2, so one can not expect to get simple results.

A complete 2 × 2 FIS is specified by the fallowing transitions:

.

The states/classes of this FIS will be denoted using the initials of the colors: the
classes are g (green) and r (red), while the states are b (blue) and m (magenta).
A scenario is called indecomposable if all its west, north, est, south borders are
labeled with c1, s1, c2, s2 respectively and it doesn’t contain any sub-scenarios
with this property.

Suppose we want to construct the recognised 2-dimensional words corre-
sponding to scenarios going from g/b, used for west/north borders, to g/b, used
for east/south borders. The indecomposable scenarios include the following com-
binations:

2
For instance, by the projection of the languages recognised by finite interactive

systems (FISs) to the 1st row (to get string languages), one gets context-sensitive

languages[17]. As a side-effect, this shows emptiness problem for FISs is not decid-

able.

Membrane structure of FIS scenarios 75

The first scenario A specifies the direct passing from g/b to g/b. The 2nd sce-
nario, corresponding to the expression (C (e=w) (K *(e=w))) (e=w) I, is a
generic indecomposable scenario describing the case when one keeps fixed the
state b and goes from g to the other class r, loops there, and finally comes back
to g. The case of the 3rd scenario is similar. Let us denote by Ea, Eb, and Ec

regular expressions for the words corresponding to these 3 types of scenarios.
Much more complicated is the situation with the indecomposable scenarios

corresponding to the case when both g/b are changed going to the combination
r/m, loop (tile!) there, and finally come back to g/b.

The first step (going from g/b to r/m) leads to a kind of pretzel-shape. A
first approximation of this form is described in the following pictures.

and .

Formally, a pretzel-shape is a word where each cell has precisely 2 neighbouring
cells (on north, south, east, west, or diagonal directions) and no proper sub-word
has this property.

Let us denote by Ed an expression for these pretzel-like scenarios associated
to our complete 2×2 FIS. Given an expression for a pretzel-like scenario f we
denote by f [X] the result of filling the pretzel hole with X. An expression for
defining f [X] may be

f [(s>n)&(w>e)&(n>s)&(e>w)] X.

It is worthwhile to emphasize that this composition may be not empty only in
the case X has no holes.

The second step (tiling in r/m) is relatively easy: it consists in tiling the
interior contour of the pretzel with the following scenarios

76 I.T. Banu-Demergian and G. Stefanescu

and pretzel-like scenarios from r/m to g/b. The extra constraint put here is to
have no holes after this procedure, except for the interior holes of the included
new pretzel-like words.

The last step (going from r/m to g/b) is similar to the first step.

Suppose we have regular expressions for describing these indecomposable
scenarios. Then, the two-dimensional word language corresponding to the passing
from g/b to g/b satisfies the relation

X = (Ea + Eb + Ec + Ed[X]) ∗ (.) (1)

We conclude this section formally stating the result obtained so far.

Theorem 3. ([3]) The x2RE formalism and a mechanism for solving the recur-

sive equation 1 are expressive enough to represent the words recognised by the

complete 2×2 FIS.

Notice that the restriction to 2×2 FISs is not important. With an iterative
application of the method, the result carries over finite interactive systems with
an arbitrary number of states/classes. Also, we may use the same tiling mecha-
nism for generating the language of an incomplete 2×2 FIS.

Example. We calculate the set of words passing from g/b to g/b recognized by
the FIS “Pascal triangle” with 4 transitions: D, E, P, I. There are no direct tran-
sitions or line/column words from g/b to g/b. Hence the only indecomposable
scenarios from g/b to g/b are pretzel words from g/b to r/m filled with r/m to
r/m scenarios:

Ed = D*(ne=sw)(xe # xw & xs # xn)[(I*(s=n))(sw=ne)(E*(e=w))]

The expression X generates all scenarios passing from g/b to g/b. If addi-
tionally we accept only rectangular words, we obtain the language recognized by
the FIS “Pascal triangle”.

X = Ed[P*(.)]*(.)

Membrane structure of FIS scenarios 77

5 Relating FIS scenarios and P systems

In this section we briefly discuss the relationship between the FIS-based mem-
brane systems and P systems. We suppose the reader is familiar with the original
P systems model and the multitude of variations occurring in the literature till
now.

A first observation is that FIS languages are not Turing complete (we already
mentioned this). To get the full computation power one has to add data for
states/classes as in the register-voice interactive model rv-IS [29].

There are two aspects to be discussed: the static structure of the membranes
and the dynamics of the systems.

Static structure. With respect to the static structure, notice that the FIS-based
membrane systems are more rigid (or geometric). An additional difference is that
the contents of the membrane are also rigid/geometric. In particular, there are
cells, chains, walls, or other membranes tiling together and organizing the interior
areas of the membranes. This particular emphasis on the geometric shapes of
the membranes has positive and negative consequences. On the positive side, we
mention a significantly decrease of nondeterminism in the system leading to more
efficient simulations. On the opposite side, the cells are forced to interact with
their neighbouring cells only, making more difficult to model general reaction
rules involving far apart objects of a membrane region.

Dynamics. One way to introduce the dynamics corresponding to P systems runs
is to add a new dimension into the model. One can consider 2FIS, a model where
the 1-dimensional space part of the finite interactive systems is replaced by a
2-dimensional space. Now, each action (cell) has 3 orthogonal directions, say:
up-down and left-right for space and back-front for time. Ignoring the time di-
mension, one gets usual finite interactive systems, for which the static membrane
structure may be studied as in the present paper. Adding the time dimension, one
can model the passing from a static membrane structure to another. Again, due

78 I.T. Banu-Demergian and G. Stefanescu

to the rigid/geometric structure of the model some costly high-level operations
in P systems like arbitrary multiplication of the objects in a step, membrane
division, dissolution, or migration can not be done in a step, but probably can
be modelled if more 2FIS steps are allowed.

6 Related and future works

Regular expressions are introduced in the seminal paper by Kleene [13] on the
representation of events in neural nets and automata; it was published in the
early 1950s. Kleene theorem (i.e., the equivalence between finite automata and
appropriate regular expressions) was extended to cover other computing models
of interest and is a basis for the development of algebraic theories for those
models.

The study of two dimensional languages [11, 18] has started in 1960’s. In
1990’s, a robust class of “regular two dimensional languages” has been identified;
it may be specified either by tile systems, or by a type of cellular automata, or by
a class of monadic second-order formulas, etc. Unfortunately, the class is quite
complex - for instance, emptiness property is not decidable, see [17].

Interactive computation [12] is becoming more and more important in the
recent years, in particular due to the advance of multicore computation. We use
a model rv-IS [29] based on space-time duality. In particular, finite interactive
systems [27] are the space-time invariant extension of finite automata in this
context. A Kleene theorem for finite interactive systems follows directly from
their equivalence with tile systems [25].

With respect to P systems, the FIS-based membrane systems model may be
a good proposal for an intermediate level between P-system and physical cells.
If this is the case, then a full translation of high-level P systems concepts to the
low-level FIS-based membrane systems deserves to be done. Finite interactive
systems are strongly related to massively parallel structural programs, hence one
can get efficient implementations this way.

References

1. Banu-Demergian, I., Paduraru, C., Stefanescu, G.: A new representation of two-

dimensional patterns and applications to interactive programming. In: FSEN 2013.

LNCS (2013, to appear)

2. Banu-Demergian, I., Stefanescu, G.: On the contour representation of two-

dimensional patterns (2013), draft

3. Banu-Demergian, I., Stefanescu, G.: Representation of scenarios in finite interactive

systems (2013), draft, submitted

4. Bloom, S., Esik, Z.: Equational axioms for regular sets. Mathematical Structures

in Computer Science 3, 1–24 (1993)

5. Bonsangue, M., Rutten, J., Silva, A.: A Kleene theorem for polynomial coalgebras.

In: Proc. FSSCS’09. LNCS, vol. 5504, pp. 122–136. Springer-Verlag (2009)

6. Ceterchi, R., Gramatovici, R., Jonoska, N.: Tiling rectangular pictures with P

systems. In: Membrane Computing, pp. 88–103. Springer (2004)

Membrane structure of FIS scenarios 79

7. Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.: Tissue-like P systems

with active membranes for picture generation. Fundamenta Informaticae 56(4),

311–328 (2003)

8. Chen, H., I.Rudolf, Ionescu, M., Paun, G., Pérez-Jiménez, M.: On string languages

generated by spiking neural P systems. Fundamenta Informaticae 75(1), 141–162

(2007)

9. Conway, J.: Regular Algebra and Finite Machines. Chapman and Hall (1971)

10. Garg, V., Ragunath, M.: Concurrent regular expressions and their relationship to

Petri nets. Theoretical Computer Science 96, 285–304 (1992)

11. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of formal

languages, pp. 215–267. Springer (1997)

12. Goldin, D., Smolka, S., Wegner, P.: Interactive computation: The new paradigm.

Springer (2006)

13. Kleene, S.: Representation of events in nerve nets and finite automata. Automata

Studies (34), 3–41 (1956)

14. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. In: LICS’91. pp. 214–225. IEEE (1991)

15. Krob, D.: Complete systems of β-rational identities. Theoretical Computer Science

89, 207–343 (1991)

16. Kuich, W., Salomaa, A.: Semirings, automata and languages. Springer-Verlag,

Berlin (1985)

17. Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable pic-

ture languages. Information and Computation 138(2), 160–169 (1997)

18. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns.

Journal of statistical physics 91(5-6), 909–951 (1998)

19. Paun, G.: Computing with membranes. Journal of Computer and System Sciences

61(1), 108–143 (2000)

20. Paun, G.: Introduction to membrane computing. In: Applications of Membrane

Computing, pp. 1–42. Springer (2006)

21. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford handbook of membrane com-

puting. Oxford University Press, Inc. (2010)

22. Petri, C.: Kommunikation mit automaten. Ph.D. thesis, Instituts fur Instrumentelle

Mathematik, Bonn, Germany (1962)

23. Qi, Z., You, J., Mao, H.: P systems and Petri nets. In: Membrane Computing,

LNCS, vol. 2933, pp. 286–303. Springer (2004)

24. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal

of the ACM (JACM) 13(1), 158–169 (1966)

25. Sofronia, A., Popa, A., Stefanescu, G.: Undecidability results for finite interactive

systems. Romanian Journal of Information Science and Technology 12(2), 265–279

(2009), also: Arxiv, CoRR abs/1001.0143, 2010

26. Stefanescu, G.: Network algebra. Springer Verlag (2000)

27. Stefanescu, G.: Algebra of networks: Modeling simple networks as well as complex

interactive systems. In: Proof and System-Reliability, pp. 49–78. Springer (2002)

28. Stefanescu, G.: Interactive systems: From folklore to mathematics. In: Relmics’01.

LNCS, vol. 2561, pp. 197–211. Springer (2002)

29. Stefanescu, G.: Interactive systems with registers and voices. Fundamenta Infor-

maticae 73(1), 285–305 (2006)

Modelling of Surface Runoff using 2D P colonies

Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

Institute of Computer Science

and

Research Institute of the IT4Innovations Centre of Excellence,

Silesian University in Opava, Czech Republic

{ludek.cienciala, lucie.ciencialova, miroslav.langer}@fpf.slu.cz

Abstract. We continue the investigation of 2D P colonies introduced as

a class of abstract computing devices composed of independent agents,

acting and evolving in a shared 2D environment where the agents are

located. Agents have limited information about the contents of the en-

vironment where they can move in four directions. In this paper we

continue in the research of modelling of surface runoff by 2D P colonies.

We add to the simulation environment information about flow direction

and amount of water in pits (places without runoff, lakes,...). We com-

pare the data from the simulation with the data generated by simulation

model of water erosion SIMWE.

1 Introduction

P colonies were introduced in the paper [7] as formal models of computing de-
vices belonging to membrane systems and similar to formal grammars called
colonies. This model is inspired by the structure and the behaviour of commu-
nities of living organisms in a shared environment. The independent organisms
living in a P colony are called agents. Each agent is represented by several objects
embedded in a membrane. The number of objects inside each agent is the same
and constant during computation. The environment is agents’ communication
channel and storage place for objects. At any moment all agents “know” about
all the objects in the environment and they can access any object immediately.
The reader can find more information about P colonies in [6, 2]. P colonies are
one of the types of P systems. They were introduced in 2000 in [9] by Gheorghe
Păun as a formal model inspired by the structure and the behaviour of cells.

With each agent a set of programs is associated. The program, which de-
termines the activity of an agent, is very simple and depends on the con-
tents of agents and on types and number of objects placed in the environment.
An agent can change the contents of the environment through programs and it
can affect the behaviour of other agents through the environment. This influence
between agents is the key factor in the functioning of the P colony. At any mo-
ment each object inside every agent is affected by the execution of the program.

For more information about P systems see [11, 10] or [13].
In addition 2D P colony has the environment in a form of a 2D grid of square

cells. The agents are located in this grid and their view is limited to the cells that

82 Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

immediately surround them [1]. Based on the contents of these cells, the agents
decide their future locations.

Behaviour of each agent is based on its set of programs. The programs are
formed from two rules of type rewriting, communication and movement. By using
the rewriting rule one object within the agent is changed (evolved) to another
object. When the communication rule is applied one object from the environment
is consumed by the agent and one object from content of the agent is placed to
the environment. The last type of rules is the movement rule. The condition
for the movement of an agent is to find specific objects in specific locations in
the environment. This is specified by a matrix with elements - objects. The agent
is looking for at most one object in every surrounding cell. If the condition is
fulfilled then the agent moves one cell up, down, left or right.

The program can contain one movement rule at most. To achieve the greatest
simplicity in agent behaviour, we set another condition. If the agent moves, it
cannot communicate with the environment. So if the program contains a move-
ment rule, then the second rule is the rewriting rule.

Although the colony is a theoretical computing model through 2D, it is a suit-
able tool for modelling the behaviour of natural multi-agent systems - colonies
of bacteria or ants, spreading substances in homogeneous and inhomogeneous
medium.

In this paper we present hydrological modelling flow of liquid over the Earth’s
surface using 2D P colonies. Based on the entered data - the slope surface,
a source of fluid and quantity - we simulate the fluid distribution in the environ-
ment.

To obtain the similarity of our model with the real situation of water over-
flow we compare the results obtained by the simulation using 2D P colonies
with results that provide a hydrological simulation model SIMWE. SIMWE is
implemetnation of process based water erosion simulation developed by Mitas
at al. in 1996 in [8].

The first part of the paper is devoted to 2D P colonies. The rest is organised
as follows: The issue of the flow of liquid over the surface, problem solution -
maps preparation, definition of the agent, process simulation, comparison with
results of the model SIMWE and future expansion.

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics
of the formal language theory.

We use NRE to denote the family of the recursively enumerable sets of
natural numbers, N is the set of natural numbers. Let Σ be the alphabet. Let
Σ∗ be the set of all words over Σ (including the empty word ε). We denote
the length of the word w ∈ Σ∗ by |w| and the number of occurrences of the
symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns

Modelling of Surface Runoff using 2D P colonies 83

to each object in V its multiplicity in M . The set of all multisets with the set
of objects V is denoted by V ◦. The set V ′ is called the support of M and is
denoted by supp(M) if for all x ∈ V ′ f(x) 6= 0 holds. The cardinality of M ,
denoted by |M |, is defined by |M | =

∑

a∈V f(a). Each multiset of objects M
with the set of objects V ′ = {a1, . . . an} can be represented as a string w over
alphabet V ′, where |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from
w by permuting the letters represent the same multiset M . The ε represents
the empty multiset.

3 2D P colonies

We briefly summarize the notion of 2D P colonies. A P colony consists of agents
and an environment. Both the agents and the environment contain objects.
With each agent a set of programs is associated. There are three types of rules
in the programs.

The first rule type, called the evolution rule, is of the form a → b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The sec-
ond rule type, called the communication rule, is of the form c ↔ d. When
the communication rule is performed, the object c inside the agent and the ob-
ject d outside the agent swap their places. Thus, after the execution of the rule,
the object d appears inside the agent and the object c is placed outside the agent.
The third rule type, called the motion rule, is of the form matrix 3×3→ “move
direction”. Based on the contents of the neighbouring cells, an agent can move
one step to the left, right, up or down.

A program can contain maximum one motion rule. When there is a motion
rule inside a program, there cannot be a communication rule inside the same
program.

Definition 1. The 2D P colony is a construct

Π = (A, e,Env,B1, . . . , Bk, f), k ≥ 1, where

– A is an alphabet of the colony, its elements are called objects,

– e ∈ A is the basic environmental object of the colony,

– Env is a pair (m × n,wE), where m × n,m, n ∈ N is the size of the envi-

ronment and wE is the initial contents of environment, it is a matrix of size

m× n of multisets of objects over A− {e}.
– Bi, 1 ≤ i ≤ k, are agents, each agent is a construct Bi = (Oi, Pi, [o, p]) ,

0 ≤ o ≤ m, 0 ≤ p ≤ n, where

• Oi is a multiset over A, it determines the initial state (contents) of

the agent, |Oi| = 2,
• Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where

each program contains exactly 2 rules, which are in one of the following

forms each:

∗ a→ b, called the evolution rule, a, b ∈ A;

∗ c↔ d, called the communication rule, c, d ∈ A

84 Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

∗ [aq,r]→ s, 0 ≤ q, r ≤ 2, aq,r ∈ A, s ∈ {⇐,⇒,⇑,⇓}, called the motion

rule;

∗ The third part of program is natural number h ∈ N , which determine

priority level of the program.

• [o, p] are the coordinates of the initinal placement agent in the environ-

ment.

– f ∈ A is the final object of the colony.

The configuration of the 2D P colony is given by the state of the environment
- matrix of type m×n with multisets of objects over A−{e} as its elements, and
by the state of all agents - pairs of objects from alphabet A and the coordinates of
the agents. An initial configuration is given by the definition of the 2D P colony.

The computational step consists of three parts. The first part lies in deter-
mining the applicable set of programs according to the actual configuration of
the P colony. In the second part we have to choose one program corresponding
to each agent from the set of applicable programs with maximum priority level.
The third part is the execution of the chosen programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of
the agents.

The computation is nondeterministic and maximally parallel. The computa-
tion ends by halting when no agent has an applicable program.

The result of the computation is the number of copies of the final object
placed in the environment at the end of the computation.

The reason for the introduction of 2D P colonies is not the study of their
computational power but monitoring their behaviour during the computation.
We can define measures to describe the dynamics of the computation:

– the number of moves of agents
– the number of agents inside the certain cell or the set of the cells
– the number of visited cells (or not visited cells)
– the number of copies of a certain object in the home cell or throughout

the environment.

4 The issue of the flow of liquid over the surface

The issue of the flow of liquid over the Earth’s surface is studied by experts
from two areas - hydrology and geoinformatics. Both of these disciplines work
closely together on the issue of the so-called “surface runoff”. Surface runoff is
the water flow that occurs when the soil is infiltrated to full capacity and excess
water from rain, meltwater, or other sources flows over the land.

Surface runoff can be generated in four reasons: infiltration excess overland
flow, saturation excess overland flow, antecedent soil moisture, subsurface return
flow. Infiltration excess overland flow occurs when the rate of rainfall on a surface
exceeds the rate at which water can infiltrate the ground, and any depression
storage has already been filled. When the soil is saturated and the depression

Modelling of Surface Runoff using 2D P colonies 85

storage filled, and rain continues to fall, the rainfall will immediately produce
surface runoff - saturation excess overland flow. Soil retains a degree of moisture
after a rainfall. This residual water moisture (antecedent soil moisture) affects
the soil’s infiltration capacity. During the next rainfall event, the infiltration
capacity will cause the soil to be saturated at a different rate. The higher the level
of antecedent soil moisture, the more quickly the soil becomes saturated. Once
the soil is saturated, runoff occurs. After water infiltrates the soil on an up-slope
portion of a hill, the water may flow laterally through the soil, and exfiltrate
(flow out of the soil) closer to a channel. This is called subsurface return flow or
throughflow.

We can say that generation surface runoff depends on type of soil, temper-
ature, humidity and rainfall. The task of our model is to determine which way
the flow would run and which areas could be affected by flash floods.

4.1 SIMWE - Simulation of Water Erosion

SIMWE is a bivariate model of erosion, sediment transport and deposition by
overland flow, designed for complex terrain, soil and cover conditions. It uses a
Green’s function Monte Carlo method to solve the underlying continuity equa-
tions. More can reader find in [8]. The model is implemented as two modules
in software GRASS GIS. It is a Geographic Information System (GIS) used for
data management, image processing, graphics production, spatial modelling, and
visualization of many types of data (see [4]).

The first module is called r.sim.water and it is a landscape scale simulation
model of overland flow designed for spatially variable terrain, soil, cover and
rainfall excess conditions. A 2D shallow water flow is described by the bivariate
form of Saint Venant equations (e.g. [5]). The numerical solution is based on the
concept of duality between the field and particle representation of the modeled
quantity. The key inputs of the model include elevation, flow gradient vector,
rainfall excess rate and a surface roughness coefficient. Output includes a water
depth raster map and a water discharge raster map.

The second module r.sim.sediment is simulation model of soil erosion, sed-
iment transport and deposition caused by flowing water designed for spatially
variable terrain, soil, cover and rainfall excess conditions. The function of this
module is out of scope of this paper.

5 Application of 2D P colonies in solving the problem
of surface runoff

2D P colonies seem to be suitable tool for modeling surface runoff. The environ-
ment can contain objects representing slope of terrain, type of cover and soil.
Agents represent the units of water and their programs determine behaviour of
water running over the surface. We can assume that the soil is already saturated
thus the main factor of overland flow is the slope of the field. The type of terrain
and soil is not implemented yet.

86 Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

We divide solution of the problem into two parts - (1) preparation of maps
(2D P colony’s environment) and (2) definition of agents. We assume that the soil
is already saturated thus the main factor of overland flow is the slope of the field.

5.1 Preparation of maps

Map data is obtained from the geographic information system (GIS) and pro-
cessing system GRASS. We use the map data for the Czech Republic obtained
from dataset FreeGoedataCZ.

Raster graphics images are probably the most appropriate format for mod-
elling real-world phenomena in the field of GIS. To process this format, many
tools were created and can be used for performing various analyses. A raster
image is composed of a regular network of cells, usually in a square shape, to
which values of displayed properties can be assigned independently. More infor-
mation about GIS and image processing the reader can find in [3] and about
geosimulation in [12].

The first step to simulate the flow of liquid over relief was the determination of
its runoff from individual pixels (cells). Gradient with respect to an adjacent cell
is defined as the ratio of the height difference to the horizontal distance. Gradient
is positive due to the lower neighbours, or negative due to higher and zero in
relation to the neighbours of the same height. Lowest neighbour is neighbour
with the largest positive gradient.

There are two basic algorithms to calculate the runoff:

– Single flow direction (SFD) - each pixel of the liquid flows in one direction
only (toward neighbour in the direction of the largest gradient). Each pixel
belongs to only one basin.

– Multiple flow direction (MFD) - fluid can flow out of each pixel in multiple
directions, maximum of eight. In the case of MFD a unit volume flow is fairly
distributed among all lower neighbours. The MFD may include the pixel to
multiple basins.

There is implemented a tool for calculating the flow direction in GRASS soft-
ware, called simply TerraFlow. TerraFlow tool works as a multiple flow (MFD)
or simple flow direction (SFD). After its execution integer raster file is created
that specifies the flow direction for each cell.

Eight basic directions of the flow are represented by the numbers 45, 90, 135,
180, 225, 270, 315 and 360 (see Table 1). If there is more than one direction
(MFD), the number contained in the cell is generated as sum of values of the
directions.

In 2D P colony model we can use the result of both algorithms. If the MFD is
used to generate the directions the agent can only move in one of the directions
specified in the cell.

What we obtain from GRASS is a raster file with natural number in each cell
corresponding to the runoff from this cell. Because 2D P colony works with dis-
crete symbols and not with numbers, it needed to transcode numbers to symbols.
A coding table is shown on Table 2.

Modelling of Surface Runoff using 2D P colonies 87

135 90 45

180

տ ↑ ր

← →

ւ ↓ ց

360

225 270 315

Table 1. The eight basic directions

direction → ← ↑ ↓ ց ւ ր տ

symbol a E i m q u y 2

Table 2. The coding table

5.2 Definition of the agent

Agents in 2D P colonies have capacity 2. It follows that the agent contains two
objects, and each program is composed by two rules.

Each of the objects inside the agent carries the information about the state
of the agent. The first object has information about the activity of the agent.
At this stage of the simulation it is the information that the agent “flows” down
the terrain (object X) or it is still inactive (belonging to the rainfall that have not
fall - objects A,B,C,D, F,G,R, S, T, U, V,W , it stops in sinks - configuration of
agent is V S) . The second object stores information about the previous direction
of flow. This information can further modify the way of the agent as inertia.

Objects and their association to the flow directions are given in the following
table.

direction → ← ↑ ↓ ց ւ ր տ

symbol 9 8 6 7 D D U U
symbol L K H I I I H H
The first subset of programs with priority 0 is defined for the first step of

computation. The initial configuration of each “working” agent is Xe.

(1)

〈





∗ ∗ ∗

∗ a ∗
∗ ∗ ∗



→ ⇒; e→ 9; 0

〉

; (2)

〈





∗ ∗ ∗

∗ E ∗
∗ ∗ ∗



→ ⇐; e→ 8; 0

〉

;

(3)

〈





∗ ∗ ∗

∗ i ∗
∗ ∗ ∗



→ ⇑; e→ 6; 0

〉

; (4)

〈





∗ ∗ ∗

∗ m ∗
∗ ∗ ∗



→ ⇓; e→ 7; 0

〉

;

(5)

〈





∗ ∗ ∗

∗ q ∗
∗ ∗ ∗



→ ⇒; e→ D; 0

〉

; (6)

〈





∗ ∗ ∗

∗ u ∗
∗ ∗ ∗



→ ⇐; e→ D; 0

〉

;

(7)

〈





∗ ∗ ∗

∗ y ∗
∗ ∗ ∗



→ ⇒; e→ U ; 0

〉

; (8)

〈





∗ ∗ ∗

∗ 2 ∗
∗ ∗ ∗



→ ⇐; e→ U ; 0

〉

;

88 Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

In the case of cross direction (after applying the programs (5) and (6) resp.
(7) and (8)) the agent moves one step left or right and it is necessary to take
one step down (resp. up).

(9)

〈





∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗



→ ⇓; D → I; 1

〉

; (10)

〈





∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗



→ ⇑; U → H; 1

〉

;

While agents apply programs with priority 1 (9) and (10), agents, that do not
move in a cross direction, must stand. Therefore, they use a program composed
of two rewriting rules. The programs have priority 2.

(11) 〈X → X; 6→ H; 2〉; (12) 〈X → X; 7→ I; 2〉; (13) 〈X → X; 8→ K; 2〉;
(14) 〈X → X; 9→ L; 2〉;

The following programs with priority 0 are used to guide the agent in the next
steps, the agent may hold information about the movement in the previous step.

(15)

〈





∗ ∗ ∗

∗ a ∗
∗ ∗ ∗



→ ⇒; H → 9; 0

〉

; (16)

〈





∗ ∗ ∗

∗ E ∗
∗ ∗ ∗



→ ⇐; H → 8; 0

〉

;

(17)

〈





∗ ∗ ∗

∗ i ∗
∗ ∗ ∗



→ ⇑; H → U; 0

〉

; (18)

〈





∗ ∗ ∗

∗ m ∗
∗ ∗ ∗



→ ⇓; H → 7; 0

〉

;

(19)

〈





∗ ∗ ∗

∗ q ∗
∗ ∗ ∗



→ ⇒; H → D; 0

〉

; (20)

〈





∗ ∗ ∗

∗ u ∗
∗ ∗ ∗



→ ⇐; H → D; 0

〉

;

(21)

〈





∗ ∗ ∗

∗ y ∗
∗ ∗ ∗



→ ⇒; H → U ; 0

〉

; (22)

〈





∗ ∗ ∗

∗ 2 ∗
∗ ∗ ∗



→ ⇐; H → U ; 0

〉

;

(23)

〈





∗ ∗ ∗

∗ a ∗
∗ ∗ ∗



→ ⇒; I → 9; 0

〉

; (24)

〈





∗ ∗ ∗

∗ E ∗
∗ ∗ ∗



→ ⇐; I → 8; 0

〉

;

(25)

〈





∗ ∗ ∗

∗ i ∗
∗ ∗ ∗



→ ⇑; I → 6; 0

〉

; (26)

〈





∗ ∗ ∗

∗ m ∗
∗ ∗ ∗



→ ⇓; I → 7; 0

〉

;

(27)

〈





∗ ∗ ∗

∗ q ∗
∗ ∗ ∗



→ ⇒; I → D; 0

〉

; (28)

〈





∗ ∗ ∗

∗ u ∗
∗ ∗ ∗



→ ⇐; I → D; 0

〉

;

(29)

〈





∗ ∗ ∗

∗ y ∗
∗ ∗ ∗



→ ⇒; I → U ; 0

〉

; (30)

〈





∗ ∗ ∗

∗ 2 ∗
∗ ∗ ∗



→ ⇐; I → U ; 0

〉

;

(31)

〈





∗ ∗ ∗

∗ a ∗
∗ ∗ ∗



→ ⇒; J → 9; 0

〉

; (32)

〈





∗ ∗ ∗

∗ E ∗
∗ ∗ ∗



→ ⇐; J → L; 0

〉

;

(33)

〈





∗ ∗ ∗

∗ i ∗
∗ ∗ ∗



→ ⇑; J → 6; 0

〉

; (34)

〈





∗ ∗ ∗

∗ m ∗
∗ ∗ ∗



→ ⇓; J → 7; 0

〉

;

Modelling of Surface Runoff using 2D P colonies 89

(35)

〈





∗ ∗ ∗

∗ q ∗
∗ ∗ ∗



→ ⇒; J → 7; 0

〉

; (36)

〈





∗ ∗ ∗

∗ u ∗
∗ ∗ ∗



→ ⇐; J → D; 0

〉

;

(37)

〈





∗ ∗ ∗

∗ y ∗
∗ ∗ ∗



→ ⇒; J → 6; 0

〉

; (38)

〈





∗ ∗ ∗

∗ 2 ∗
∗ ∗ ∗



→ ⇐; J → U ; 0

〉

;

(39)

〈





∗ ∗ ∗

∗ a ∗
∗ ∗ ∗



→ ⇒; K → N ; 0

〉

; (40)

〈





∗ ∗ ∗

∗ E ∗
∗ ∗ ∗



→ ⇐; K → 8; 0

〉

;

(41)

〈





∗ ∗ ∗

∗ i ∗
∗ ∗ ∗



→ ⇑; K → 6; 0

〉

; (42)

〈





∗ ∗ ∗

∗ m ∗
∗ ∗ ∗



→ ⇓; K → 7; 0

〉

;

(43)

〈





∗ ∗ ∗

∗ q ∗
∗ ∗ ∗



→ ⇒; K → D; 0

〉

; (44)

〈





∗ ∗ ∗

∗ u ∗
∗ ∗ ∗



→ ⇐; K → 7; 0

〉

;

(45)

〈





∗ ∗ ∗

∗ y ∗
∗ ∗ ∗



→ ⇒; K → U ; 0

〉

; (46)

〈





∗ ∗ ∗

∗ 2 ∗
∗ ∗ ∗



→ ⇐; K → 6; 0

〉

;

We need one more program for “resetting” inertia. This is for the case when
the slope of the terrain changes extremely. (47) 〈X → X; N → e; 0〉;

The next set of programs with priority 7 applies to the case that there are
sinks in studied area. We add some number of copies of object V to every cell in
the sink area. The number of the objects corresponds to the quantity of water
which can be contained in the sink and the same number of agents have to be
stopped here.

(48) 〈X ↔ V ; I → S; 7〉;(49) 〈X ↔ V ; J → S; 7〉; (50) 〈X ↔ V ; K → S; 7〉;

(51) 〈X ↔ V ; L→ S; 7〉;

If we run the obtained 2D P colony in the simulator, agents, which represent
a unit volume of water, will begin to move around the environment. The number
of agents located in one cell at one moment corresponds to the quantity of water
that at once flowed through the territory in one unit of time.

The agents that “overflow” from the filled sinks move on the direction to
the neighboring cell containing direction out of the sink. It is done by following
programs with the priority set to 6.

(52)

〈





α ∗ ∗
∗ X ∗
∗ ∗ ∗



→ ⇐; β → U ; 6

〉

;α ∈ {a,E, i, 2}

(53)

〈





∗ α ∗
∗ X ∗
∗ ∗ ∗



→ ⇑; β → 6; 6

〉

;α ∈ {i, E, a, y, 2}

(54)

〈





∗ ∗ α
∗ X ∗
∗ ∗ ∗



→ ⇒; β → U ; 6

〉

; α ∈ {y, 2, i, a, E}

90 Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

(55)

〈





∗ ∗ ∗

α X ∗
∗ ∗ ∗



→ ⇐; β → 8; 6

〉

;α ∈ {E, i,m, 2, u}

(56)

〈





∗ ∗ ∗

∗ X α
∗ ∗ ∗



→ ⇒; β → 9; 6

〉

α ∈ {a, i,m, y, q};

(57)

〈





∗ ∗ ∗

∗ X ∗
α ∗ ∗



→ ⇐; β → D; 6

〉

;α ∈ {E, i,m, 2, u}

(58)

〈





∗ ∗ ∗

∗ X ∗
∗ α ∗



→ ⇓; β → 7; 6

〉

;α ∈ {a,E,m, q, u}

(59)

〈





∗ ∗ ∗

∗ X ∗
∗ ∗ α



→ ⇒; β → D; 6

〉

; α ∈ {a, i,m, y, q}; β ∈ {I, J,K,L}

6 The example simulation

The example visualization is based on data from FreeGoedataCZ. A final statis-
tics is done over four different data sets - four different locations.

The processed map is map of area with sink and its size is 10×10 and its di-
rections are shown on the Table 3. Transcoded symbols are shown on the Table 4.

0 1 2 3 4 5 6 7 8 9

0 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

1 ← ← ց ↓ ւ ւ ← ց ց →

2 ← ← ց ↓ ւ ← ← → → →

3 ← ← ↓ ↓ ← ← ւ ↓ → →

4 ← ↓ ւ ւ ← ← ւ ↓ ւ →

5 ← ↓ ↓ ւ ւ ւ ւ ↓ ւ →

6 ← → ց ↓ ↓ ւ ւ ւ ← →

7 ← ↑ → ց ↓ ւ ւ ւ ւ →

8 ← ր ↑ → ↓ ← ւ ← ւ →

9 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Table 3. Processed map

0 1 2 3 4 5 6 7 8 9

0 i i i i i i i i i i
1 E E q m u u E q q a
2 E E q m u E E a a a
3 E E m m E E u m a a
4 E m u u E E u m u a
5 E m m u u u u m u a
6 E a q m m u u u E a
7 E i a q m u u u u a
8 E y i a m E u E u a
9 m m m m m m m m m m

Table 4. Transcoded symbols

A source of water is placed into cells [2, 3], [3, 3], [4, 3], [2, 4], [3, 4], [4, 4], [2, 5],
[3, 5], [4, 5]. In every source cell there are 8 agents. To simulate rain all agents are
not active in the initial configuration. Only one agent has the configuration of
Xe in each cell. The next nineteen become active always in two computational
steps. The numbers of active agents in the environment are shown in the Tables
5(A) - 10(A) - the first column of tables (heatmaps). The tables (heatmaps) in

Modelling of Surface Runoff using 2D P colonies 91

the second column (Tables 5(B)-10(B) show corresponding results achieved from
SIMWE algorithm.

0 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 28.5 . . .
Legend for heatmaps - depth of water in mm

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 1 2 1 0 0 0 0 0

4 0 0 2 3 1 0 0 0 0 0

5 0 1 2 1 1 0 0 0 0 0

6 0 0 1 1 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 0 0 ∗

2 ∗ 0 0 0 0 0 0 0 0 ∗

3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗

4 ∗ 0 8.0 9.2 4.8 0 0 0 0 ∗

5 ∗ 3.4 7.1 5.1 4.8 0 0 0 0 ∗

6 ∗ 0.7 4.7 4.1 0.8 0 0 0 0 ∗

7 ∗ 0 0.5 0.9 0.5 0 0 0 0 ∗

8 ∗ 0 0 0 0 0 0 0 0 ∗

9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 5. (A)Active agents after 2
nd

step of computation, (B) raster data - depth of

water after 4 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 1 2 1 0 0 0 0 0

4 0 0 5 5 1 0 0 0 0 0

5 0 1 4 1 1 0 0 0 0 0

6 0 2 4 1 0 0 0 0 0 0

7 0 0 0 1 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 0 0 ∗

2 ∗ 0 0 0 0 0 0 0 0 ∗

3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗

4 ∗ 0 14.8 15.3 4.3 0 0 0 0 ∗

5 ∗ 1.7 12.1 5.6 4.8 0 0 0 0 ∗

6 ∗ 6.2 13.7 4.2 1.8 0 0 0 0 ∗

7 ∗ 0 0.7 4.7 0.5 0 0 0 0 ∗

8 ∗ 0 0 0 0 0 0 0 0 ∗

9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 6. (A)Active agents after 4
th

step of computation, (B) raster data - depth of

water after 8 minutes of rainfall (in mm)

We compare the simulation process using 2D P colonies and using SIMWE
algorithm.

One agent corresponds to 3 mm of water and two steps of computation take 4
minutes. From previous tables we can derive following results: At the beginning
of simulation the agents move more slowly than water over the surface but at
the second half of simulation the agents move more quickly than water. Area
touched by water is larger in SIMWE simulation but depth of water in these
cells is only about 1 mm. The graphical representation of the frequency of depth

92 Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 1 1 1 0 0 0 0 0

4 0 0 4 3 1 0 0 0 0 0

5 0 1 4 1 1 0 0 0 0 0

6 0 3 5 2 0 0 0 0 0 0

7 0 0 0 1 0 0 0 0 0 0

8 0 0 0 0 3 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 0 0 ∗

2 ∗ 0 0 0 0 0 0 0 0 ∗

3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗

4 ∗ 0 11.9 10.0 4.3 0 0 0 0 ∗

5 ∗ 2.7 13.8 5.7 4.8 0 0 0 0 ∗

6 ∗ 9.5 16.6 8.2 1.8 0 0 0 0 ∗

7 ∗ 0.5 1.6 6.8 1.5 0 0 0 0 ∗

8 ∗ 0 1.6 8.3 0 0 0 0 0 ∗

9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 7. (A)Active agents after 6
th

step of computation, (B) raster data - depth of

water after 12 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 1 1 1 0 0 0 0 0

4 0 0 3 3 1 0 0 0 0 0

5 0 1 3 1 1 0 0 0 0 0

6 0 1 10 2 0 0 0 0 0 0

7 0 0 0 4 3 0 0 0 0 0

8 0 0 0 0 4 0 0 0 0 0

9 0 0 0 0 3 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 0 0 ∗

2 ∗ 0 0 0 0 0 0 0 0 ∗

3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗

4 ∗ 0 8.9 10.0 4.3 0 0 0 0 ∗

5 ∗ 2.7 12.8 5.7 4.8 0 0 0 0 ∗

6 ∗ 5.5 32.3 7.4 1.8 0 0 0 0 ∗

7 ∗ 0.8 1.3 15.6 10.6 0 0 0 0 ∗

8 ∗ 0 1.6 2.1 13.2 0 0 0 0 ∗

9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 8. (A)Active agents after 8
th

step of computation, (B) raster data - depth of

water after 16 minutes of rainfall (in mm)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 1 2 1 0 0 0 0 0

4 0 0 2 4 1 0 0 0 0 0

5 0 2 4 1 1 0 0 0 0 0

6 0 2 6 4 0 0 0 0 0 0

7 0 0 0 8 1 0 0 0 0 0

8 0 0 0 0 4 0 0 0 0 0

9 0 0 0 0 10 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 0 0 ∗

2 ∗ 0 0 0 0 0 0 0 0 ∗

3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗

4 ∗ 0 6.9 12.0 4.3 0 0 0 0 ∗

5 ∗ 3.7 13.8 5.7 4.8 0 0 0 0 ∗

6 ∗ 6.2 17.4 14.4 1.8 0 0 0 0 ∗

7 ∗ 0.5 1.8 25.0 4.9 0 0 0 0 ∗

8 ∗ 0 0.6 1.5 13.5 0 0 0 0 ∗

9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 9. (A)Active agents after 10
th

step of computation, (B) raster data - depth of

water after 20 minutes of rainfall (in mm)

of water is shown on the Figure 1. The models give different results in 8.854
percent of cells in whole simulation.

Modelling of Surface Runoff using 2D P colonies 93

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 1 2 1 0 0 0 0 0

4 0 0 2 4 1 0 0 0 0 0

5 0 2 5 1 1 0 0 0 0 0

6 0 2 7 2 0 0 0 0 0 0

7 0 0 0 6 3 0 0 0 0 0

8 0 0 0 0 8 0 0 0 0 0

9 0 0 0 0 15 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ 0 0 0 0 0 0 0 0 ∗

2 ∗ 0 0 0 0 0 0 0 0 ∗

3 ∗ 0 3.3 4.1 3.7 0 0 0 0 ∗

4 ∗ 0 6.9 12.0 4.3 0 0 0 0 ∗

5 ∗ 3.7 15.8 5.7 4.8 0 0 0 0 ∗

6 ∗ 7.2 22.0 6.6 1.8 0 0 0 0 ∗

7 ∗ 1.8 2.0 20.3 9.2 0 0 0 0 ∗

8 ∗ 0 1.6 2.3 25.1 0 0 0 0 ∗

9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 10. (A)Active agents after 12
th

step of computation, (B) raster data - depth of

water after 24 minutes of rainfall (in mm)

Fig. 1. Frequency of depth of water in 2D P colony and SIMWE

7 Conclusion

The aim of this paper was to analyse the situation and to create a 2D model
P colonies that would simulate the flow of liquid over the Earth’s surface, a phe-
nomenon called Surface runoff. This process is very common in nature and accu-
mulation of water leads to flash flooding or floods in general. Flow down of water
on the surface is influenced by many factors: the surface slope, soil saturation,
temperature, humidity, size of source and lots of others. We applied the slope
of the terrain in the environment of 2D P colonies. Finally, we compared the
process of the simulations with the results provided by the algorithm SIMWE,
module of geographic information system software GRASS GIS. The simulation
results differs in 8.854 percent of cells.

Remark 1.

This work was partially supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070),
by SGS/24/2013, SGS/7/2011 and by project OPVK no. CZ.1.07/2.2.00/28.0014.

94 Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

References

1. Cienciala, L., Ciencialová, L., Perdek, M.: 2D P colonies. In Csuhaj-Varjú et al.

(eds.). CMC 2012, Springer, LNCS 7762, 2013, pp. 161–172.

2. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in

environment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006,

pp. 201–215.

3. Eastman, R. J.: IDRISI Andes Guide to GIS and Image Processing, Clerk Lab.

Clerk University, Worcester, MA, USA, 2006.

4. GRASS DEVELOPMENT TEAM. GRASS GIS: The world’s leading Free GIS soft-

ware [online]. 1998, 25-May-2013 [cit. 2013-07-01]. http://grass.osgeo.org/

5. Julien, P. Y.,Saghafian, B., Ogden, F. L.:Raster-based Hydrologic modeling of

spatilly varied surface funoff. Water Resources Bulletin, 31(3), 1995, pp. 523 - 536.

6. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of com-

putation. Proc. of the 6
th

International Symposium of Hungarian Researchers on

Computational Intelligence, Budapest TECH, Hungary, 2005, pp. 40–56.

7. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically

inspired computing model. Workshop and Tutorial Proceedings, Ninth International

Conference on the Simulation and Synthesis of Living Systems, ALIFE IX (M.

Bedau at al., eds.) Boston, Mass., 2004, pp. 82–86.

8. Mitas, L., Mitasova, H., Brown, W. M., Astley, M.: Interacting fields approach for

evolving spatial phenomena: application to erosion simulationfor optimized land use.

In Proc. of the III. Int. Conf. On Integration of Environmental Modeling and GIS

(Goodchild, M. F. at al. eds.), Santa Barbara, USA, 1996

9. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences

61, 2000, pp. 108–143.

10. Păun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.

11. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2009.

12. Torrents, B.: Geosimulation. John Wiley & Sons, 2004.

13. P systems web page: http://psystems.disco.unimib.it

Implementation of P Systems by using Big Data
Technologies

Alex Ciobanu1, Florentin Ipate2,1

1
Department of Computer Science, Faculty of Mathematics and Computer Science,

University of Pitesti, Str. Targu din Vale 1, 110040 Pitesti, Romania
2
Department of Computer Science, Faculty of Mathematics and Computer Science,

University of Bucharest, Str. Academiei nr.14, sector 1, Bucharest, Romania

alex.ciobanu@gmail.com, florentin.ipate@ifsoft.ro

Abstract. Due to their inherent parallel and non-deterministic nature,

P system implementations require vast computing and storage resources.

This significantly limits their applications, even more so when the calcu-

lation of all possible evolutions of the P system is required. This article

exposes the scalability possibilities available with the Big Data ecosystem

for P systems implementations, using Map Reduce parallelism to build

the P system computation tree. The Hadoop based implementation is

then used for generating test suites for cell like P systems, in particular

for context-dependent rule coverage testing. Our preliminary evaluations

on a benchmark of automatically generated P systems confirms that the

proposed approach scales well.

Keywords: P systems testing, Hadoop, P system computation tree, Map

Reduce, Big Data, NoSQL

1 Introduction

Membrane computing, a field of research which studies distributed and parallel
computing models called P systems, is a rapidly growing research area. Initially
coined by Gheorghe Păun in [1], P systems have been studied from a computa-
tional and modelling perspective. Many variants have been introduced [2] and
investigated, further a set of applications has been identified and modelled with
such systems. P systems offer the possibility of modelling natural phenomena
using a very natural and logical syntax. Unfortunately natural phenomena are
inherently extremely complex and the simulation of P systems which model such
phenomena inherit the complexity, therefore requiring significant computational
power to process. At a certain point the computational power and storage ca-
pacity of a single machine is simply insufficient for the simulations and testing of
such P system, at which point grid or clustered computing is considered. In an
attempt to reuse established technologies for the computations of P systems we
will show a method of using a Map Reduce framework and a NoSQL database
in the simulation of P systems. These technologies (which at times fall under
the blanket term of Big Data) are designed to leverage large scale commodity
hardware clusters as massively scalable environment for parallel computing. We

96 A. Ciobanu, F. Ipate

will use Big Data technologies to compute a computation tree of a non deter-
ministic P system, and show a potential application of such computations. Some
theoretical work has been done in using Hadoop with P systems in [7] , but no
implementation has been attempted.

2 Preliminaries

2.1 Map Reduce

MapReduce [3] is a framework developed circa 2004 at Google in an attempt to
deal with their very large scale data warehousing needs. Although the Google
implementation of the Map Reduce ecosystem is proprietary, Doug Cutting from
within the Apache foundation developed an open source implementation under
the project name Hadoop. We use this implementation for our experiments. The
Hadoop ecosystem has many subcomponents including a file system, coordina-
tion applications, meta programming languages and many other components.
For the purposes of our discussion we will focus on the core map reduce func-
tionality developed as a basis for distributed computation within applications.
Map Reduce is conceptually based on functional programming paradigms or to
be more specific two primitives (higher order functions) called map and reduce.

Map (in functional programming) is defined as a higher order function with
type signature: map :: (α → β) → [α] → [β]. In other words a function that
acts upon a vector of data in one data domain α and returns a vector of data
in another data domain β having transformed from domain α to domain β by
the given transformational function. In more familiar syntax if we have an input
vector A = [a1, a2...an] and a function f , then map(A, f) = f(A) = A′ where
A′ = [f(a1), f(a2)...f(an)]. The data type of the resulting vector does not have
to match the data type of initial vector but the cardinality of the two vectors
must be equal.

Reduce also referred to as fold, accumulate, compress, or inject (in functional
programming) is defined as a higher order function with type signature reduce ::
(α→ β → β)→ [α]→ β → β. In other words a function that acts upon a vector
and returns the aggregation of the elements within that vector, aggregating based
on the provided function. If we had our vector V = [v1, v2..vn] and our reduce
function g), then reduce(V, g) = v′ where v′ = g(v1, g(v2, (...g(v(n − 1), vn)))
(assuming a right side evaluation). In this case the type of V and v′ are the same
but the cardinality of the input vector is n while the cardinality of the result
is 1. At the same time the reduce function g must be associative, commutative,
and distributive as to allow for random ordering in the reduce process. Although
in this example the reduce is right evaluated, evaluation can happen in any
direction and in any order.

Implementation of P Systems by using Big Data Technologies 97

Map-Reduce within the context of Hadoop deviates from this strict definition
of functional programming in a couple of ways. Most notable is the format of
the input and output of both the map and reduce function, which are defined as
a tuple of order 2. These tuples also referred to as a Key Value pair < K,V >
are the basis of all interactions within Hadoop. The Map task takes input of
a < K,V > pair and produces i < K, V > pairs (where 0 ≤ i ≤n). In the
next step (reduce) all < K,V > pairs where the key is identical are passed to
the reduce function. Basically the input of a Reduce function is a key with a
list of values < K, [V, V, V...] >. In the reducer (the execution of a reduce task)
all of the values are reduced together and a series of j < K, V > pairs (where
0 ≤ j ≤ m) are produced which are the output of the entire process. The output
of one execution can now become the input of next run of the application in
series of executions. The Map and Reduce processes are written in Java and the
execution of a Map or Reduce task entails running the map or reduce function
on a server in a cluster of machines. A Mapper is a server in the cluster which
is running a map task at that particular instance in time. Upon initiation of
the application all servers run map tasks until the entire input set has been
exhausted. Afterwards all servers become reducers and run the reduce function
until again all < K,V > pairs produced by the mappers are exhausted. The
resultant < K,V > pairs produced by the reducers are written out to the file
system. Since all of the processes are run on independent servers with very little
shared between processes, clusters can scale up to thousands of servers.

To give an example of MapReduce we can look at the canonical example,
word count. Word count calculates the number of occurrences of each word
within a text. The Map task takes as input a chunk of the file (the key being the
byte offset of the file and the value is the actual test in the file). The map task
tokenizes the test and creates < K,V > pairs where the key is the actual word
and value is the number of occurrences of the word (1 initially). The reducer
takes in each unique key (in our case word) and does a sum of the integer values
associated with it, fundamentally doing a world count. Figure 2 exemplifies the
case where we have two input files one with the text ”hello world” and the other
with the text ”goodbye world”

2.2 NoSQL Database

NoSQL is actually a blanket term to describe a suite database technologies
which are not compliant to standard relational paradigms. Most of the under-
lying concepts come from a Google article [4] which describes a technology for
distributed databases. NoSQL comprises of many different database technolo-
gies including document orient databases, graph databases, columnar stores and
the technology we used for our experiments Key-Value stores. Most NoSQL
databases use a lightweight mechanism for storing and retrieving data in ex-
change for greater scalability and availability. Oracle NoSQL database (the im-
plementation of NoSQL used for this article) has similar properties to a map
or dictionary from computer science theory. The database is able to store a key

98 A. Ciobanu, F. Ipate

Fig. 1: Example of the flow of data with a Map-Reduce execution

Implementation of P Systems by using Big Data Technologies 99

Fig. 2: Steps of Map-Reduce word count

100 A. Ciobanu, F. Ipate

value pair, and it’s able to retrieve a value based on its corresponding key. In Or-
acle NoSQL database the keys are defined in a slightly more complex way. A key
is composed of two components: a major component and a minor component,
which are both a list of strings.

Fig. 3: A diagram of how a key is composed

When data is retrieved from the database, partial keys can be used allowing
the retrieval of multiple values at the same time. A partial key (one that only
contains the major component and i minor components where 0 ≤ i < n−1 and
n is the number of minor components) is used to retrieve multiple keys which
are logically linked and are processed together.

From a physical data storage perspective NoSQL uses a very similar architec-
ture to a Hadoop cluster. NoSQL achieves its scalability and availability through
a distributed storage mechanism. Multiple parallel servers are used to store the
data. Usually the data is mirrored across multiple distinct servers. If a server
is lost, the data can be retrieved from another server with the same data. At
the same time if client requests data from an overloaded server a jump can be
made to another server with lower utilization and the same data. Hashing al-
gorithms are employed to eliminate the need for a linear search of all servers
when retrieving data. In Oracle’s NoSQL Database the major component of the
keys is used as the indicator for which server to use, as an effort is made to keep
all keys with identical major components together on one server. This enables
faster multi-retrieve executions.

There is an important side effect of distributed databases relating to the
consistency of data, or better said the lack there of. NoSQL databases uses a
term called eventual consistency which states given a long enough period in which
no updates occur, the system will reach a consistent state, but at a particular
point in time there is no guarantee the system will be consistent. Given the
distributed nature of the storage (usually triple mirroring) an update pushed to

Implementation of P Systems by using Big Data Technologies 101

Fig. 4: A diagram of a NoSQL physical deployment

one sever is not guaranteed to propagate to all servers before a reading of the
exact data point, hence a read might offer an old version of that data point.
These limitations must be considered when designing an application against a
NoSQL database. For more information see [9]

2.3 Parallelism

The subject of parallelism in computing can be split into many different cat-
egories including symmetric multiprocessing, grid computing massive parallel
processing, grid computing and many more. The focus of this article will be ex-
clusively grid computing, the distribution of work to multiple physical machines
weakly linked through commodity networking, an architecture in which many of
the worlds super computers share. This architecture allows for massive scaling
(theoretically to unlimited number of processing units) while at the same time
eliminating the need for exotic hardware which is both expensive and difficult
to come by. An excellent overview and description of Parallelism in computing
and the different can be found at [8]. Looking at the map and reduce function
from a parallelism perspective it is quite natural that they distribute very nicely.
Looking at the map function there is no link or sharing between the mapping
of individual elements of a vector hence the map function can be executed on a
different node of a cluster for each element of a vector with linear scaling and no
performance impact as the number of nodes increases (baring data movement
issues). The reduce function shares a similar parallelism capability (assuming
associativity, commutativity, and distributivity) as little as two elements can be
reduced (combined) on each node of the cluster and (given a set of n unique keys)
we can theoretically scale to a n node cluster. It is to note there is some com-

102 A. Ciobanu, F. Ipate

munications overheard as the data produced by a map task (with identical keys)
needs to moved on a single node of the cluster to be able to run the reduce func-
tion. For practical purposes implementation is usually limited to thousands of
nodes due to network limitation although larger implementations are suspected
to exist at web 2.0 corporations.

2.4 P systems

A (cell like) P system is a computational model inspired by the chemical reactions
across cell membranes. The formal definition with which we will be working is:

Definition 2.41 A P system is a tuple

Π = (V, µ,W1, . . . ,Wn,R1 . . .Rn)

where

– V is the alphabet (a finite and nonempty) set of objects

– µ is the membrane structure, a hierarchical arrangement of compartments

named membranes identified by integer 1 to n

– Wi where 0 ≤ i ≤ n are strings over V, describing the multisets of objects

initially placed in the i regions of µ.

– Ri 0 ≤ i ≤ n is a finite set of evolution rules for each region i where evolution

rule r is of the form

r : u→ (a1, t1) . . . (an, tn) (1)

where u and ai is a multiset over V, and ti is an element from µ. ti is limited

to the current membrane, the region immediately outside the current region

or any of the region immediately inside the current region.

Although many variations on P system exist, for the purposes of this article
we will concern ourselves with only this very basic definition (above) to look
at how Big Data technologies can help in handling the state explosion prob-
lem. Complications such as polarization can be added to the computations upon
request. It is also important to note that although this definition can have P
systems which can only have one possible evolution path, our focus will be on
non-deterministic P system with multiple possible evolutions for every mem-
brane, in every configuration.

2.5 Computation Tree

A computation tree is a directed acyclic graph representation of the evolutions
of a P system. The graph has a single root node (which represents the initial
multiset of the P system), and every edge represents a possible evolution of the
P system. All subsequent nodes in the graph are possible evolutions of the P
system where the edges leading to the node represent the rules which must be
applied to reach that configuration. Our computation tree assumes maximally

Implementation of P Systems by using Big Data Technologies 103

parallel execution. For example if we had the following P system:

Π = (V, µ,W1,R1),

where

– V = {a, b}
– µ = []′1
– W1 = a2

– R1 = {r1 : a→ a, b; r2 : a→ b}

We would see the computation tree in Figure 4:

Fig. 5: A sample of a computation tree

3 Building a P system computation tree with Hadoop &
NoSQL Database

In developing the computation three of a P system we will be using the Oracle
NoSQL database and Hadoop to facilitate a massively parallel calculation of
the computation tree. The use of these technologies bring several complications
as to ensure all relevant steps are parallelizable. In that we have developed the
following distinct steps which are followed in sequence in order to calculate the
computation tree. They are

1. Load the components (V, µ,Wn,Rn) of the P system into the NoSQL database

104 A. Ciobanu, F. Ipate

2. Calculate all possible rule combinations for each multiset at the current level
of the computation tree

3. Calculate the multisets which are produced by applying the rule sequences
discovered in step 2

4. Repeat Step 2 and 3 for subsequent levels of the computation tree

It is important to note that we are creating the computation tree in a breath
first manner where all of the nodes for a level n are calculated before any of the
nodes for level n + 1 are discovered.

3.1 Representing a P system as a series of < K, V > pairs

A < K,V > is a very simple model for storing data and as such there are theo-
retically many ways in which a P system can be represented as a series of pairs.
For our implementation we focused on developing a model that is most con-
ducive to the computation tree calculations we wanted to do. As such there was
an explicit effort in using integers to represent elements of the P system rather
than strings, as integer operations are much more efficient than string opera-
tions. Further integer representations allow for matrix and vector mathematics
to be directly applied during our computations without the need to consider how
strings would be handled. The second design decision was to group elements to-
gether by their use within our calculations and not by how they fit in logically
within a P system. Given these design principles we used the following < K,V >
pairs to represent a P system Π = (V, µ,W1, . . . ,Wn,R1 . . . ,Rn).

Alphabet V

There is a single key which stores the alphabet. Its corresponding value
is a Java serialized object which stores an array of strings representing the
alphabet. This is the only place the actual alphabet is stored, and any further
mention of an alphabet object is done through the integer index of this array.
For example if our alphabet is V = [α, β, γ, δ] then to refer to α one would
simple use the number 0, number 1 for β, number 2 for γ and so forth.

Membrane Structure µ
The absolute membrane structure is not very interesting to our calculations,
rather the children and parent membranes of each membrane is useful. As
such for each membrane there are two < K,V > pairs stored. One which
stores the children of that membrane (as a Java serialized array of strings)
and one which stores the parent membrane (as a simple string). Although
storing both parents and children is redundant the overheard is minimal and
it eliminates the need of searching relationship trees to discover ancestry.
This is also a < K,V > pair which holds a list of all membranes IDs (without
any semantic information) to enable iteration through all membranes.

Rules R

The rules are the most performance critical element of our application as they
are used in many of the calculations that are done. The rules are grouped
by membrane and split by sides of the equation, as that is how they will be

Implementation of P Systems by using Big Data Technologies 105

consumed. The rules are stored as integer matrices where each row represents
a rule and each column represents an alphabet object. For example if we had

V = {a, b, c}
R1 = a1c2 → a2b1

R2 = b2 → a2c1

then the first matrix will be all an aggregation of all of the left sides of the
rules. We call this the consumers

consumers =

[

1 0 2
0 2 0

]

The second matrix will be an aggregation of all of the right sides of the rules.
We call this the producers

producers =

[

2 1 0
2 0 1

]

For each membrane there will be these two matrices stored as Java serialized
objects of two dimensional arrays. The decision to split the rules into left side
and right side was made out of the realization that these two elements will be
used independently of each other. When dealing with rules which produces
objects in multiple membranes we transform the matrix into a cube where
the third dimension maintains a list of all relevant membranes.

Fig. 6: Cube representation of the rules of a membrane

This storage schema assumes a dense coding of the objects and is very ef-
ficient if most of the alphabet objects are used in every rule. If there is a
very sparse use of objects within rules then this coding mechanism may use
excess storage.

Multisets

The multisets are stored as an array of integers, similar to the way rules are

106 A. Ciobanu, F. Ipate

stored. The index of a multiset array corresponding to an object from the
alphabet and the integers stored represents the multiplicity of that object.

3.2 Storing a computation tree as a series of < K, V > pairs

Nodes

To represent a tree as a series of < K,V > we use the smallest piece of infor-
mation to store in each < K,V > pair, particularly we store the multiset of a
membrane. For P systems which have multiple membranes each membrane has
its own node, so a configuration of the P system is actually comprised of multiple
< K,V > pairs. When storing a node of the computation tree the key under
which it is stored contains a significant amount of meta-data. In defining the
key we exploit the make-up of a key described in section 2.2. There are three
different pieces of information stored in the key of a node.

1. The level of the computation tree this node corresponds to
2. The membrane of the P system this node corresponds to
3. An unique id for this particular configuration.

The first two make up the major component of the Key, while the third makes
up the minor component:

Major Component: List (Level of tree , membrane number)
Minor Component: (Unique id)

It is important to note the Unique id does not uniquely identify a node
in the computation tree, and is only unique in combination with the membrane
number. For example if there are 5 membranes in the P system then there should
be 5 different nodes with the identical Unique id, one for each membrane, and
combined they make up one configuration. This is done so each < K,V > pair
in the database is the minimum unit for calculation, as the computation of a
membrane is completely independent of all other membranes. This will fit in
very nicely into the MapReduce tasks described in the next section.

Edges

For each node of the tree there are two additional data points stored in the
database. These represent the meta-data which would normally be stored in the
edges of the graph:

1. A list of all child configuration for each Unique ID
2. A list of all rules applied on a particular evolution

This information is stored separate to the tree nodes as it applies to multiple
nodes simultaneously. Each node represents only one membrane from a config-
uration and it is trivial which membrane is the child of which membrane. This

Implementation of P Systems by using Big Data Technologies 107

mapping can only be done at the configuration level as there is a directly link
between the parent and child of a configuration. The same applies to storing
which rules were applied to go from one configuration to another. It is very diffi-
cult to separate which rules produced all of the objects in a particular membrane
given membrane communication as such, the rules applied are per configuration
not per node. As described in the previous section the Unique ID identifies a
configuration so it is quite easy to store a < K,V > where the key is the unique
ID and the value is a Java serialized array of all the children or a list of rules
applied. These two supplementary < K,V > enable the traversing of the tree in
a logical way.

3.3 Determining all possible evolutions

One of the most critical and performance intensive aspects of developing the
computation tree is discovering the possible evolutions of a configuration (par-
ticularly when dealing with a non deterministic P system). This calculation is
non parallelizable and the performance of the entire system is gated on the al-
gorithm used to discover all possible evolutions. The applicability of a rule is
context dependent (dependent on the particular configuration) hence reuse of
calculation is difficult, and brute force evaluation is a linear search to a poten-
tially very large set of all possible rule combinations. In this section we have
developed two algorithms, one for the general case, and one optimized for a
specific case.

General Case Algorithm

To calculate all of the possible evolutions of a P system from a given configu-
ration for the general case where there is not apriori information about the rules
within a membrane we use a brute force algorithm. This algorithm goes through
each of the rules and discovers the maximum number of time a particular rule
can be applied in a context independent space (i.e. ignoring all other rules). Next
we calculate all of the possible vectors of rules which could possibly be applied.
For a P system where the maximum time rulei can be applied is max(ri), there
should be at most Πmax(ri) combinations. Once every possible combination is
calculated each one of these vectors is tested for correctness and maximality. If
they pass both criteria then they are stored in list of possible evolutions of the
P system in that particular configuration. The algorithm for checking a possible
vector is described next.

To describe our function we have the following definitions:

– R is the vector of rules in the membrane
– X is the vector of rules under test
– M is the configuration (multiset) of the membrane
– applyAllRules is a function which takes a vector of rules and returns the

multiset resultant from applying those rules
– applicable check if rule r is applicable given the multiset s

108 A. Ciobanu, F. Ipate

The algorithm is:

C ← applyAllRules(R)
if C =M then

return maximal
else

for all c ∈ C do

if |ci| > |mi| then

return incorrect
end if

end for

for all r ∈ R do

if applicable(r,M−C) then

return not maximal
end if

end for

return maximal
end if

Once every possible combination of rules has been tested with this algo-
rithm, the rules vectors (which return maximal) are the vectors which produce
all possible evolutions of the P system from the specified configuration for that
membrane.

Special Case Algorithm

If we impose certain restriction on the acceptable rule, new solving mecha-
nisms for finding all possible maximal combinations of rules become available.
Similar approached have been tried by: [6].To exemplify this approach:

We know that for a given multisetM and a set of rules R where ri is of the
form u → (a1, t1) . . . (an, tn) and |ri| represents the number of times a rule i is
applied,

∀m ∈M, Σ|ri| ≤ |m| (2)

where u of ri contains m

But if
∀v ∈ V∃r ∈ R : r = v → α (3)

where V is the alphabet of the P system and α is an arbitrary vector over V (in
other words if every object in the multiset is consumed)
then

∀m ∈M, Σ|ri| = |m| (4)

Combine (4) with the fact that |ri| ∈ N and you get a system of linear equation
which can be solved. The solutions to the system of equations represents all
possible combinations of rules which satisfy the maximality requirements.

Implementation of P Systems by using Big Data Technologies 109

Numerical Example: If we had the following configuration:

V = {a, b, c}

M = {a4, b5, c3}

R =































r1 = a1, b1 → α

r2 = a1, c1 → α

r3 = a1 → α

r4 = b1 → α

r5 = c1 → α

where α is any arbitrary multiset over V

By expanding the equation (4) we get











|r1|+ |r2|+ |r3| = 4

|r1|+ |r4| = 5

|r2|+ |r5| = 3

This now becomes a problem of n equations and m unknowns, so to solve we
will rewrite the equations as an augmented matrix.





1 1 1 0 0 4
1 0 0 1 0 5
0 1 0 0 1 3





If we perform Gaussian elimination on this matrix with the solution we get





1 0 0 1 0 5
0 1 0 0 1 3
0 0 1 −1 −1 −4





From here we have two free variables, we will call them t1 and t2 and the solution
is:































r1 = 5− t1

r2 = 3− t2

r3 = −t1 − t2 + 4

r4 = t1

r5 = t2

which produces an infinite number of solution, but we know that |ri| ∈ N so we
can add the following restrictions on t1 and t2

110 A. Ciobanu, F. Ipate











0 ≥ t1 ≥ 5

0 ≥ t2 ≥ 3

t1 + t2 ≤ 4

and if we plug in all acceptable values for t1 and t2 into the solution matrix
we get the 14 different possible evolutions of that particular configuration.

This algorithm is not exceptionally efficient as Gaussian elimination is O(n3)
but as rules in a membrane do not change through the evolution of the P system
we can solve the equation for a generic multiset and then simple plug in the
values when calculating all possible evolutions. This will significantly reduce the
amount of time required to calculate all possible evolutions.

3.4 Determining next level’s nodes

Once we have calculated all possible evolutions of a particular configuration of a
P system then the calculation of the next level of the computation tree is quite
straight forward. We follow the steps:

1. Take one possible rule application sequence (calculated in section 4.3)
2. Given the particular input set apply the rule combination and get the output

multiset
3. Take that multiset and do a cross product with the multisets of all of the

other membranes available for the unique ID
4. Break up the resultant configuration and store each node in a unique key in

the database
5. Repeat for all rule application sequences and possible cross products with

different membranes

Following these steps we are able to compute all of the children nodes for a
particular configuration of the P system.

3.5 The Map Reduce implementation

Developing a computation tree for a P system requires the calculation of all
possible evolutions of each node in the tree recursively. As each node’s possible
evolution is absolutely independent of another, its calculation can be performed
independently and most importantly in parallel. To facilitate this parallelism we
use the Map construct of the Hadoop infrastructure, as it allows us to paral-
lelize very naturally this calculation. As the calculation of the next level’s nodes
requires the aggregation of multiple membrane’s possible evolutions, the Re-
duce construct is used to perform this task. Each MapReduce cycle calculates
one more level of the computation tree, and as multiple calls are made to the
MapReduce infrastructure the output of one cycle becomes the input for the next
cycle. In other words the Map task implements one of the algorithms described
in section 4.3 and stores the results under the Unique Id of the configuration.

The Reduce task receives all of the results from the MAP task for a particular
configuration (a list who’s cardinality is equal to the number of membranes

Implementation of P Systems by using Big Data Technologies 111

in a configuration). In the Reduce task a cross product between the possible
configurations of each membrane and stored the products as the nodes of the next
level. For example if we have 3 membranes and each membrane has 4 possible
evolutions, then we would store 192 nodes in the computation tree (assuming
all of the configurations produce objects in all of the membranes). The cross
product of all of the possible evolutions is 4 X 4 X 4 which is 64. Each of those
configuration has objects in all three membranes, but in the computation tree a
node only represents one membrane, hence for each configuration there will be
3 nodes stored in the database; therefore 64 X 3 = 192 nodes stored.

4 Experimental Results

We developed several P systems of varied size to determine the time required
to generate a computation three of n levels for a particular P system. We also
vary the number of servers in the cluster to be able to get an idea of scaling
possibilities. The cluster was composed of 16 servers each with a single core 2 duo
processor 4 GB of Ram and a single hard disk on a SATA bus. It is important
to note a single server in a modern Hadoop cluster can be more power then
the sum of the 16 machines we used, as such the following results need to be
taken within that context. Most of the 16 nodes were configured identically with
on server dedicated to administrating the Hadoop cluster and another for the
NoSQL database. These two services (Haddop MapReduce server and NoSQL
storage server) were run concurrently on the same physical machines with on
core for each process.

4.1 Testing different algorithms

We experimented with the different algorithms described in section 4.3 to notice
the performance difference between the algorithms. The experiment tried to find
all of the possible evolutions of a single membrane given a different number of
rules. The multiset used for each experiment was a vector with one of each ele-
ment in the alphabet (V). This experiment was performed on a single machine.
These are the results:

Number Of Rules Time for General Case (ms) Time for Equation Solving (ms)
10 15 86
20 1146 188
30 1915509 891
40 8hrs + 30444
50 ??? 7808309 (2.16 hrs)

To understand the results there are a couple of practical notes to consider for
the Equation Solving algorithm.

1. The calculation of the reduced row echelon form matrix was not taken into
consideration for the total execution time, since it is calculated only once at

112 A. Ciobanu, F. Ipate

the loading of the P system into the database, hence not relevant in repeated
executions.

2. Although the example in section 3.3 showed lower and upper bounds for each
free variable more complex execution usually only provide lower bounds for
the free variables. As such it required the calculation of theoretical upper
bounds, and then doing a linear search through all combinations of free
variables to check if the comply with restrictions imposed by the equations
in the reduced matrix.

3. The use of the Equation Solving algorithm has a static set-up time which
is why for small search sets the General Case algorithm is more efficient as
there is no set-up required for that algorithm.

4.2 Testing Number of Nodes

We used some P systems with varying number of rules to test how many nodes
we could store in the database and how much space would be required. All
experiments were performed with simple mirroring of data across the cluster.

Our first test used a simple P system with 4 membranes, 3 objects and 5
rules per membrane. This P system had a high number of possible evolutions
per membrane. Our experiment of running this P system had:

Number Of Nodes Storage Space Execution time
65471486 84.9 GB 16.54 hrs

This experiment did not finished as Hadoop time-out start to disrupt the exe-
cution.
We did run the computation again without clearing the database to see if more
nodes could be stored. The results were:

Number Of Nodes Storage Space Execution time
77186334 105.4 GB 5.52 hrs

This execution was exited by the system due to database issues. We believe
it might be configuration issues or networking issues but error logs did not pro-
vide and useful information.
We did also use a much larger P system with 5 membranes, 10 objects and 30
rules per membrane and the following results were achieved:

Number Of Nodes Storage Space Execution time
40445334 90 GB 10.52 hrs

This execution also timed out due to system resource limitations.
These experiments were designed to show the size of the computation trees which
could be stored in the database. The number of nodes stored is not the total
number of nodes which exist in the computation tree but the number of nodes
store before system stability issues interfered. We can extract from those results
we have about 770 thousand nodes per gigabyte, and 450 thousand nodes per
gigabyte for the respective P systems. The storage requirements do not grow

Implementation of P Systems by using Big Data Technologies 113

perfectly proportionally with the number of objects in the multiset as metadata
describing the edges of the tree is also stored in the database which is not affected
by the alphabet size.

4.3 Testing with different numbers of servers

We will also vary the cluster size from 2 to 16 servers with the same P system
to test the scaling factor use a P system of 3 membranes 10 objects and 25 rules
per membrane. We observed the following results:

Tree Level Number Of Nodes 2 Servers 4 Servers 8 Servers 16 Servers
1 18411 2m 51s 1m 22s 1m 43s 1m 18s
2 1438047 55m 34s 24m 12s 12m 44s 7m 56s

This experiment really demonstrates the scaling factor of Hadoop where doubling
the number of nodes effectively doubles the performance of the application. The
results of the experiments were significant despite the cluster being composed of
low power machines. Hadoop clusters have scaled to thousands of servers where
each server was significantly more powerful than the machines used for these
tests. This experiment also shows the potential variance of the system. The first
line of the table required to derivation of a single node (the root node) hence
no parallelism was possible. All results for the first derivation should be the
same as the number of servers does not matter for a non parallelisable task. The
variance in the numbers is because of unpredictable elements in the Hadoop
infrastructure.

4.4 Variance in results

Hadoop (as an infrastructure) is designed for large scale deployment of a dis-
tributed system (100 - 1000 of servers), and there is a high potential for server
failure, server slowdowns, and data loss, situations which Hadoop is designed to
deal with. These include data replication across servers (to deal with server loss)
and speculative execution to deal with individual server performance issues. As
exact execution path are both unpredictable, the timing results provided in this
article come with a potential error factor. Repeated experiments will produce
the same results but with different execution times, although these deltas are
usually within an acceptable margin.

5 Practical Uses

To demonstrate a practical use of this application we developed a tool which
would perform (Context Dependent Rule Coverage) CDRC test oracle discovery
using the computation tree stored on the database. CDRC is a testing strategy
where all possible sequences of 2 rules which can sequentially occur during the
simulation of a Psystem are tested. For more details on CDRC please see article
[5] . The process of discovering tree walks, which cover context dependent rules,
is as followed:

114 A. Ciobanu, F. Ipate

1. Go through all of the rules and discover the CDRC rule pairs. Store these
inside the NoSQL database

2. Run a Map task which take as input a unique configuration at a specific level
of the computation, the goes through all children nodes of that configuration
and tests the applied rules of the two steps.

3. Each evolution of the P system (which covers a CDRC rule pair) is stored
and the CDRC pair is removed from the database as it is discovered.

6 Previous Work

Many attempts have previously been made to generate P system simulators
which use parallel computing with varying levels of success. These are all enu-
merated in: [8]. Possibly the most successful attempts have used speciality hard-
ware to enable the simulation. These include GPU, FPGA, and Micro Controller
implementations. These simulators usually run much faster (per server) then the
one developed in this article, but they have two major drawbacks: they require
speciality equipment and they are limited to the storage and processing capacity
of a single device. Our solution is able to scale to multiple commodity machines
extending the storage capacity to very large data sets. At the same time a pos-
sible integrated approach between Hadoop and GPU approach would be very
interesting to attempt as it might enable a best of both worlds implementations
were the drawbacks of both system can be counterbalanced.

There have also been attempts at using clustered computing, using either
c++ and Message Passing Interface, or Java and remote method calls. Both
methods showed great potential but were limited by the communication overhead
of the implementations. Our approach uses a distributed database to enable our
communication and a slightly different approach to simulation (given tour multi
path approach). Although Hadoop is a more rigid infrastructure then the other
used, its rigidity also mitigates some of the issues faced with bespoke clustering
technologies.

7 Conclusion

In this article we have show how big data technologies can be used to massively
extend the reach of our P system simulators and calculators. The use of these
technologies constituted several conceptual elements:

1. The use of a NoSQL database to store the computation tree of a P system
2. The use of a Hadoop Map task to compute all possible evolutions of a mem-

brane
3. Two different algorithms which can be used to compute the possible evolu-

tions of a membrane
4. The use of a Hadoop Reduce task to simulate membrane communication

with the context of developing a computation tree

Implementation of P Systems by using Big Data Technologies 115

5. The implementation of this code which scale to computing and storing mil-
lions of nodes of a computation tree within a distributed storage to allow
sub second access to the data even on low grade hardware.

6. The explanation and implementation of a possible use of the computation
tree in Context Dependent Rule Coverage testing.

We can now extend the use of Hadoop and NoSQL to empower P system to
simulate real world problems and possibly find solutions as we now have a viable
strategy for potentially unlimited scaling.

Further work will now be performed to extend the application both from a
technology perspective and a P system perspective. We will extend the technol-
ogy to allow for other NoSQL database to underpin the system as to allow for
the use of server rental services. We will also try the extend in the type of P
system which can be simulated including conditional rules. We will also look at
using this technology for different practical purposes including different testing
strategies.

For access to the source code for this application go to GitHub at URL:
https://github.com/alexciobanu/psystem

Acknowledgments We would like to thank Cristi Stefan of University of Pitesti
who has enabled all of the experiments done in the development of this code.
He worked tirelessly to maintain the equipment and ensure it was available for
experimentation.
This work was partially supported by a grant of the Romanian National Author-
ity for Scientific Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-
2011-3-0688. We are indebted to the anonymous reviewers for their valuable
comments and suggestions

References

1. Păun, G.: Computing with membranes. Journal of Computer and System Sciences

61(1), 108–143 (2000)

2. Păun, G., Rozenberg, G., Salomaa, A: The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2010)

3. Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on

Large Clusters, Sixth Symposium on Operating System Design and Implementa-

tion (2004)

4. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber Bigtable: A

Distributed Storage System for Structured Data, Seventh Symposium on Operating

System Design and Implementation (2006)

5. R. Lefticaru, F. Ipate, M. Gheorghe: Model checking based test generation from P

systems using P-lingua. Romanian Journal of Information Science and Technology,

13(2): 153-168, 2010. Special Issue on Membrane Computing containing selected

papers from BWMC (2010)

116 A. Ciobanu, F. Ipate

6. Richelle Ann B. Juayong1 ,Francis George C. Cabarle1,Henry N. Adorna1, Miguel

A. Martinez-del-Amor2: On the Simulations of Evolution-Communication P Sys-

tems with Energy without Antiport Rules for GPUs. 10th Brainstorming Week on

Membrane Computing proceeding pg. 267 - 289 (2012)

7. L. Diez Dolinski, R. Nunez Hervas, M. Cruz Echeandia, and A. Ortega: Distributed

Simulation of P Systems by Means of Map-Reduce: First Steps with Hadoop and

P-Lingua. IWANN 2011, Part I, LNCS 6691, pp. 457464 (2011)

8. Miguel Angel Martinez del Amor: Accelerating Membrane Systems Simulators us-

ing High Performance Computing with GPU. PHD thesis University of Seville

(2013)

9. http://docs.oracle.com/cd/NOSQL/html/index.html Visited May 10 2013

10. www.p-lingua.org Visited May 10 2013

On Counter Machines versus dP Automata⋆

Erzsébet Csuhaj-Varjú1 and György Vaszil2

1
Department of Algorithms and Their Applications, Faculty of Informatics

Eötvös Loránd University

Pázmány Péter sétány 1/c, 1117 Budapest, Hungary

csuhaj@inf.elte.hu
2

Department of Computer Science, Faculty of Informatics

University of Debrecen

P.O. Box 12, 4010 Debrecen, Hungary

vaszil.gyorgy@inf.unideb.hu

Abstract. Continuing the study of connections between classical and

P automata variants, we show that dP automata, i.e., distributed sys-

tems of P automata, where the input multiset is mapped to the set of

strings consisting of all permutations of its elements, are as powerful as

the class of distributed systems of special restricted counter machine ac-

ceptors. These variants of counter machines read multisets (represented

as sets of all permutations of their elements) and manipulate counters in

a conventional manner.

1 Introduction

P automata are purely communicating P systems accepting strings in an autom-
aton-like fashion. In the standard case they are based on antiport systems with
promoters or inhibitors. The concept was introduced in [3, 4]; for a summary on
P automata the interested reader is referred to Chapter 6, [13]. Elements of the
language (over some alphabet) of a P automaton are obtained by some mapping
of the multiset sequences which enter the system through the skin membrane
during an accepting computation.

Studying simple, non-erasing mappings, it was shown that if the rules of the
P automaton are applied sequentially, then the accepted language class is strictly
included in the class of languages accepted by one-way Turing machines with a
logarithmically bounded workspace (1LOGSPACE), or if the rules are applied
in the maximally parallel manner, then the class of context-sensitive languages
is obtained [1]. If the input mapping is defined in such a way that it maps a
multiset to the set of strings consisting of all permutations of its elements, i.e.,
mapping fperm is used, then a class of languages is obtained that is strictly
included in the class of so-called restricted logarithmic space Turing machines
[6]. (In the case of nondeterministic restricted logarithmic space Turing machines

⋆
Supported in part by the Hungarian Scientific Research Fund, “OTKA”,

grant no. K75952, and by the European Union through the TÁMOP-4.2.2.C-

11/1/KONV-2012-0001 project which is co-financed by the European Social Fund.

118 Erzsébet Csuhaj-Varjú and György Vaszil

the actual workspace available for computation is in logarithmic accordance with
the already consumed input.) To prove the statement, special variants of counter
machines, called RCMA (restricted counter machine acceptors) and SRCMA
(special restricted counter machine acceptors) were introduced making it possible
to read multisets (represented as sets of all permutations of their elements) and
manipulating counters in a conventional manner.

Motivated by communication complexity questions, the notion of a distributed
P automaton (a dP automaton, in short) was introduced in [12]. Such a system
consists of a finite number of component P automata which have their separate
inputs and which may communicate with each other by means of special antiport-
like rules. A string accepted by a dP automaton is defined as the concatenation
of the strings accepted by the individual components during a computation per-
formed by the system [12]. The generic variant of dP automata ([12]) uses the
mapping fperm to define its language, that is, a string accepted by a compo-
nent P automaton is the concatenation of strings which are permutations of the
objects of the multisets imported by the skin membrane during an accepting
computation; all combinations are considered.

In the last two years, dP automata were studied in detail (see, for exam-
ple [12], [8], [14], and [15, 16]). It was shown that using the mapping fperm,
dP automata are strictly more powerful than P automata (with fperm), but the
language family accepted by them is strictly included in the family of context-
sensitive languages.

Investigations have been made to compare P and dP automata classes to
classical or well-known classes of acceptors as well. Connections between dP au-
tomata and non-deterministic multi-head finite automata were studied in [5],
based on the concepts of agreement languages of dP automata and the notion of
a two-way dP automaton. The strong agreement language consists of all words
which can be accepted in such a way that all components accept the same se-
quence of multisets. In case of weak agreement languages the accepted multiset
sequences can be different, only the equality of the images of all accepted se-
quences is required. In [5], it was shown how the languages of non-deterministic
one-way and two-way multi-head finite automata can be obtained as the agree-
ment languages of one-way and two-way finite dP automata. (A dP automaton
is finite if the number of its configurations is a finite number.)

Continuing this line of research, in this paper we show that the classes of
concatenated and agreement languages of dP automata with mapping fperm

and working in the nondeterministic maximally parallel mode, are equal to the
classes of concatenated and agreement languages of distributed systems of special
restricted counter machine acceptors.

2 Preliminaries and Definitions

We assume the reader to be familiar with the basics of formal language theory
and membrane computing; for details consult [18] and [13].

On Counter Machines versus dP Automata 119

An alphabet is a finite non-empty set of symbols. For an alphabet V , we
denote by V ∗ the set of all strings over V ; if the empty string, λ, is not included,
then we use notation V +. The length of a string x ∈ V ∗ is denoted by |x|. For
any symbol a ∈ V , |x|a denotes the number of occurrences of the symbol a in x;
and for any set of symbols A ⊆ V , the number of occurrences of symbols from
A in x is denoted by |x|A.

A finite multiset over an alphabet V is a mapping M : V → N where N is the
notation for the set of non-negative integers; M(a) is said to be the multiplicity
of a in M . M can also be represented by any permutation of a string w =

a
M(a1)

1
a

M(a2)

2
. . . a

M(an)

n ∈ V ∗, where if M(x) 6= 0, then there exists j, 1 ≤ j ≤ n,
such that x = aj . The set of all finite multisets over an alphabet V is denoted
by V ◦, and we use the notation V ◦+ for denoting the set of nonempty (finite)
multisets. The empty multiset is denoted by λ as in the case of the empty string.
If confusion may arise, we make explicit whether we speak of a string or a
multiset.

A P system is a structure of hierarchically embedded membranes (a rooted
tree), each membrane (node) having a unique label and enclosing a region con-
taining a multiset of objects. The outmost membrane (the root of the tree),
called the skin membrane, is unique and usually labeled with 1. Each region
(membrane) is associated with a set of rules over multisets of objects which are
used for changing the configuration of the P system.

An antiport rule is of the form (u, in; v, out), u, v ∈ V ◦ for a finite set of
objects V . If such a rule is applied in a region, then the objects of u enter from
the parent region and in the same step, objects of v leave to the parent region.
If only (u, in) or (u, out) is indicated, then we speak of symport rules. (Note
that the meaning of the “in” tag in these rules is different from the meaning
of the target indicator “in” in the rules of type u → (v, in) used in other types
of P systems.) Antiport rules can be associated with promoters or inhibitor
multisets of objects, denoted by (u, in; v, out)|z, or (u, in; v, out)|z̄, z ∈ V ◦. In
the first case the rule can only be applied if the objects of the promoter multiset
z are all present in the given region, in the second case, the rule can be applied
if no element of z is present. Analogously, promoters or inhibitors can be added
to symport rules as well. The environment is supposed to contain an unlimited
supply of objects, thus if an antiport rule (with promoters or inhibitors) is to
be applied in the skin region, then the requested multiset is always available to
enter the system from the environment.

A P automaton (of degree k) is a membrane system Π = (V, µ,w1, . . . , wk,
P1, . . . , Pk) with object alphabet V , membrane structure µ, initial contents (mul-
tisets) of the ith region wi ∈ V ◦, 1 ≤ i ≤ k, and sets of antiport rules with
promoters or inhibitors Pi, 1 ≤ i ≤ k. Furthermore, P1 must not contain any
rule of the form (a, in) where a is an object from V .

The configurations of the P automaton (the actual k-tuple of multisets of
objects over V in the regions) can be changed by transitions. The transition is
performed by applying rules according to the working mode of the P automa-
ton. For simplicity, we consider only the non-deterministic maximally parallel

120 Erzsébet Csuhaj-Varjú and György Vaszil

(working) mode, where as many rules are applied simultaneously in the re-
gions at the same step as possible. Thus, a transition in the P automaton Π
is (v1, . . . , vk) ∈ δΠ(u0, u1, . . . , uk), where δΠ denotes the transition relation,
u1, . . . , uk are the contents of the k regions, u0 is the multiset entering the sys-
tem from the environment, and v1, . . . , vk, respectively, are the contents of the k
regions after performing the transition. A sequence of transitions starting from
the initial configuration (w1, . . . , wk) is a computation.

In this way, there is a sequence of multisets which enter the system from
the environment during the steps of any computation. If the computation is
accepting, that is, if it halts, then this multiset sequence is called an accepted
multiset sequence.

From any accepted multiset sequence over V , a string of the accepted lan-
guage, that is, a string over some alphabet Σ is obtained by the application of
a mapping f : V ◦ → 2Σ∗

, mapping each multiset to a finite set of strings.
Let Π be a P automaton as above, and let f be a mapping f : V ◦ → 2Σ∗

for
some finite alphabet Σ. The language over Σ accepted by Π with respect to f
is defined as

L(Π, f,Σ) = {f(v1) . . . f(vs) | v1, . . . , vs is an accepted multiset sequence of Π}.

In [8] the authors consider P automata with fperm. Since in this case Σ does
not differ from V , we denote the accepted language by L(Π, fperm). The class
of languages accepted by Π automata defined by mapping fperm is denoted by
L(PA, fperm). We note that the first appearance of fperm is in [7], where the
so-called analyzing P system, a closely related concept to the P automaton was
introduced, almost at the same time as [3].

A finite collection of P automata forms a distributed P automaton, a dP au-
tomaton, in short, introduced in [12]. A dP automaton (of degree n ≥ 1) is
a construct ∆ = (V,Π1, . . . ,Πn, R), where V is the alphabet of objects; Πi =
(V, µi, wi,1, . . . , wi,k, Pi,1, . . . , Pi,ki

) is a P automaton of degree ki ≥ 1, 1 ≤ i ≤ n,
called the ith component of the system; R is a finite set of rules of the form

zi
|(si, u/v, sj)|zj

, 1 ≤ i, j ≤ n, i 6= j, uv ∈ V ◦+, called the set of inter-component
communication (shortly, communication) rules of ∆; sk, 1 ≤ k ≤ n denotes the
skin membrane of Πk. The multisets zi, zj are promoters (or inhibitors) associ-
ated to the rule which can be applied if region si and sj contain (or not contain)
the elements of the multisets zi, zj , respectively.

We say that ∆ accepts the n-tuple (α1, . . . , αn), where αi, 1 ≤ i ≤ n, is
a sequence of multisets over V , if the component Πi, starting from its initial
configuration, using the symport/antiport rules (with promoters or inhibitors)
as well as the inter-component communication rules in the non-deterministic
maximally parallel way, takes from the environment the multiset sequence αi,
1 ≤ i ≤ n, and ∆ eventually halts, i.e., enters an accepting configuration.

Analogously to single P automaton, we may associate a language to a dP au-
tomaton by using a mapping from the object multisets to an alphabet of symbols.
In this paper we study systems with the mapping fperm, see above. We note that
in [3] the mapping to define the alphabet of the language of the dP automaton
was considered in a more general manner.

On Counter Machines versus dP Automata 121

The (concatenated) language of ∆ (introduced in [12]) with respect to the
mapping fperm, is defined as

Lconcat(∆, fperm) = {w1 . . . wn ∈ V ∗ | wi ∈ fperm(vi,1) . . . fperm(vi,si
) and

αi = vi,1 . . . vi,si
, 1 ≤ i ≤ n, for an n-tuple of

accepted multiset sequences (α1, . . . , αn)}.

In [5] two variants of languages based on agreement of the components were
introduced, namely, the weak and strong agreement languages. The strong agree-
ment language consists of all words which can be accepted in such a way that all
components accept the same sequence of multisets. In weak agreement languages,
however, the accepted multiset sequences can be different, only the equality of
the images of all accepted sequences is required. Note that in the special case of
fperm, the two types of agreement languages coincide, since in general (consider-
ing multisets from V ◦ containing at least two different symbols a, b ∈ V, a 6= b of
the underlying alphabet), the sets of words obtained as the images of two mul-
tiset sequences under the permutation mapping are equal only if the multiset
sequences themselves are also equal. Thus, to obtain a “weaker” requirement,
similarly to the weak agreement languages for more general input mappings in
[5], we will use here a variant of the notion defined as follows.

The (weak) agreement language with respect to the mapping fperm is defined
as

Lagree(∆, fperm) = {w ∈ V ∗ | w ∈ fperm(vi,1) . . . fperm(vi,si
) for all 1 ≤ i ≤ n,

where αi = vi,1 . . . vi,si
, 1 ≤ i ≤ n,

and (α1, . . . , αn) is an n-tuple of accepted multiset

sequences of ∆}.

In the case of Lconcat(∆, fperm), the words accepted by the components are
concatenated to obtain the words of the language accepted by the dP automaton.
In the case of the agreement language Lagree(∆, fperm), those words are accepted
by the dP automaton which can be obtained as the image of the accepted multiset
sequence of all of the components, or in other words, the language accepted by
the distributed automaton is the intersection of the sets of words Li obtained
as the images of the accepted multiset sequences αi of an n-tuple of sequences
(α1, . . . , αn) accepted by the system in a computation.

The classes of concatenated and weak agreement languages accepted by
dP automata and defined by mapping fperm are denoted by Lconcat(dPA, fperm)
and Lagree(dPA, fperm).

Example 1. Let ∆ be a dP automaton ∆ = ({a, b, c, d},Π1,Π2, ∅) with Πi =
({a, b, c, d}, []1, d, Pi), 1 ≤ i ≤ 2, where P1 = {(ab, in; d, out), (c, in; a, out)}, P2 =
{(a, in; d, out), (bc, in; a, out)}.

The systems ∆ has only one computation where Π1 and Π2 accept the fol-
lowing sequences of two multisets: In the sequence accepted by Π1, the first
multiset contains a symbol a and a symbol b, the second contains a symbol c.

122 Erzsébet Csuhaj-Varjú and György Vaszil

In the sequence accepted by Π2, the first multiset contains a symbol a, the sec-
ond contains a symbol b and a symbol c. Thus, ∆ accepts the pair of sequences
of multisets ({a, b}{c}, {a}{b, c}). (We enumerated the elements between curly
brackets, as in the usual set notation.)

Then, the concatenated language of ∆ is Lconcat(∆, fperm) = {abcabc, bacabc,
abcacb, bacacb}, while the agreement language is Lagree(∆, fperm) = {abc}.

In the following we recall some notions concerning complexity classes used
to characterize classes of languages accepted by P automata. We start with a
notion from [1].

A nondeterministic Turing machine with a one-way input tape is restricted

logarithmic space bounded if for every accepted input of length n, there is an
accepting computation where the number of nonempty cells on the work-tape(s)
is bounded by O(log d) where d ≤ n is the number of input tape cells already
read, that is, the distance of the reading head from the left end of the one-way
input tape. The class of languages accepted by such machines is denoted by
r1LOGSPACE.

The following two variants of counter machines were introduced in [6]: A
restricted k-counter machine acceptor M , an RCMA in short, is a (nondeter-
ministic) counter machine with k counters (holding non-negative integers) and
a one-way read only input tape. Thus, M = (Q,Σ, k, δ, q0, F) for some k ≥ 1,
where Q is the set of internal states, Σ is the input alphabet, q0 ∈ Q is the

initial state, F ⊆ Q is the set of final states, and δ : Q × Σ∗ × Ck → 2Q×Dk

,
where C = {zero, nonzero}, denoting the two types of observations the ma-
chine can make on its counters, D = {increment, decrement, none} denoting
the operations the machine can execute on its counters. (Note that δ is finitely
defined, that is, defined for a finite subset of Σ∗, and a counter can be incre-
mented/decremented by one at any computational step.) Moreover,

– the transition relation is defined in such a way that the reading head is
able to read a finite multiset of symbols in one computational step in the
following sense: δ(q, x, α) = δ(q, y, α) for each x, y ∈ Σ∗ which represent the
same multiset. Moreover,

– the sum of the values stored in the counters can only increase as much in
one computational step as the number of symbols read in that same step,
that is, for all (q′, β) ∈ δ(q, x, α) we have |β|increment − |β|decrement ≤ |x|.

A special restricted k-counter machine acceptor, an SRCMA in short, is a
restricted k-counter machine acceptor M = (Q,Σ, k, δ, q0, F), but in addition,
the transition relation δ is defined in such a way, that if the length of the string
x read in one computational step is l, then the sum of the values stored in the
counters can only increase at most as much as l − 1 in the same computational
step. Thus,

– for all (q′, β) ∈ δ(q, x, α), we have |β|increment − |β|decrement ≤ |x| − 1.

The classes of languages accepted by RCMA and SRCMA are denoted by
L(RCMA) and L(SRCMA).

On Counter Machines versus dP Automata 123

3 Distributed Systems of Counter Machine Acceptors
and dP Automata

A distributed system of special restricted counter machine acceptors, a dSRCMA
in short, is a system M = (Σ,M1, . . . ,Mn, δ

M
) for some n ≥ 1, where Σ is an

alphabet, Mi = (Qi, Σ, k, δi, qi,0, Fi) for 1 ≤ i ≤ n are SRCMA, the components
of the system, and δ

M
is the communication relation, where if we denote Q =

⋃n
i=1

Qi, then δ
M

: (Q×Ck)2 → 2(Q×Dk
)
2

and, as above, C = {zero, nonzero},
D = {increment, decrement, none}.

When a dSRCMA works, each component processes its own input in a parallel
and synchronized manner. The components may use their own transition rela-
tions δi, 1 ≤ i ≤ n, or when appropriate, they may communicate as described by
δ
M

. The relation δ
M

governs the communication of the components as follows.
Let us assume that the internal control and the counters of Mi1 and Mi2 for some
1 ≤ i1, i2 ≤ n are in the configurations (q1, α1) and (q2, α2), q1 ∈ Qi1 , q2 ∈ Qi2 ,
and αi ∈ Ck, 1 ≤ i ≤ 2, respectively. Now, if (q′

1
, β1, q

′

2
, β2) ∈ δ(q1, α1, q2, α2),

then the components change their internal states to q′
1

and q′
2
, respectively, and

update their counter contents according to βi ∈ Dk, 1 ≤ i ≤ 2, respectively. It is
important to note, that δ

M
is defined in such a way that the sum of the counter

contents cannot increase during a communication step, that is, taking β1 and β2

from above, it holds that |β1β2|increment ≤ |β1β2|decrement.
Let (w1, . . . , wn) be the n-tuple of words accepted by the components of the

dSRCMA system M. The concatenated language and the agreement language of
M are defined as

Lconcat(M) = {w1 . . . wn ∈ Σ∗ | (w1, . . . , wn) is an accepted

n-tuple of words of M},

and

Lagree(M) = {w ∈ Σ∗ | (w, . . . , w) is an accepted

n-tuple of words of M}.

The classes of concatenated languages and agreement languages accepted by
dSRCMA systems are denoted by LX(dSRCMA) for X ∈ {concat, agree}.

Now we are going to show that dSRCMA systems and dP automata charac-
terize the same class of languages.

Lemma 1 LX(dPA, fperm) ⊆ LX(dSRCMA) for any X ∈ {concat, agree}.

Proof. Let L = LX(∆, fperm), for X ∈ {concat, agree}, and let ∆ be the dP au-
tomaton ∆ = (Σ,Π1, . . . ,Πn, R), Πi = (Σ,µi, wi,1, . . . , wi,mi

, Pi,1, . . . , Pi,mi
),

for 1 ≤ i ≤ n. We construct a dSRCMA system M = (Σ,M1, . . . ,Mn, δ
M

) such
that L = LX(M).

The components Mi = (Qi, Σ, k, δi, qi,ini, Fi) of M are able to simulate the
computations of the components of ∆ by keeping track of the number of different

124 Erzsébet Csuhaj-Varjú and György Vaszil

objects in the different regions of Πi. Mi has three counters for each symbol-
region pair, these are called storage counters, temporary counters, and assistant
counters; three additional counters for each symbol-component pair, plus three
additional ones for each symbol and the environment, these are called output
counters, input1 counters, input2 counters. In addition, Mi has di additional
counters called input assistant counters where di is the maximal number of
objects which can enter the skin membrane of Πi from the environment or from
an other component by the application of one antiport rule (di = max({|v| |
(u, out; v, in)|z ∈ Pi,1 ∪{zi

|((i, 1), u/v, (j, 1))|zj
∈ R | 1 ≤ j ≤ m} }). Apart from

these, the components may need a number of assistant counters in order to be
able to perform basic arithmetic operations and to check the equality of counter
values during the computation. In order to have an equal number of counters
in each component, we can take the maximum of the sum of the values defined
above as the number k of counters in any component. These counters are initially
empty, so the number of objects in the initial configuration of Mi is recorded in
the components (ci,1, . . . , ci,k) of the internal state qi,ini = (qi,0, ci,1, . . . , ci,k) ∈
Q′

i × N
k.

The simulation of a computational step (v1, . . . , vmi
) ∈ δΠi

(u0, u1, . . . , umi
)

of Πi by Mi can be described as follows. First Mi nondeterministically chooses
symport/antiport rules (with promoters or inhibitors) from the sets Pi,j , 1 ≤

j ≤ mi, of Πi or from the communication rules in R, then updates the counters
which keep track of the configuration of Πi according to the chosen rules. The
storage counters corresponding to the region and the objects which leave the
region are decremented with the necessary amount of objects, and the number
of objects entering the region are added to the corresponding temporary coun-
ters. If objects are exchanged between the skin regions of different components
by the use of a communication rule of R, then the dSRCMA system also uses a
communicating transition (described by δ

M
) to increase the temporary counters

corresponding to the exchanged symbols and the skin regions of the two com-
ponents. If an object leaves to the environment from the skin region of Πi, then
the corresponding output counter of Mi is incremented.

(Note that the “counter components” of the internal states are also taken into
account: their value and the value of the corresponding “real” counter together
represent the number of objects in Πi. When such an “internal counter” is decre-
mented, then the increment of the necessary temporary counter also takes place
in the corresponding “internal” version of that counter. This way this nonde-
terministic rule choosing and configuration modifying phase of the computation
of Mi does not increase the overall sum of the values stored in the different
counters.)

When this phase is finished, Mi checks whether the configuration change
implied by the rules chosen above corresponds to the maximally parallel mode
of rule application. This means that Mi must check the applicability of rules in
each region, which can be done one by one, using the corresponding assistant
counters to store the numbers which are subtracted from various counters during
the process in order to be able to easily restore the original configuration when

On Counter Machines versus dP Automata 125

the checking of the applicability of a rule fails. The check also includes the
skin region, to make sure that the multiset leaving to the environment is also
maximal.

After the checking of the maximality of the chosen rule set, M realizes the
configuration change by updating the storage counters using the values from
the temporary counters, and by simulating the entering of objects from the
environment (corresponding to the ones that leave the skin region), which can be
done as follows. The number and type of objects which are supposed to leave to
the environment are recorded in the output counters of the component. First Mi

chooses antiport rules (u, out; v, in)|z ∈ Pi,1 and decrements the output counters
corresponding to the objects of u while incrementing the input assistant counters
of the component. Now Mi reads |v| symbols from its input tape, and records
them in the input1 counters, and also records the symbols of v (from the chosen
antiport rule) in the input2 counters. This process can be repeated a number of
times, and when it is finished, the SRCMA component Mi correctly simulated
the entering of objects into the skin region of Πi from the environment, if two
conditions are satisfied: first, the output counters should be empty, and second,
each input1 and input2 counter corresponding to the same symbol should hold
the same value. The second requirement corresponds to the fact that the same
multiset of objects was read from the tape of Mi (although, possibly in a different
order) as can be imported from the environment into the skin membrane of Πi

using the antiport rules that were chosen previously by Mi.
After completing this phase of the computation, M can start the simulation

of the next computational step of Π in the same way as described above. Before
continuing with the simulation, M can check whether the current configuration
is final or not, and decide to proceed or to stop accordingly. (A configuration is
final if it is halting, thus, if no rule can be applied in any of the regions.)

Note that the input reading operations do not violate the requirement that
the sum of the numbers stored in the counters of an SRCMA can only increase
in a computational step as much as c−1, where c is the number of symbols read
in that step. This holds because at least one symbol left the simulated system,
thus, at least once one of the output counters were decremented, and at the same
time, one of the input assistant counters was incremented. This means that after
decrementing the input assistant counter, it is possible to increment the input1
and input2 counters altogether by the value of |v|. This is sufficient, because we
can store any value c = 2 ·j+ l, l ∈ {0, 1} by storing j in the counter and keeping
track of l in the state of the finite control, thus, by increasing the sum of the
overall counter contents by |v|, we can store two numbers which are both less or
equal to |v|.

We have seen that the words obtained by permuting the elements of the
multisets in the multiset sequences accepted by the components of the dP au-
tomaton Π coincided with the words which can be accepted by the components
of the dSRCMA system M. This means that LX(dPA, fperm) ⊆ LX(dSRCMA)
for any X ∈ {concat, agree}. ⊓⊔

Lemma 2 LX(dSRCMA) ⊆ LX(dPA, fperm) for any X ∈ {concat, agree}.

126 Erzsébet Csuhaj-Varjú and György Vaszil

Proof. We show how a dSRCMA system M = (Σ,M1, . . . ,Mn, δ
M

) with Mi =
(Qi, Σ, k, δi, qi,0, Fi), 1 ≤ i ≤ n, can be simulated by a dP automaton. Let
the transitions defined by (

⋃n
i=1

δi) ∪ δ
M

be labeled in a one-to-one manner
by the set lab(M), and let the simulating dP automaton be defined as ∆ =
(V,Π1, . . . ,Πn, R). For any Mi = (Qi, Σ, k, δi, qi,0, Fi), 1 ≤ i ≤ n, we define
Πi = (V, µi, wi,1, . . . , wi,k+2, Pi,1, . . . , Pi,k+2) as follows.

The alphabet is V = Σ ∪ {q0, C,D,E, F} ∪ {Bi,t, t1, t2, t3, t4 | 1 ≤ i ≤

6, t ∈ lab(M)} ∪ {AiA
′

i | 3 ≤ i ≤ k + 2}, the membrane structure is µi =
[[]i,2 []i,3 . . . []i,k+2]i,1, and the rule sets with the initial membrane contents
are as follows. (For easier readability, instead of the string notation, we denote
the initial multisets by enumerating their elements between curly brackets, as in
the usual set notation.)

wi,1 = {q0, C,D},

Pi,1 = {(a, out;u, in)|t1 | a ∈ Σ, t ∈ lab(δi) is a transition of M

which reads a string representing u from the input tape}

wi,2 = {a,Bj,t, t1, (t2)
k, (t3)

k, (t4)
k | 1 ≤ j ≤ 6, t ∈ lab(δi)} where a is some

element of Σ and (tj)
k denotes k copies of the object tj ,

Pi,2 = {(t1a, out; q0D, in) | a ∈ Σ, t ∈ lab(δi) labels a transition

from qi,0 ∈ Qi} ∪

{(B1,tD(t2)
k, out; t1, in) | t ∈ lab(δ)} ∪ {(a, out)|D | a ∈ Σ} ∪

{(B2,t(t3)
k, out;B1,t, in), (B3,t(t4)

k, out;B2,t, in),

(B4,t, out;B3,t(t2)
k, in), (B5,t, out; (t3)

kB4,t, in),

(B6,t, out; (t4)
kB5,tCa, in), (s1a, out;B6,tD, in) | t, s ∈ lab(δ) where

s is a transition which can follow t, a ∈ Σ} ∪

{(E, out;B6,t, in) | t ∈ lab(δi) is a transition leading to a final

state of M} ∪

{(a, in)|C , (C, out) | a ∈ Σ},

and for 3 ≤ j ≤ k + 2, let

wi,j = {Aj , A
′

j , F, F},

Pi,j = {(Aj , out; t2, in), (A′

j , out)|t2 , (AjA
′

j , in), (F, in;F, out)} ∪

{(t2a, out; t3, in), (t2F, out), (t3, out; t4, in), (t4, out) | t ∈ lab(δi) is a

transition which decrements the value of counter j − 2} ∪

{(t2, out; t3, in), (t3, out; t4, in), (t4, out; a, in) | t ∈ lab(δi) is a

transition which increments the value of counter j − 2} ∪

{(Fa, out)|t2 , (t2, out; t3, in), (t3, out; t4, in), (t4, out) | t ∈ lab(δi) is a

transition which requires that the value of counter j − 2 is zero}.

Let also

R = {t2t4 |((i, 1), u/λ, (j, 1))|t2t4 | where t ∈ δ(M) labels a transition

On Counter Machines versus dP Automata 127

which results in the increase of the sum of the counter

contents of Πj by |u|} ∪

{t2t4 |((i, 1), λ/v, (j, 1))|t2t4 | where t ∈ δ(M) labels a transition

which results in the increase of the sum of the counter

contents of Πi by |v|}.

Each of the components Πi of the system defined above has a skin region
(region (i, 1), a region representing the finite control (region (i, 2)), and k regions
corresponding to the k counters of Mi (regions (i, j), 3 ≤ j ≤ k + 2, referred to
as the counter regions). The counter regions represent the values stored in the
counters of Mi with objects from Σ, region (i, j) contains as many such objects
as the values stored in counter j − 2. The object q0 present in the skin region
in the initial configuration is exchanged for a symbol t1 for a transition symbol
t ∈ lab(δi) denoting a transition from the initial state.

The simulation of a computational step of Mi starts by having one terminal
object a ∈ Σ, and a transition symbol t1 for some transition t ∈ lab(δi)∪lab(δ

M
)

in the skin membrane. If t ∈ lab(δi), then the terminal object a is used by a
rule (a, out;u, in)|t1 to import a multiset u ∈ Σ◦ which is read by Mi during
the transition t. Otherwise, if t ∈ lab(δ

M
) no symbols are imported from the

environment. Now the transition symbol is moved back to region (i, 2), and
k copies of t2 (corresponding to the same transition, but indexed with 2) are
exported to the skin region together with all the copies of objects from Σ which
are not used inside the counter regions (these are stored in region (i, 2) until they
are needed). In the next six steps, the values stored in the k counter regions are
modified as necessary while the symbol B1,t is changed to B6,t, increasing its
index by one in every step. If a counter needs to be decremented or checked for
being zero, then the objects t2 enter and take with them a terminal object to
the skin region or perform the zero check as necessary. Meanwhile k copies of
t3 are released from region (i, 2) which continue the process by changing to t4
and then bringing in terminal objects to the counter regions when the counter
in question needs to be incremented during transition t. If t ∈ lab(δ

M
) is a

communication transition, then the a number of objects which are necessary to
maintain the values of the counters as required by t are also transferred between
the components using the communication rules of R. Such a rule can be applied
only in the step when both t2 and t4 are present in the skin region.

After the modification of the counter values, the remaining terminal objects
are transported back to region (i, 2), and the symbol s1 ∈ lab(δi) ∪ lab(δ

M
) for

the next transition appears, together with exactly one terminal object a ∈ Σ,
so the simulation of the next computational step of Mi can start in the same
manner.

The simulation finishes when, after executing a transition leading to a final
state of Mi, the symbol E is exported from region (i, 2) to the skin region and
the component halts.

Note that the components of the SRCMA system read multisets in the sense
that whenever (q′, β) ∈ δ(w, q, α) for some w ∈ Σ∗, then also (q′, β) ∈ δ(w̄, q, α)

128 Erzsébet Csuhaj-Varjú and György Vaszil

where w̄ is any permutation of w. This means that the components of the dP au-
tomaton described above accept the same words as the components of the dSR-
CMA system, thus, they also accept the same concatenated or agreement lan-
guages. ⊓⊔

Combining the two lemmas above, we obtain the following

Corollary 3 LX(dPA, fperm) = LX(dSRCMA), for X ∈ {concat, agree}.

4 Conclusion

In this paper we have shown that dP automata with mapping fperm are as
powerful as the class of distributed systems of special restricted counter machine
acceptors. Observing the proof and the concept of dSRCMA, the reader may
easily notice that dSRCMA realize multi-head SRCMA in some sense, i.e., the
(weak) agreement language of dP automata corresponds to the language of a
multi-head SRCMA. We plan research in this direction, i.e., on the relation
between one-way and two-way multi-head RCMA and SRCMA and languages
of one-way and two-way dP automata in the future.

References

1. E. Csuhaj-Varjú, O. H. Ibarra, and Gy. Vaszil. On the computational complexity of

P automata. In C. Ferretti, G. Mauri, and C. Zandron, editors, 10th International

Workshop on DNA Computing, volume 3384 of Lecture Notes in Computer Science,

pages 76–89. Springer, 2005.

2. E. Csuhaj-Varjú, M. Oswald, and Gy. Vaszil. P automata. In [13], chapter 6, pages

144–167.

3. E. Csuhaj-Varjú and Gy. Vaszil. P automata. In Gh. Păun and C. Zandron,

editors, Pre-Proceedings of the Workshop on Membrane Computing WMC-CdeA

2002, Curtea de Argeş, Romania, August 19-23, 2002, pages 177–192. Pub. No. 1

of MolCoNet-IST-2001-32008, 2002.

4. E. Csuhaj-Varjú and Gy. Vaszil. P automata or purely communicating accepting

P systems. In Gh. Păun, G. Rozenberg, A. Salomaa, and C. Zandron, editors,

Membrane Computing, volume 2597 of Lecture Notes in Computer Science, pages

219–233. Springer, Berlin, 2003.

5. E. Csuhaj-Varjú and Gy. Vaszil. Finite dP Automata versus multi-head Finite

Automata. In M. Gheorghe, Gh. Păun, G. Rozenberg, A. Salomaa, and S. Verlan,

editors, Membrane Computing, volume 7184 of Lecture Notes in Computer Science,

pages 120–138. Springer, Berlin, 2012.

6. E. Csuhaj-Varjú and Gy. Vaszil. On the power of P automata. In A. Dennun-

zio, L. Manzoni, G. Mauri, and A. E. Porreca, editors, Unconventional Computa-

tion and Natural Computation 2013, Lecture Notes in Computer Science, Springer,

Berlin, to appear.

7. R. Freund and M. Oswald. A short note on analysing P systems. Bulletin of the

EATCS, 78:231–236, 2002.

On Counter Machines versus dP Automata 129

8. R. Freund, M. Kogler, Gh. Păun, and M. J. Pérez-Jiménez. On the power of P and

dP automata. Annals of Bucharest University Mathematics-Informatics Series,

LVIII:5–22, 2009.

9. O.H. Ibarra. Membrane hierarchy in P systems. Theoretical Computer Science,

334(1–3):115–129, 2005.

10. B. Monien. Two-way multi-head automata over a one-letter alphabet. RAIRO -

Informatique théorique/Theoretical Informatics 14(1):67–82, 1980.

11. G. Păun. Membrane Computing: An Introduction, Natural Computing Series,

Springer-Verlag, Berlin, 2002.

12. Gh. Păun and M. J. Pérez-Jiménez. Solving problems in a distributed way in

membrane computing: dP systems. International Journal of Computers, Commu-

nication and Control, V(2):238–250, 2010.

13. G. Păun, G. Rozenberg and A. Salomaa. Eds.: The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.

14. Păun, G., Pérez-Jiménez, M. J.: P and dP automata: A survey. In: Rainbow of

Computer Science (C. S. Calude, G. Rozenberg, A. Salomaa, Eds.), vol. 6570 of

Lecture Notes in Computer Science, Springer, Berlin, 2011, 102–115.

15. Păun, G., Pérez-Jiménez, M. J.: An infinite hierarchy of languages defined by

dP systems. Theoretical Computer Science, 431:4–12, 2012.

16. Păun, G., Pérez-Jiménez, M. J.: P automata revisited. Theoretical Computer Sci-

ence, 454:222–230, 2012.

17. M. J. Pérez-Jiménez. A computational complexity theory in membrane computing.

In Gh. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, and A. Salo-

maa, editors, Membrane Computing, volume 5957 of Lecture Notes in Computer

Science, pages 125–148, Berlin Heidelberg, 2010. Springer.

18. G. Rozenberg and A. Salomaa. Eds.: Handbook of Formal Languages, Springer-

Verlag, Berlin, 1997.

19. Gy. Vaszil. On the parallelizability of languages accepted by P automata. In

J. Kelemen and A. Kelemenová, editors, Computation, Cooperation, and Life, vol-

ume 6610 of Lecture Notes in Computer Science, pages 170–178. Springer, Berlin

Heidelberg, 2011.

Model Checking Kernel P Systems

Ciprian Dragomir1, Florentin Ipate2,3, Savas Konur1, Raluca Lefticaru2,3, and
Laurentiu Mierla3

1
Department of Computer Science, University of Sheffield

Regent Court, Portobello Street, Sheffield S1 4DP, UK

c.dragomir@sheffield.ac.uk, s.konur@sheffield.ac.uk
2

Department of Computer Science, University of Bucharest

Str. Academiei nr. 14, 010014, Bucharest, Romania

florentin.ipate@ifsoft.ro, raluca.lefticaru@fmi.unibuc.ro
3

Department of Mathematics and Computer Science, University of Piteşti

Str. Târgu din Vale 1, 110040, Piteşti, Romania

laurentiu.mierla@gmail.com

Abstract. Recent research in membrane computing examines and con-

firms the anticipated modelling potential of kernel P systems in several

case studies. On the one hand, this computational model is destined to

be an abstract archetype which advocates the unity and integrity of P

systems onto a single formalism. On the other hand, this envisaged con-

vergence is conceived at the expense of a vast set of primitives and in-

tricate semantics, an exigent context when considering the development

of simulation and verification methodologies and tools. Encouraged and

guided by the success and steady progress of similar undertakings, in

this paper we directly address the issue of formal verification of kernel P

systems by means of model checking and unveil a software framework,

kpWorkbench, which integrates a set of related tools in support of our

approach. A case study that centres around the well known Subset Sum

problem progressively demonstrates each stage of the proposed method-

ology: expressing a kP system model in recently introduced kP-Lingua;

the automatic translation of this model into a Promela (Spin) specifi-

cation; the assisted, interactive construction of a set of LTL properties

based on natural language patterns; and finally, the formal verification

of these properties against the converted model, using the Spin model

checker.

1 Introduction

Membrane computing, the research field introduced by Gheorghe Păun [20],
studies computational models, called P systems, inspired by the functioning
and structure of the living cell. In recent years, significant progress has been
made in using various types or classes of P systems to model and simulate
systems and problems from many different areas [4]. However, in many cases,
the specifications developed required the ad-hoc addition of new features, not
provided in the initial definition of the given P system class. While allowing more

132 C. Dragomir et al.

flexibility in modelling, this has led to a plethora of P system variants, with no
coherent integrating view, and sometimes even confusion with regard to what
variant or functioning strategy is actually used.

The concept of kernel P system (kP system) [7] has been introduced as a re-
sponse to these problems. It integrates in a coherent and elegant manner many
of the P system features most successfully used for modelling various applica-
tions and, thus, provides a framework for formally analyzing these models. The
expressive power and efficiency of the newly introduced kP systems have been
illustrated by a number of representative case studies [6], [13]. Furthermore, the
kP model is supported by a modelling language, called kP-Lingua, capable of
mapping the kernel P system specification into a machine readable representa-
tion.

Naturally, formal modelling has to be accompanied by formal verification
methods. In the membrane system context, formal verification has been ap-
proached, for example, using rewriting logic and the Maude tool [1] or PRISM
and the associated probabilistic temporal logic [10] for stochastic systems [3].
Several, more recent, successful attempts to apply model checking techniques
on transition P systems also exist [16], [17], [14]. However, to the best of our
knowledge, there is no integrated formal verification approach to allow formal
properties to be specified in a language easily accessible to the non-specialist
user and to be automatically verified in a transparent way.

This paper proposes precisely such an integrated verification approach, which
allows formal properties, expressed in a quasi-natural language using predefined
patterns, to be verified against a kP-Lingua representation of the model using
model checking techniques and tools (in this case the model checker Spin and the
associated modelling language Promela). Naturally, this approach is supported
by adequate tools, which automatically convert the supplied inputs (natural
language queries and kP-Lingua representation) into their model checking spe-
cific counterparts (LTL queries and Promela representation, respectively). The
approach is illustrated with a case study, involving a kP system solving a well-
known NP-complete problem, the Subset Sum problem.

The paper is structured as follows: Section 2 recalls the definition of a kernel
P system - the formal modelling framework central to our examination. We
then review, in section 3, some of the primary challenges of model checking
applicable to kP system models and discuss the transformations such a model
must undergo, in order to be exhaustively verified by Spin. We also present our
implemented approach to achieve an automatic model conversion, targeting the
process meta language, Promela. In section 4, we address the complementary
requirement of specifying system properties as temporal logic formulae. The
section also includes an array of EBNF formal definitions which describe the
construction of LTL properties that relate to kP system state constituents, a
guided process which employs selected natural language query patterns.

Section 5 applies our proposed methodology, exemplifies and demonstrates all
stages of the process with a case study - an instance of the Subset Sum problem.
Finally, we conclude our investigation and review our findings in section 6.

Model Checking Kernel P Systems 133

2 Kernel P systems

A kP system is made of compartments placed in a graph-like structure. A com-
partment Ci has a type ti = (Ri, σi), ti ∈ T , where T represents the set of all
types, describing the associated set of rules Ri and the execution strategy that
the compartment may follow. Note that, unlike traditional P system models, in
kP systems each compartment may have its own rule application strategy. The
following definitions are largely from [7].

Definition 1. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; µ defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and

E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of

a compartment type from T and an initial multiset, wi over A; i0 is the output
compartment where the result is obtained.

Each rule r may have a guard g denoted as r {g}. The rule r is applicable
to a multiset w when its left hand side is contained into w and g is true for w.
The guards are constructed using multisets over A and relational and Boolean
operators. For example, rule r : ac → c {≥ a3∧ ≥ b2 ∨ ¬ > c} can be applied iff
the current multiset, w, includes the left hand side of r, i.e., ac and the guard is
true for w - it has at least 3 a′s and 2 b′s or no more than a c. A formal definition
may be found in [7].

Definition 2. A rule can have one of the following types:

– (a) rewriting and communication rule: x → y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and

tj indicates a compartment type from T – see Definition 1 – with instance

compartments linked to the current compartment; tj might indicate the type

of the current compartment, i.e., tli – in this case it is ignored; if a link does

not exist (the two compartments are not in E) then the rule is not applied;

if a target, tj, refers to a compartment type that has more than one instance

connected to li, then one of them will be non-deterministically chosen;

– (b) structure changing rules; the following types are considered:

• (b1) membrane division rule: [x]tli
→ [y1]ti1

. . . [yp]tip
{g},

where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj
, tj,hj

) like

in rewriting and communication rules; the compartment li will be re-

placed by p compartments; the j-th compartment, instantiated from the

compartment type tij
contains the same objects as li, but x, which will

be replaced by yj; all the links of li are inherited by each of the newly

created compartments;

• (b2) membrane dissolution rule: [x]tli
→ λ {g};

the compartment li and its entire contents is be destroyed together with

134 C. Dragomir et al.

its links. This contrasts with the classical dissolution semantics where the

inner multiset is passed to the parent membrane - in a tree-like mem-

brane structure;

• (b3) link creation rule: [x]tli
; []tlj

→ [y]tli
− []tlj

{g};

the current compartment is linked to a compartment of type tlj and x is

transformed into y; if more than one instance of the compartment type

tlj exists then one of them will be non-deterministically picked up; g is a

guard that refers to the compartment instantiated from the compartment

type tli ;

• (b4) link destruction rule: [x]tli
− []tlj

→ [y]tli
; []tlj

{g};

is the opposite of link creation and means that the compartments are

disconnected.

Each compartment can be regarded as an instance of a particular compart-

ment type and is therefore subject to its associated rules. One of the main distinc-
tive features of Kernel P systems is the execution strategy which is now statutory
to types rather than unitary across the system. Thus, each membrane applies its
type specific instruction set, as coordinated by the associated execution strategy.

An execution strategy can be defined as a sequence σ = σ1&σ2& . . . &σn,
where σi denotes an atomic component of the form:

– ǫ, an analogue to the generic skip instruction; epsilon is generally used to
denote an empty execution strategy;

– r, a rule from the set Rt (the set of rules associated with type t). If r is appli-
cable, then it is executed, advancing towards the next rule in the succession;
otherwise, execution halts, pruning the remainder of the sequence;

– (r1, . . . , rn), with ri ∈ Rt, 1 ≤ i ≤ n symbolizes a non-deterministic choice
within a set of rules. One and only one applicable rule will be executed if
such a rule exists, otherwise the atom is simply skipped. In other words the
non-deterministic choice block is always applicable;

– (r1, . . . , rn)∗, with ri ∈ Rt, 1 ≤ i ≤ n indicates the arbitrary execution of a
set of rules in Rt. The group can execute zero or more times, arbitrarily but
also depending on the applicability of the constituent rules;

– (r1, . . . , rn)⊤, ri ∈ Rt, 1 ≤ i ≤ n represents the maximally parallel execution
of a set of rules. If no rules are applicable, then execution proceeds to the
subsequent atom in the chain.

The execution strategy itself is a notable asset in defining more complex be-
haviour at the compartment level. For instance, priorities can be easily expressed
as sequences of maximally parallel execution blocks: (r1)

⊤&(r2)
⊤& . . . &(r3)

⊤

or non-deterministic choice groups if single execution is required. Together with
composite guards, they provide an unprecedented modelling fluency and plastic-
ity for membrane systems. Whether such macro-like concepts and structures are
preferred over traditional modelling with simple but numerous compartments in
complex arrangements is a debatable aspect.

Model Checking Kernel P Systems 135

3 kP system models and the Spin model checker

Formal verification of P systems has become an increasingly investigated subject,
owing to a series of multilateral developments which have broaden its applica-
tion scope and solidified some domain specific methodologies. Although there
have been several attempts that successfully demonstrated model checking tech-
niques on P systems ([16], [17], [14]), the analysis is always bound to an array of
constraints, such as specific P system variants with a limited feature set and a
very basic set of properties. Nevertheless, there are notable advancements which
have paved the path towards a more comprehensive, integrated and automated
approach we endeavour to present in this paper.

The task of P system model checking is perhaps a most inviting and com-
pelling one due to the many onerous challenges it poses. On the one hand we are
confronted with the inherent shortcomings of the method itself, which have a
decisive impact on the tractability of some models and, in the best case, the effi-
ciency or precision of the result is severely undermined. Speaking generally, but
not inaccurately, model checking entails an exhaustive, strategic exploration of a
model’s state space to assert the validity of a logically defined property. Hence,
the state space is of primary concern and we can immediately acknowledge 1.
the requirement for models to have a finite state space and 2. the proportionality
between the state space size and the stipulated computational resources, which
ultimately determines the feasibility of the verification process.

On the other hand, the complex behaviour of certain computational models
translates to elaborate formal specifications, with intricate semantics and more
often than not, a vast set of states. However, it is the tireless state explosion
problem that diminishes the applicability of model checking to concurrent sys-
tems, a rather ironical fact, since such systems are now the primary target for
exhaustive verification.

We shall not delve any further into general aspects since our focus is not the
vivisection of a methodology, but rather the introduction of a robust, integrated
and automated approach that constellates around kernel P systems and overtly
addresses the predominant challenges of model checking emphasised so far.

The three most conspicuous features that typify membrane systems are 1.
a structured, distributed computational environment; 2. multisets of objects as
atomic terms in rewriting rules and 3. an execution strategy according to which
the rules are applied. We recall that kP systems explicitly associate an instruc-
tion set to an array of compartments employing the type - instance paradigm. As
it turns out, this distinction is highly relevant in mapping a formal state transi-
tion system, where a system state is conveyed compositionally, as the union of
individual states attributed to instances (in our case), or disjoint volatile compo-
nents in more generic terms. Thus, a kP system state S is an aggregate of SC , the
set of compartment states and µ which denotes the membrane structure as a set
of interconnections between compartments. A compartment state is identified by
its associated multiset configuration at a particular computational step, together
with the membrane type the compartment it subject to. The following set like
expression exemplifies a kernel P system state for three compartments c1, c2 and

136 C. Dragomir et al.

c3, of types t1, t2, t2, having configurations 2a b, a 2c and empty respectively. The
second fragment is a set of pairs which symbolize links between compartments:
c1 is connected to both c2 and c3, who do not share a link in-between.

({(c1, t1, {2a, b}), (c2, t2, {a, 2c}), (c3, t2, {})}, {(c1, c2), (c1, c3)})

Since kP systems feature a dynamic structure by preserving structure chang-
ing rules such as membrane division, dissolution and link creation/destruction,
a state defined in this expansive context is consequently variable in size. This
is not unnatural for a computational model, however it does become an issue
when conflicting with the requirement of a fixed sized pre-allocated data model
imposed by most model checker tools. The instinctive solution is to bound the
expansion of these collections to a certain maximum based on the algorithmic
necessities. For instance, an initial analysis of the problem we are modelling can
provide relevant details about the number of steps required for a successful ex-
ecution, the number of divisions that may occur and the maximum number of
links generated.

One of the most fruitful advantages of model checking is the fact it can be
completely automated. The principal insight is that both the system’s state space
(commonly referred to as global reachability graph) and the correctness claim
specified as a temporal logic formula can be converted to non-deterministic finite
automata. The product of the two automata is another NDFA whose accepted
language is either empty in which case the correctness claim is not satisfied,
or non-empty if the system exhibits precisely the behaviour specified by the
temporal logic statement. There are numerous implementations of this stratagem
boasting various supplementary features, a survey of which is beyond the scope of
this study. The model checker extensively adopted in formal verification research
on membrane systems is Spin. Developed by Gerard J. Holzmann in the 1990s,
Spin is now a leading verification tool used by professional software engineers and
has an established authority amidst model checkers. Among plentiful qualities,
Spin is particularly suited for modelling concurrent and distributed systems by
means of interleaving atomic instructions. For a more comprehensive description
of the tool, we refer the reader to [11].

A model checker requires an unambiguous representation of its input model,
together with a set of correctness claims expressed as temporal logic formulae.
Spin features a high level modelling language, called Promela, which specializes
in concise descriptions of concurrent processes and inter-process communication
supporting both rendezvous and buffered message passing. Another practical
and convenient aspect of the language is the use of discrete primitive data types
as in the C programming language. Additionally, custom data types and single
dimensional arrays are also supported, although in restricted contexts only.

The kernel P systems specification is an embodiment of elementary components
shared by most variants, complemented by innovative new features, promoting
a versatile modelling framework without transgressing the membrane comput-

ing paradigm. Characterised by a rich set of primitives, kP systems offer many

Model Checking Kernel P Systems 137

high level functional contexts and building blocks such as the exhaustive and
arbitrary execution of a set of rules, complex guards and the popular concept
of membrane division - powerful modelling instruments from a user centric per-
spective. An attempt, however, to equate such a complex synthesis of related
abstractions to a mainstream specification is a daunting and challenging task. It
is perhaps evident that users should be entirely relieved of this responsibility, and
all model transformations should be handled automatically. It is precisely this
goal which motivates the development of kpWorkbench, a basic framework
which integrates a set of translation tools that bridge several target specifica-
tions we employ for kernel P system models. The pivotal representation medium
is, however, the newly introduced kP-Lingua, a language designed to express
a kP system coherently and intuitively. kP-Lingua is described in detail in [7],
which includes an EBNF grammar of its syntax. We exemplify kP-Lingua in our
dedicated case study, presented in section 5 of this paper.

One of the fundamental objectives in devising a conversion strategy is to
establish a correspondence with respect to data and functional modules between
the two specifications. In some cases, a direct mapping of entities can be identi-
fied:

– A multiset of objects is encoded as an integer array, where an index
denotes the object and the value at that index represents the multiplicity of
the object;

– A compartment type is translated into a data type definition, a struc-
ture consisting of native elements, the multiset of objects and links to other
compartments, as well as auxiliary members such as a temporary storage
variable, necessary in order to simulate the inherent parallelism of P sys-
tems.

– A compartment is an instance of a data type definition and a set of com-
partments is organised into an array of the respective type;

– A set of rules is organised according to an execution strategy is mapped
by a Proctype definition - a Promela process;

– A guard is expressed as a composite conditional statement which is evalu-
ated inside an if statement;

– A rule is generally converted into a pair of instructions which manage sub-
traction and addition on compartment multisets, but can also process struc-
tural elements such as compartments and links;

– Exhaustive and arbitrary execution are resolved with using the do

block;
– Single non-deterministic execution is reflected by an if statement with

multiple branches; we note that Promela evaluates if statements differently
than most modern programming languages: if more than one branch evalu-
ates to true, then one is non-deterministically chosen.

It is not, however, the simplicity and limpidity of these projections that pre-
vail, especially when dealing with a computational model so often described as
unconventional. Rather, concepts such as maximal parallelism and membrane

138 C. Dragomir et al.

division challenge the mainstream modelling approach of sequential processes
and settle on contrived syntheses of clauses. These artificial substitutes operate
as auxiliary functions and therefore require abstraction from the global state
space generated by a model checker tool. Spin supports the hiding of mediator
instruction sets by enveloping code into atomic or d step blocks. Although this
is a very effective optimisation, we are still faced with the problem of instruction
interleaving, the de facto procedure which reconciles parallel and sequential com-
putation. It is not this forced simulation of parallelism that obstructs a natural
course for P system verification with Spin, but rather the inevitable inclusion of
states generated by interleaved atomic instructions or ensembles of instructions.

In our approach we overcome this obstacle with a hybrid solution, involving
both the model in question and the postulated properties. Firstly, we collapse
individual instructions (to atomic blocks) to the highest degree permitted by
Spin, minimizing the so-called intermediate state space which is irrelevant to
a P system computation; and secondly, we appoint the states relevant to our
model explicitly, using a global flag (i.e. a boolean variable), raised when all pro-
cesses have completed a computational step. Hence, we make a clear distinction
between states that are pertinent to the formal investigation and the ones which
should be discarded. This contrast is in turn reflected by the temporal logic for-
mulae, which require adjustment to an orchestrated context where only a narrow
subset of the global state space is pursued. The technique is demonstrated in
our case study of section 5.

While the approach is a practical success, its efficacy is still a questionable
matter. Although a substantial set of states is virtually neglected when assert-
ing a correctness claim, the complete state space is nevertheless generated (i.e.
including the superfluous states) and each state examined: if the state is flagged
as a genuine P system state, then it is queried further, otherwise it is skipped.
In terms of memory usage, the implications are significant and certainly not to
be underestimated, particularly when the model exhibits massively parallel and
non-deterministic behaviour.

We conclude the section with an informal synopsis of the kP system - Promela

translation strategy and the rationale behind some of its noteworthy particular-
ities:

– While each compartment type is represented by a Promela process definition,
a Scheduler process is employed to launch and coordinate the asynchronous
execution of procedures per compartment. The following pseudo-code illus-
trates the managerial role played by our scheduler:

process Scheduler {

while system is not halted {

for each type T_i {

for each compartment C_j of type T_i {

appoint process P(T_i) to compartment C_j;

}

}

Model Checking Kernel P Systems 139

start all appointed processes;

wait until all appointed processes finish;

state = step_complete;

print configuration;

state = running;

}

}

– Each compartment consists of two multisets of objects, one which rules op-
erate on and consume objects from; and the second which temporarily stores
the produced or communicated objects. Before the end of each computational
step, the content of the auxiliary multiset is committed to the primary mul-
tiset, which also denotes the compartment’s configuration. This interplay is
required to simulate a parallel execution of the system.

4 Queries on kernel P systems

A much debated aspect of model checking based formal verification is speci-
fying and formulating a set of properties whose correctness is to be asserted.
Since model checking is essentially an exhaustive state space search, there is a
persistent and irreconcilable concern over the limitations of this method when
investigating the behaviour of concurrent models, generative of an astronomi-
cal state spaces. More precisely, the complexity of the model itself has a great
subversive impact on the property gamut which can be employed such that the
procedure remains feasible given reasonable computational resources.

It is not just the inherent limitations of this technique which must be taken
into consideration, but also the effort and tenacity required to formally express
specific queries concisely and faithfully into prescribed logical frameworks. Amir
Pnueli’s seminal work on temporal logic [19] was a major advance in this di-
rection, enabling the elegant representation of time dependent properties in de-
ductive systems. Essential adverbial indicators such as never and eventually

have a diametric correspondent in temporal logic, as operators which relate sys-
tem states in terms of reachability, persistence and precedence, supporting more
powerful queries in addition to simple state equivalence assertions and basic in-
variance. Exploiting the potential of these logics, as evident as it may seem, can
still be problematic and laborious under certain circumstances.

Firstly, devising a temporal logic formula for a required property is a cum-
bersome and error-prone process even for the experienced. It is often the case
that the yielded expressions, although logically valid, are counter-intuitive and
abstruse, having little to tell about the significance of the property itself. As with
any abstraction that is based on pure logical inference, it is devoid of meaning
outside the logical context. To clearly emphasize our affirmations, consider the
following example:

140 C. Dragomir et al.

G (vm functional = true ∧ vm coin > 0 →

F (vm dipsensed drink > 0 ∧ F (vm coin = 0)) ∨
F (vm functional = false))

is a faithful LTL (linear time temporal logic) representation of a property
which can be phrased as “a vending machine, if functional, will always dispense

a drink after having accepted coins and will either become dysfunctional or its

coin buffer will be depleted.” Although we have used intuitive variable names, it
is not immediately apparent what this expression stands for, requiring a thor-
ough understanding of the LTL specification together with effort and insight to
accurately decipher its meaning.

The second notable issue we wish to evince is the correctness of the formula
itself which can often be questionable even if the property is of moderate com-
plexity and is syntactically accepted by a model checker tool. How can one prove
that a temporal logic expression is indeed a valid representation of a property we
wish to verify? Is this a genuine concern we should address, or is it acceptable
to assume the faithfulness of temporal logic expressions to specific queries, as
formulated by expert and non-expert users?

In response to these controversies, we propose a strategy that facilitates a
guided construction of relevant LTL properties and automates the translation to
their formal equivalent. It is the Natural Language Query (NLQ) builder that
was developed to support this methodology. The tool features a rich set of natural

language patterns, presented to users as sequences of GUI (graphical user inter-
face) form elements: labels, text boxes and drop-down lists. Once the required
values have been selected or directly specified and the template populated, NLQ
automatically converts the natural language statement to its temporal logic cor-
respondent. The translation from an informal to a formal representation is based
on an interpreted grammar which accompanies each natural language pattern.

In table 1, we illustrate a selection of patterns whose instantiation generates
properties suitable for kP system models and their formal verification. Table
2 depicts the EBNF based grammar according to which, state formulae are
derived, with reference to kernel P system components.

In order to verify kP systems modeled in kP-Lingua using Spin model checker,
properties specified in LTL should be reformulated in Spin language for the
corresponding Promela model. In Table 3, we give LTL formulae of the patterns
shown in Table 1, and their corresponding translations in Spin language for the
Promela specification. Each LTL formula described for P systems in general (and
kP systems in our case) should be translated to Spin using a special predicate,
pInS, showing that the current Spin state represents a P system configuration
(the predicate is true when a computation step is completed) or represents an
intermediate state (it is false if intermediary steps are executed) [14, 17].

The idea of capturing recurring properties into categories of patterns was
initiated by Dwyer et al. in their seminal paper of 1999 [5]. This study surveyed
more than five hundred temporal properties and established a handful of pattern
classes. In [8], this mapping was extended to included additional time related

Model Checking Kernel P Systems 141

Pattern ::= Occurrence | Order

Occurrence ::= Next | Existence | Absence | Universality |

Recurrence | Steady-State

Order ::= Until | Precedence | Response

Next ::= stateFormula ‘will hold in the next state’.

Existence ::= stateFormula ‘will eventually hold’.

Absence ::= stateFormula ‘never holds’.

Universality ::= stateFormula ‘always holds’.

Recurrence ::= stateFormula ‘holds infinitely often’.

Steady-State ::= stateFormula ‘will hold in the long run (steady state)’.

Until ::= stateFormula ‘will eventually hold, until then’ stateFormula

‘holds continuously’.

Response ::= stateFormula ‘is always followed by’ stateFormula.

Precedence ::= stateFormula ‘is always preceded by’ stateFormula.

Table 1. Grammar for query patterns.

patterns and their associated observer automata. This was further supplemented
with real-time specification patterns in [15].

A unified pattern system was introduced in [2], adding new real-time property
classes. Probabilistic properties were similarly catalogued based on a survey of
200 properties [9], and provisioned with a corresponding structured grammar.

An analogous undertaking can also be observed in [18], where an array of
query templates which target biological models was proposed.

Although the NLQ builder is based on an extensive set of patterns inves-
tigated in above mentioned literature, the templates relevant to our formal
examination of kP system models represent a small subset of this collection;
particularly we only employ patterns which generate temporal properties.

5 Case study: the Subset Sum problem

In this section we demonstrate the proposed methodology with a case study, the
subject of which is the well known Subset Sum problem.

The Subset Sum problem is stated as follows:

Given a finite set A = {a1, . . . , an}, of n elements, where each element ai has an

associated weight, wi, and a constant k ∈ N , it is requested to determine whether

or not there exists a subset B ⊆ A such that w(B) = k, where w(B) =
∑

ai∈B wi.

The Subset Sum problem is representative for the NP complete class because
it portrays the underlying necessity to consider all combinations of distinct ele-
ments of a finite set, in order to produce a result. Consequently, such a problem
requires exponential computational resources (assuming P 6= NP), either in the

142 C. Dragomir et al.

stateFormula ::= statePredicate | statePredicate ‘does not hold’ |

stateFormula ‘and’ stateFormula |

stateFormula ‘or’ stateFormula

statePredicate ::= numericExpression relationalOperator numericExpression

numericExpression ::= objectCount | localObjectCount | compartmentCount |

linkCount | linkToCount | numericLiteral

linkCount ::= ‘the number of links from’ compartmentQuery

‘to’ compartmentQuery

linkToCount ::= ‘the number of links to’ compartmentQuery

compartmentQuery ::= ‘all compartments’ | ‘compartments’ compartmentCondition

compartmentCondition ::= ‘of type’ typeLabel | ‘of type other than’ typeLabel |

‘linked to’ compartmentQuery |

‘not linked to’ compartmentQuery |

localObjectCount relationalOperator numericExpression |

linkToCount relationalOperator numericExpression

localObjectCount ::= ‘the number of objects’ localObjectCondition

objectCount ::= ‘the number of objects’ objectCondition

localObjectCondition ::= ‘with label’ objectLabel |

‘with label different than’ objectLabel |

localObjectCondition ‘and’ localObjectCondition |

localObjectCondition ‘or’ localObjectCondition

objectCondition ::= localObjectCondition |

‘in’ compartmentQuery |

‘not in’ compartmentQuery |

objectCondition ‘and’ objectCondition |

objectCondition ‘or’ objectCondition

relationalOperator ::= ‘is equal to’ | ‘is not equal to’ | ‘is greater than’ |

‘is less than’ | ‘is greater than or equal to’ |

‘is less than or equal to’

numericLiteral ::= ? {0-9} ?

Table 2. EBNF based grammar for state formulae.

Model Checking Kernel P Systems 143

Pattern Informal Formula LTL formula Spin formula

Next p will hold in the next state X p X(!pInS U (p && pInS))

Existence p will eventually hold F p <>(p && pInS)

Absence p never holds ¬(F p) !(<>(p && pInS))

Universality p always holds G p [] (p || !pInS)

Recurrence p holds infinitely often G F p [](<>(p && pInS) || !pInS)

Steady-State p will hold in the steady state F G p <>([](p || !pInS) && pInS)

Until
p will eventually hold,

p U q (p || !pInS) U (q && pInS)
until then q holds continuously

Response p is always followed by q G (p→ F q) []((p -> <> (q && pInS)) || !pInS))

Precedence p is always preceded by q ¬(¬p U (¬p ∧ q)) !((!p || !pInS) U (!p && q && pInS))

Table 3. LTL formulae and translated Spin specifications of the property patterns

temporal (number of computational steps) or spatial (memory) domain, or both.
The Subset Sum problem explicitly denominates combinations of integers as sub-
sets of the initial set A, or more accurately, the set of weights respective to A. It
is therefore transparent that the number of all combinations which can be gen-
erated and evaluated is the cardinality of the power set of A, that is 2n. Since
our elements are in fact integers, optimisations have been considered, leverag-
ing the intrinsic order relation between numbers, coupled with efficient sorting
algorithms to avoid generating all possible subsets [12]. This did not, however,
manage to reduce the complexity of the problem to a non-exponential order.

P system variants endowed with membrane division proved to be ideal com-
putational frameworks for solving NP complete problems efficiently. The in-
sightful strategy, often referred to as trading space for time, can be envisaged
as the linear generation of an exponential computational space (compartments)
together with the linear distribution (replication) of constituent data (multiset
of objects). The topic is very popular in the community and was subject to ex-
tensive investigation; while the underlying principle is pertinent to our study,
we shall illustrate it more sharply as applied, using a kernel P system model to
solve the Subset Sum problem:

Consider the kP system

kΠ = ({a, x, step, yes, no, halt, r1, . . . , rn}, µ, (Main, {a}), (Output, {step}))

with µ represented by a link between the two instances of type Main and Output

respectively.
The rules for compartments of type Main are:

– Ri: a −→ [a, ri][wix, a, ri]{¬ri}, 1 ≤ i ≤ n
– Rn+1: a −→ (yes, halt)Output {= kx}
– Rn+2: a −→ λ {> kx}

where

– n is the number of elements in set A, that is the cardinal of A;
– ri with 1 ≤ i ≤ n is an object which flags the execution of a membrane

division rule, prohibiting multiple applications of the same addition;

144 C. Dragomir et al.

– wi is the weight of the ith element in the set A, with 1 ≤ i ≤ n;
– k is the constant we refer to, when assessing the sum of the values in a

subset; if
∑

wi
= k, then a solution has been found;

The execution strategy σ(Main) unfolds as follows:

σ(Main) = (Rn+1, Rn+2)&(R1..n)

Thus, each step a compartment of type Main performs two preliminary eval-
uations: if the number of x objects is precisely k, then a yes and a halt object
are sent to the output membrane. We recall the specialised halt object as a
universal, model independent and convenient means of halting a computation
for kernel P systems: when such an object is encountered in any of the system’s
compartments, the execution stops at the completion of the computational step.
This is generally preferred to specifying halting conditions which relate to con-
figurations or system states particular to the modelled problem.

If the multiplicity of x is greater than k, a condition assessed with the guard
> kx, the compartment is dissolved, pruning a fruitless search path. Otherwise,
a division rule is selected non-deterministically, splitting the compartment in
two and adding wixs to the current multiplicity of x in one of the newly created
regions, while preserving the weight of x in the other. Both compartments also
receive a ri object which marks the execution of the ith rule. This will be pre-
vented from executing a second time by the guard ¬ri. The object a is auxiliary
and recurs in every compartment of type Main.

There is only one compartment of type Output which persists throughout the
execution, playing the role of an output membrane, as its name plainly indicates:
either it receives a yes object if a solution is found, or it generates a no object if
the computation does not halt after n + 1 steps. The two rules which correlate
with this behaviour are:

– R1 : step −→ 2step
– R2 : (n + 2)step −→ no, halt

The rules are executed sequentially:

σ(Output) = (R1&R2)

Remark 1. The illustrated algorithm is a faithful linear time solution to the
Subset Sum problem: it computes an answer to the stipulated enquiry in max-

imum n + 2 steps, where n is the cardinality of the set A of elements.

Remark 2. The algorithm will generate the sums of all subsets of A in linear time
using membrane division; the process is interrupted when a solution is found and
computation halts at this stage. A notable difference to the skP (simple kernel
P) system based solution presented in [13], is the use of non-deterministic choice
in the selection of division rules. This rather unconventional approach facilitates
the generation of subset sums that is irrespective of the order of elements in A.
Evidently, the artifice owes its merit to the commutativity of integer addition.

Model Checking Kernel P Systems 145

Remark 3. The kP system model requires a total of: n+6 distinct objects, n+4
rules of which n+1 employ basic guards and a maximum of 2n+1 compartments.

Remark 4. Although we have extensively referred to integer weights (of the el-
ements in A) throughout this section, it is important to note that we can not
directly represent negative numbers as object multiplicities alone (some encoding
can be devised for this purpose). Since the only mathematical operation required
is addition, which is a monotonically increasing function, a simple translation to
the positive domain can be mapped on the set of weights w(A), which in turn
makes this issue irrelevant.

We next demonstrate the implementation of our kP system model in kP-
Lingua, highlighting some of the most prominent features of its syntax. The
illustrated model maps an instance of the Subset Sum problem with n = 7
elements: w(A) = {3, 25, 8, 23, 5, 14, 30} and k = 55.

type Main {

choice {

= 55x: a -> {yes, halt} (Output) .

> 55x: a -> # .

}

choice {

!r1: a -> [a, r1][3x, a, r1] .

!r2: a -> [a, r2][25x, a, r2] .

!r3: a -> [a, r3][8x, a, r3] .

!r4: a -> [a, r4][23x, a, r4] .

!r5: a -> [a, r5][5x, a, r5] .

!r6: a -> [a, r6][14x, a, r6] .

!r7: a -> [a, r7][30x, a, r7] .

}

}

type Output {

step -> 2 step .

9 step -> no, halt .

}

{a} (Main) - {step} (Output) .

The code comprises of two type definitions, Main and Output, together with
the instantiation of two, linked, compartments of the respective types. The first
two rules are guarded by {= 55x} and {> 55x} respectively, and organized in
a choice block since they are mutually exclusive and each may execute once
and only once. Indeed, enclosing these rules in a maximally parallel grouping
would result in equivalent behaviour. A guard always relates to the multiset
contained in the compartment it evaluates in and terminates with a colon; the
− > symbol denotes the transition of a non-empty multiset on the left hand side

146 C. Dragomir et al.

to a rewrite-communication outcome (objects yes, halt into the compartment
of type Output), or a single structure changing element (# which symbolises
membrane dissolution). Next, the choice block is applied as a non-deterministic
selection of one of the rules it envelopes: there are seven division rules, which
resemble the addition of a value from w(A). Each rule is prefixed by a guard !ri,
in order to prevent its subsequent application which would equate to multiple
additions of the same number.

Type Output lists two rewriting rules which execute successively and non-
repetitively. The first rule increments the number of step objects in the com-
partment, updating the step count as the computation unfolds. The second rule
will only execute if we have reached the 9th step and no halt object was received
from any of the Main compartments, effectively pronouncing a negative answer
to the problem.

The kP-Lingua implementation is a compact and intuitive representation of
the formally described model presented earlier. The specification is next trans-
lated into Spin’s modelling language, Promela, a fully automated process ac-
complished by a kP-Lingua parser and kP system - Promela model converter,
constituent tools of kpWorkbench. We document this stage of our approach with
several fragments of the rather cryptic Promela encoding, as generated by our
converter.

#define A0_SIZE 9

#define A1_SIZE 4

typedef C0 {

int x[A0_SIZE] = 0;

int xt[A0_SIZE] = 0;

int c1Links[1];

int c1LCount = 0;

int c1LSize = 0;

bit isComputing = 0;

bit isDissolved = 0;

bit isDivided = 0;

}

typedef C1 {

int x[A1_SIZE] = 0;

int xt[A1_SIZE] = 0;

int c0Links[100];

int c0LCount = 0;

int c0LSize = 0;

bit isComputing = 0;

}

int step = 0;

bit halt = 0;

Model Checking Kernel P Systems 147

C0 m0[20];

int m0Count = 0;

int m0Size = 0;

C1 m1[1];

int m1Count = 0;

int m1Size = 0;

int m0DissolvedCount = 0;

int stepsExp = 1;

In table 4 we elucidate the constituent elements of the above printed data
structures and variable declarations.

A0 SIZE, A1 SIZE The size of the alphabet for each type of compartment;

C0, C1 The compartment types Main and Output respectively;

x, xt The arrays which store multiplicities of objects encoded as indices;

c1Links[1] The array of links to compartments of type C1;

isComputing A flag indicating whether a process is running on this instance or not;

isDissolved A flag indicating whether the compartment is dissolved or not;

isDivided Indicates if the compartment was divided

(and henceforth considered non-existent);

m0, m1 The arrays which store compartments of type

C0 (Main) and C1 (Output), respectively;

m0[0].x[2] The object with index 2 in the 0th compartment of type C0;

m1[0].x[0] Multiplicity of object step in compartment 0 of type Output ;

m1[0].x[1] Multiplicity of object yes in the output compartment;

m1[0].x[2] Multiplicity of object no in the output compartment;

m1[0].x[3] Multiplicity of object halt in the output compartment;

m0DissolvedCount The number of dissolved compartments of type Main;

stepsExp A number updated each step with the value of 2
step

.

Table 4. Interpretation of variable expressions generated in Promela

The second key requirement for the model checking methodology we exem-
plify in this section is the provision of LTL formulae the validity of which is to be
asserted against the model. As methodically described in the previous section,
a set of properties is generated by instantiating various natural language pat-
terns. These are appointed as templates to be completed by the user with model
variables or numeric constants, interactively, through a graphical user interface.
Several screenshots which illustrate the Natural Language Query (NLQ) builder,
integrated into kpWorkbench are supplied in the Appendix.

Table 5 lists an array of ten properties we have compiled and derived from
natural language patterns for the Subset Sum example. These properties have
been successfully verified with Spin on a Core i7 980X based machine, with 24GB
RAM and running Windows 8 Professional Edition.

Devising a set of properties assisted by the NLQ tool becomes an intuitive,
effortless and streamlined task, however, there may be cases when a generated

148 C. Dragomir et al.

natural language statement does not reflect the meaning of the property in its
entirety, although it is logically equivalent. This may lead to shallow interpreta-
tions if the formal representation is not consulted and ultimately to oversights
of relevant implications of the property. For example, in Table 5, the property
a ‘yes’ result is eventually observed within no more than three step is as a fab-
ricated form of there exists a non-deterministic execution strategy that yields

an affirmative result to the problem in no more than three steps. The second
expression is significantly more elevate and meaningful in comparison with its
generated counterpart which clearly describes the underlying LTL formulae, but
requires a deeper understanding of the model for an accurate interpretation.

Property Pattern Natural Language Statement and Spin formula

1 Until

The computation will eventually halt.

halt == 0 U halt > 0

(m1[0].x[3] == 0 || !pInS) U (m1[0].x[3] > 0 && pInS)

2 Until

The computation will halt within n + 2 steps.

(halt == 0 && steps < n + 2) U (halt > 0 && steps <= n + 2)

(m1[0].x[3] == 0 && m1[0].x[0] < n+2 || !pInS) U

(m1[0].x[3] >= 0 &&m1[0].x[0] <= n+2 && pInS)

3 Until

The computation will eventually halt with either a ‘yes’ or ‘no’ result.

halt == 0 U (halt > 0 && (yes > 0 || no > 0))

(m1[0].x[3] == 0 || !pIns) U

(m1[0].x[3] > 0 && (m1[0].x[1] > 0 || m1[0].x[2] > 0) && pInS)

4 Until
At least one membrane division will eventually take place

(before a result is obtained).

(yes == 0 && no == 0) U m0Count > 1

(m1[0].x[1] == 0 && m1[0].x[2] == 0) || !pInS U m0Count > 1 && pInS

5 Existence

A ‘yes’ result is eventually observed within no more than three steps.

F (yes > 0 && steps <= 3)

<> (m1[0].x[1] > 0 && m1[0].x[0] <= 3 && pInS)

6 Existence

A ‘yes’ result is eventually observed within more than three steps.

F (yes > 0 && steps > 3)

<> (m1[0].x[1] > 0 && m1[0].x[0] > 3 && pInS)

7 Existence

A result (‘yes’ or ‘no’) is eventually obtained

without any membrane dissolutions.

F (yes > 0 || no > 0) && m0DissolvedCount == 0

<> ((m1[0].x[1] > 0 || m1[0].x[2] > 0)

&& m0DissolvedCount == 0 && pInS)

8 Existence

A ‘yes’ result is eventually obtained with membrane dissolution occuring.

F yes > 0 && m0DissolvedCount > 0

<> (m1[0].x[1] > 0 && m0DissolvedCount > 0 && pInS)

9 Universality

The number of compartments in use is always equal to 2
stepcount

.

G m0Count + 1 == TwoToTheNumberOfSteps

[] (m0Count + 1 == TwoToTheNumberOfSteps || !pInS)

10 Absence

There will never be a negative answer for this example.

!F no > 0

!(<> (m1.x[2] > 0 && pInS))

Table 5. List of properties derived from natural language patterns using NLQ and

their generated LTL equivalent

Model Checking Kernel P Systems 149

6 Conclusions

The approach to kernel P system model checking presented in this paper is a
powerful synthesis of concepts and ideas, materialised into an aggregate of soft-
ware tools and template data sets. The investigation permeates two innovative
leaps, namely the kP system computational model in the context of membrane
computing and the use of natural language patterns to generate temporal logic
properties in the field of model checking. After establishing a model equivalence
relation together with a procedural translation from a generic representation to
a notation required by Spin, non-specialist users can benefit from the standard
features offered by the model checker. The often intricate and abstruse process
of constructing temporal logic formulae has also been abstracted to natural lan-
guage statements and interactive visual representation through graphical user
interface (GUI) elements. Another consequential advantage of significance is the
correctness guarantee conferred by an automatic model conversion and formula
generation.

Our case study illustrated in section 5, demonstrates the feasibility of this
approach with its illustrious qualities, but also exposes the potential limitations
of the method: on one hand, the notorious state space explosion problem is an
inexorable fact that circumscribes the model checking of concurrent and non-
deterministic systems; on the other hand, some generated properties, products
of composite natural language patterns, are devoid of meaning and can possibly
lead to shallow or inaccurate interpretations and even confusion.

Evidently, a more consistent qualitative evaluation of the methodology, in-
volving several other case studies is required to highlight its potential and lim-
itations more generally. It would be interesting to see the outcome of future
investigations in this newly established context.

References

1. Andrei, O., Ciobanu, G., Lucanu, D.: A rewriting logic framework for operational

semantics of membrane systems. Theoretical Computer Science 373(3), 163–181

(2007)

2. Bellini, P., Nesi, P., Rogai, D.: Expressing and organizing real-time specification

patterns via temporal logics. J. Syst. Softw. 82(2), 183–196 (Feb 2009)

3. Bernardini, F., Gheorghe, M., Romero-Campero, F.J., Walkinshaw, N.: A hybrid

approach to modeling biological systems. In: WMC 2007. LNCS, vol. 4860, pp.

138–159. Springer (2007)

4. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane

Computing. Natural Computing Series, Springer (2006)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications

for finite-state verification. In: Proceedings of the 21st international conference on

Software engineering. pp. 411–420. ICSE ’99, ACM (1999)

6. Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M., Turcanu, A., Valencia,

L., Garcia-Quismondo, M., Mierlă, L.: 3-col problem modelling using simple kernel

P systems. International Journal of Computer Mathematics, online version (to

appear)

150 C. Dragomir et al.

7. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garcia-

Quismondo, M., Perez-Jimenez, M.: Kernel P systems. Eleventh Brainstorming

Week on Membrane Computing pp. 97–124 (2013)

8. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electron. Notes

Theor. Comput. Sci. 153(2), 117–133 (2006)

9. Grunske, L.: Specification patterns for probabilistic quality properties. In: Pro-

ceedings of the 30th international conference on Software engineering. pp. 31–40.

ICSE ’08, ACM (2008)

10. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for auto-

matic verification of probabilistic systems. In: Proc. TACAS’06. LNCS, vol. 3920,

pp. 441–444. Springer (2006)

11. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-

neering 23(5), 275–295 (1997)

12. Horowitz, E.; Sahni, S.: Computing partitions with applications to the knapsack

problem. Journal of the Association for Computing Machinery 21, 277–292 (1974)

13. Ipate, F., Lefticaru, R., Mierla, L., Cabrera Valencia, L., Han, H., Zhang, G.,

Dragomir, C., Perez Jimenez, M., Gheorghe, M.: Kernel P systems: Applications

and implementations. In: Proceedings of The Eighth International Conference on

Bio-Inspired Computing: Theories and Applications (BIC-TA), 2013, Advances

in Intelligent Systems and Computing, vol. 212, pp. 1081–1089. Springer Berlin

Heidelberg (2013)

14. Ipate, F., Lefticaru, R., Tudose, C.: Formal verification of P systems using Spin.

International Journal of Foundations of Computer Science 22(1), 133–142 (2011)

15. Konrad, S., Cheng, B.: Real-time specification patterns. In: Proceedings of 27th

International Conference on Software Engineering. pp. 372 – 381 (2005)

16. Lefticaru, R., Ipate, F., Valencia-Cabrera, L., Turcanu, A., Tudose, C., Gheorghe,

M., Jiménez, M.J.P., Niculescu, I.M., Dragomir, C.: Towards an integrated ap-

proach for model simulation, property extraction and verification of P systems.

Tenth Brainstorming Week on Membrane Computing vol. I, 291–318 (2012)

17. Lefticaru, R., Tudose, C., Ipate, F.: Towards automated verification of P systems

using Spin. International Journal of Natural Computing Research 2(3), 1–12 (2011)

18. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Temporal

logic patterns for querying dynamic models of cellular interaction networks. Bioin-

formatics 24(16), i227–i233 (2008)

19. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual

IEEE Symposium on Foundations of Computer Science. pp. 46–57. IEEE Computer

Society Press (1977)

20. Păun, G.: Computing with membranes. Journal of Computer and System Sciences

61(1), 108–143 (2000)

Model Checking Kernel P Systems 151

Appendix A: Screenshots illustrating our NLQ tool

152 C. Dragomir et al.

Purely Catalytic P Systems:
Two Catalysts Can Be Sufficient for

Computational Completeness

Rudolf Freund

Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9, 1040 Vienna, Austria

Email: rudi@emcc.at

Abstract. Whether purely catalytic P systems with only two catalysts

can already be computational complete, is still an open problem. Here

we establish computational completeness by using specific variants of

additional control mechanisms. At each step using only multiset rules

from one set of a finite number of sets of rules allows for obtaining com-

putational completeness with two catalysts and only one membrane. If

the available sets of rules change periodically with time, computational

completeness can be obtained with two catalysts in one membrane, too.

Moreover, we show computational completeness for purely catalytic P

systems with two mobile catalysts and two membranes.

1 Introduction

P systems with catalytic rules were already considered in the originating papers
for membrane systems, see [8]. In [3] two catalysts were shown to be sufficient for
getting universality/computational completeness (throughout this paper, with
these notions we will indicate that all recursively enumerable sets of (vectors
of) non-negative integers can be generated). Since then, it has become one of
the most challenging open problems in the area of P systems, whether or not
one catalyst might already be enough to obtain computational completeness.
Similar questions also arise in the context of purely catalytic P systems: purely
catalytic P systems (working in the maximally parallel mode) with only one
catalyst simply correspond with sequential P systems with only one membrane,
hence, to multiset rewriting systems with context-free rules, and therefore can
only generate linear sets; purely catalytic P systems working in the maximally
parallel mode are computationally complete with (at most) three catalysts in
only one membrane as shown in [3]; the question whether two catalysts are
sufficient or not is another interesting question still open since the beginning of
the membrane systems area.

Using additional control mechanisms as, for example, priorities or promot-
ers/inhibitors, P systems with only one catalyst can be shown to be compu-
tationally complete, e.g., see Chapter 4 of [10]. On the other hand, additional
features for the catalyst may be taken into account; for example, we may use

154 Rudolf Freund

bi-stable catalysts (catalysts switching between two different states) or mobile
catalysts (catalysts able to cross membranes).

P systems with mobile catalysts were introduced in [5], and their universality
with one catalyst was proved with using three membranes and target indications
of the forms here, out, and inj . In [4], this result was improved by replacing the
target indications inj with the weaker one in. Here we will prove that two mobile
catalysts “traveling” between two membranes yield computational completeness
in the case of purely catalytic P systems.

Recently, several variants of P systems using only one catalyst together with
control mechanisms for choosing the rules applicable in a computation step have
been considered: for example, in [6] the rules are labeled with elements from an
alphabet H and in each step a maximal multiset of rules having the same label
from H is applied. In [4], a short proof for the universality of these P systems

with label selection with only one catalyst in a single membrane was given. In
this paper, we will show a similar result for purely catalytic P systems with only
two catalysts in a single membrane.

Regular control languages were considered already in [6] for the maximally
parallel derivation mode, whereas in [1] universality was proved for the sequential
mode: there even only non-cooperative rules were needed in one membrane for
time-varying P systems to obtain universality (in time-varying systems, the set
of available rules varies periodically with time, i.e., the regular control language
is of the very specific form W = (U1 . . . Up)

∗

, allowing to apply rules from a
set Ui in the computation step pn + i, n ≥ 0; p is called the period), but a
bounded number of steps without applying any rule had to be allowed. In [4],
time-varying P systems using the maximally parallel derivation mode in one
membrane with only one catalyst were shown to be computationally complete
with a period of six and the usual halting when no rule can be applied. We here
prove a similar result for purely catalytic P systems with only two catalysts in
a single membrane.

2 Prerequisites

The set of integers is denoted by Z, the set of non-negative integers by N. An
alphabet V is a finite non-empty set of abstract symbols. Given V , the free
monoid generated by V under the operation of concatenation is denoted by
V ∗; the elements of V ∗ are called strings, and the empty string is denoted by
λ; V ∗ \ {λ} is denoted by V +. Let {a1, · · · , an} be an arbitrary alphabet; the
number of occurrences of a symbol ai in a string x is denoted by |x|ai

; the Parikh

vector associated with x with respect to a1, · · · , an is
(

|x|a1
, · · · , |x|an

)

. The
Parikh image of a language L over {a1, · · · , an} is the set of all Parikh vectors
of strings in L, and we denote it by Ps (L). For a family of languages FL, the
family of Parikh images of languages in FL is denoted by PsFL; for families
of languages of a one-letter alphabet, the corresponding sets of non-negative
integers are denoted by NFL.

Purely Catalytic P Systems: Two Catalysts Can Be Sufficient 155

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(

|x|a1
, · · · , |x|an

)

= (m1, · · · ,mn). Fixing the sequence
of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1
· · · amn

n is unique. The set of all
finite multisets over an alphabet V is denoted by V ◦.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [2] and [11].

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, P is the set of instructions bijectively labeled by elements of B, l0 ∈ B
is the initial label, and lh ∈ B is the final label. The instructions of M can be of
the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increase the value of register j by one, and non-deterministically continue
with instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then continue with instruction l3, otherwise
decrease the value of register j by one and continue with instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

– lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruc-
tion to be executed. Computations start by executing the first instruction of P
(labeled with l0), and terminate with reaching the HALT -instruction.

Register machines provide a simple universal computational model [7]. In the
generative case as we need it later, we start with empty registers, use the first two
registers for the necessary computations and take as results the contents of the
k registers 3 to k +2 in all possible halting computations; during a computation
of M , only the registers 1 and 2 can be decremented. In the following, we shall
call a specific model of P systems computationally complete or universal if and
only if for any (generating) register machine M we can effectively construct an
equivalent P system Π of that type simulating each step of M in a bounded
number of steps and yielding the same results.

2.1 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
objects placed in the membrane regions, and the evolution rules. The membrane

156 Rudolf Freund

structure is a hierarchical arrangement of membranes. Each membrane defines
a region/compartment, the space between the membrane and the immediately
inner membranes; the outermost membrane is called the skin membrane, the re-
gion outside is the environment, also indicated by (the label) 0. Each membrane
can be labeled, and the label (from a set Lab) will identify both the membrane
and its region. The membrane structure can be represented by a rooted tree
(with the label of a membrane in each node and the skin in the root), but also
by an expression of correctly nested labeled parentheses. The objects (multi-
sets) are placed in the compartments of the membrane structure and usually
represented by strings, with the multiplicity of a symbol corresponding to the
number of occurrences of that symbol in the string. The evolution rules are mul-
tiset rewriting rules of the form u → v, where u is a multiset of objects from a
given set O and v = (b1, tar1) . . . (bk, tark) with bi ∈ O and tari ∈ {here, out, in}
or tari ∈ {here, out}∪{inj | j ∈ Lab}, 1 ≤ i ≤ k. Using such a rule means “con-
suming” the objects of u and “producing” the objects b1, . . . , bk of v; the target

indications here, out, and in mean that an object with the target here remains
in the same region where the rule is applied, an object with the target out is
sent out of the respective membrane (in this way, objects can also be sent to
the environment, when the rule is applied in the skin region), while an object
with the target in is sent to one of the immediately inner membranes, non-
deterministically chosen, whereas with inj this inner membrane can be specified
directly. In general, we omit the target indication here.

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, f)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at
the beginning of a computation, R1, . . . , Rm are finite sets of evolution rules,
associated with the regions of µ, and f is the label of the membrane region from
which the outputs are taken (f = 0 indicates that the output is taken from the
environment).

If a rule u → v has at least two objects in u, then it is called cooperative, oth-
erwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca → cv, where c is a special
object which never evolves and never passes through a membrane (both these
restrictions can be relaxed), but it just assists object a to evolve to the multiset
v. In a purely catalytic P system we only allow catalytic rules. In both catalytic
and purely catalytic P systems, we replace O by O,C in order to specify those
objects from O which are the catalysts in the set C.

The evolution rules are used in the (non-deterministic) maximally parallel

way, i.e., in any computation step of Π we choose a multiset of rules from the
sets R1, . . . , Rm in such a way that no further rule can be added to it so that
the obtained multiset would still be applicable to the existing objects in the
membrane regions 1, . . . ,m.

The membranes and the objects present in the compartments of a system
at a given time form a configuration; starting from a given initial configuration

Purely Catalytic P Systems: Two Catalysts Can Be Sufficient 157

and using the rules as explained above, we get transitions among configurations;
a sequence of transitions forms a computation. A computation is halting if it
reaches a configuration where no rule can be applied. With a halting computation
we associate a result, in the form of the number of objects present in region f
in the halting configuration. The set of vectors of non-negative integers and the
set of (Parikh) vectors of non-negative integers obtained as results of halting
computations in Π are denoted by N (Π) and Ps (Π), respectively.

The family of sets Y (Π), Y ∈ {N,Ps}, computed by P systems with at most
m membranes and cooperative rules and with non-cooperative rules is denoted
by Y OPm (coop) and Y OPm (ncoo), respectively. It is well known that for any
m ≥ 1, Y REG = Y OPm (ncoo) ⊂ NOPm (coop) = Y RE, see [8].

The family of sets Y (Π), Y ∈ {N,Ps}, computed by (purely) catalytic
P systems with at most m membranes and at most k catalysts is denoted by
Y OPm (catk) (Y OPm (pcatk)); from [3] we know that, with the results being
sent to the environment, we have Y OP1 (cat2) = Y OP1 (pcat3) = Y RE.

If we allow catalysts to move from one membrane region to another one,
then we speak of P systems with mobile catalysts. The families of sets N (Π)
and Ps (Π) computed by P systems with at most m membranes and k mobile
catalysts are denoted by NOPm (mcatk) and PsOPm (mcatk), respectively. If we
only allow catalytic rules, the corresponding families of sets N (Π) and Ps (Π)
are denoted by NOPm (mpcatk) and PsOPm (mpcatk), respectively.

For all the variants of P systems of type X, we may consider to label all the
rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H and
to take a set W containing subsets of H. Then a P system with label selection is
a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm,H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above,
H is a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any
transition step in Π we first select a set of labels U ∈ W and then apply a
non-empty multiset R of rules such that all the labels of these rules in R are
in U in the maximally parallel way, i.e., the set R cannot be extended by any
further rule with a label from U so that the obtained multiset of rules would
still be applicable to the existing objects in the membrane regions 1, . . . ,m. The
family of sets N (Π) and Ps (Π) computed by P systems with label selection
with at most m membranes and rules of type X is denoted by NOPm (X, ls)
and PsOPm (X, ls), respectively.

Another method to control the application of the labeled rules is to use
control languages (see [6] and [1]). A controlled P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm,H, L, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H
is a set of labels for the rules in the sets R1, . . . , Rm, and L is a string language
over 2H from a family FL. Every successful computation in Π has to follow a
control word U1 . . . Un ∈ L: in transition step i, only rules with labels in Ui are

158 Rudolf Freund

allowed to be applied (but again in the maximally parallel way, i.e., we have to
apply a multiset R of rules with labels in Ui which cannot be extended by any rule
with a label in Ui such that the resulting multiset would still be applicable), and
after the n-th transition, the computation halts; we may relax this end condition,
and then we speak of weakly controlled P systems. If L = (U1 . . . Up)

∗

, Π is called
a (weakly) time-varying P system: in the computation step pn + i, n ≥ 0, rules
from the set Ui have to be applied; p is called the period. The family of sets
Y (Π), Y ∈ {N,Ps}, computed by (weakly) controlled P systems and (weakly)
time-varying P systems with period p, with at most m membranes and rules
of type X as well as control languages in FL is denoted by Y OPm (X,C (FL))
(Y OPm (X,wC (FL))) and Y OPm (X,TVp) (Y OPm (X,wTVp)), respectively.

In the following sections we will prove several computational completeness
results for purely catalytic P systems with only two catalysts: first we will give
a proof for P systems with label selection, then for time-varying P systems, and
finally for P systems with mobile catalysts.

Before we are going to show these special computational completeness results,
we exhibit some general features of purely catalytic P systems:

Remark 1. For purely catalytic P systems with only one catalyst collecting the
results in the environment, we only have to consider the minimal membrane
structure []

1
with the catalyst being in the skin membrane: in order to allow

for sending out the results from the skin membrane, the catalyst has to be there;
any symbol that would be sent to an inner membrane would be lost anyway for
being used in the further steps of a computation; hence, we can simply omit
these symbols to even be generated and therefore can omit all inner membranes,
too.

As a consequence of these observations we infer that the maximal parallelism
in the case of purely catalytic P systems with only one catalyst reduces to the
sequential application of rules where in each step of a computation exactly one
rule is applied:

Lemma 1. For purely catalytic P systems with only one catalyst collecting the

results in the environment, even combined with some additional control mech-

anism, we get the same results as for sequential P systems with the minimal

membrane structure []
1

(eventually equipped with the same additional control

mechanism).

As is well known, sequential P systems with the minimal membrane structure
[]

1
(or even any other more complicated membrane structure) correspond with

multiset rewriting systems using only context-free rules, i.e., we have:

Theorem 1. For any m ≥ 1 and any Y ∈ {N,Ps},

Y REG = Y OPm (ncoo) = Y OPm (pcat1) = Y OPm (pcat1, ls) .

Purely Catalytic P Systems: Two Catalysts Can Be Sufficient 159

Proof. We only have to show Y OPm (pcat1, ls) ⊆ Y OPm (pcat1). Yet the addi-
tional control mechanism of allowing to select only rules with the same label in
each computation step does not increase the generative power, as in every step
we anyway can only use exactly one rule, i.e., label selection in the case of purely
catalytic P systems with only one catalyst does not yield additional power.

Remark 2. For purely catalytic P systems with only two catalysts collecting the
results in the environment, we only have to consider the membrane structures
[]

1
and [[]

2
]
1
: as in Remark 1 we can argue that at least one catalyst has

to be in the skin membrane. If only one catalyst is in the skin membrane and
the second catalyst is in an inner membrane, then this second one has to be in
a membrane directly connected with the skin region, otherwise it would not be
able to contribute to the computations in the P system.

Remark 3. Except for the case of purely catalytic P systems with mobile cata-
lysts, for all other cases of control mechanisms considered in this paper (and for
many others considered in the literature so far, too) we can restrict ourselves
to the minimal membrane structure []

1
when dealing with purely catalytic P

systems with only two catalysts: instead of letting the second catalyst work in a
second membrane, we put it into the skin membrane and let it work on primed
symbols: symbols originally sent into the inner membrane now get primed; on
the other hand, instead of sending out symbols from the second membrane, we
just generate unprimed symbols with this second catalyst. This procedure of
using marked symbols within the skin membrane instead of using inner mem-
branes is well known in the P systems area as “flattening procedure”, even for
any number of inner membranes.

Remark 4. For P systems with mobile catalysts, the case with the minimal mem-
brane structure []

1
corresponds with the original question whether the inclusion

Y OP1 (pcat2) ⊆ Y RE is strict or not; therefore, in this case the solution being
optimal with respect to the membrane structure we could aim for proving compu-
tational completeness was getting a result for the membrane structure [[]

2
]
1
,

and as will be shown in Section 5, two mobile catalyst moving within this simple
membrane structure [[]

2
]
1

are already sufficient for obtaining computational
completeness.

3 Computational Completeness of P Systems with Label
Selection

Whereas with Theorem 1 we have shown that Y REG = Y OPm (pcat1, ls) for
any m ≥ 1, in [4] it was shown that Y OP1 (cat1, ls) = Y RE, Y ∈ {N,Ps};
the following theorem establishes the corresponding result for purely catalytic P
systems with two catalysts.

Theorem 2. Y OP1 (pcat2, ls) = Y RE, Y ∈ {N,Ps}.

160 Rudolf Freund

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (pcat2, ls). Let us consider
a register machine M = (n + 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . We construct the
following P system:

Π = (O, {c1, c2} , []
1
, c1c2dl0, R1,H,W, 0),

O = A ∪ B ∪ {c1, c2, d,#} ,

H = {l, l′ | l ∈ B} ∪ {lx | x ∈ {1, 2, d,#}} ,

and the sets of labels in W and the rules for R1 are defined as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r > 2, then the
(labeled) rules

li : c1li → c1lj (ar, out) , l′i : c1li → c1lk (ar, out) ,

are introduced, and for r ∈ {1, 2}, we introduce the rules

li : c1li → c1ljar, l′i : c1li → c1lkar.

In both cases, we define {li, l
′

i} to be the corresponding set of labels in W . The
contents of each register r, r ∈ {1, 2}, is represented by the number of objects
ar present in the skin membrane; any object ar wit r > 2 is immediately sent
out into the environment.

B. The simulation of a SUB instruction li : (SUB (r) , lj , lk), for r ∈ {1, 2}, is
carried out by the following rules and the corresponding sets of labels in W : For
the case that the register r, r ∈ {1, 2}, is not empty we take the (labeled) rules

li : c1li → c1lj , lr : c2ar → c2, ld : c2d → c2#,

(if no symbol ar is present, i.e., if the register r is empty, then the trap symbol
is introduced) and for the case that the register r is empty, we introduce the
rules

l′i : c1li → c1lk, l′r : c2ar → c2#

(if at least one symbol ar is present, i.e., if the register r is not empty, then the
trap symbol # is introduced); the corresponding sets of labels to be taken into
W are {li, lr, ld} and {l′i, l

′

r}, respectively. In both cases, the simulation of the
SUB instruction works correctly if we have made the right choice.

C. We also add the labeled rule l# : # → # to R1 and {#} to W , hence,
the computation cannot halt once the trap symbol # has been generated.

In sum, we have shown Ps (M) = Ps (Π), which completes the proof.

Purely Catalytic P Systems: Two Catalysts Can Be Sufficient 161

4 Computational Completeness of Time-Varying P
Systems

In [4] it was shown that Y OP1 (cat1, αTV6) = Y RE, Y ∈ {N,Ps}, α ∈ {λ,w};
the following theorem establishes the corresponding result for purely catalytic P
systems with two catalysts.

Theorem 3. Y OP1 (pcat2, αTV6) = Y RE, Y ∈ {N,Ps}, α ∈ {λ,w}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (pcat2, αTV6). Let us con-
sider a register machine M = (n + 2, B, l0, lh, I) with only the first and the
second register ever being decremented. Again, we define A = {a1, . . . , an+2}

and divide the set of labels B \ {lh} into three disjoint subsets:

B+ = {li | li : (ADD (r) , lj , lk) ∈ I} ,

B
−r = {li | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B
−

= B
−1 ∪ B

−2 as well as

B′ =
{

l, l̃, l̂ | l ∈ B \ {lh}
}

∪
{

l−, l0, l̄−, l̄0, | l ∈ B
−

}

.

The main challenge in the construction for the time-varying P system Π is that
the catalyst has to fulfill its task to erase an object ar, r ∈ {1, 2}, for both
objects in the same membrane where all other computations are carried out,
too; hence, at a specific moment in the cycle of period six, parts of simulations
of different instructions have to be coordinated in parallel. The basic components
of the time-varying P system Π are defined as follows (we here do not distinguish
between a rule and its label):

Π = (O, {c1, c2} , []
1
, c1c2l0, R1 ∪ · · · ∪ R6, R1 ∪ · · · ∪ R6, (R1 . . . R6)

∗

, 0),

O = A ∪ {a′

1
, a′

2
} ∪ B′ ∪ {c1, c2, h, lh,#} .

We now list the rules in the sets of rules Ri to be applied in computation
steps 6n + i, n ≥ 0, 1 ≤ i ≤ 6:

R1: in this step, the ADD instructions are simulated, i.e., for each li :
(ADD (r) , lj , lk) ∈ I we take

c1li → c1ar l̃j , c1li → c1ar l̃k (only in the sixth step of the cycle, from l̃j
and l̃k the corresponding unmarked labels lj and lk will be generated); in order
to obtain the output in the environment, for r ≥ 3, ar has to be replaced by
(ar, out);

c1l → c1l
−, c1l → c1l

0 initiate the simulation of a SUB instruction for register
1 labeled by l ∈ B

−1, i.e., we make a non-deterministic guess whether register r
is empty (with introducing l0) or not (with introducing l−);

c1l → c1 l̂ marks a label l ∈ B
−2 (the simulation of such a SUB instruction

for register 2 will start in step 4 of the cycle);

162 Rudolf Freund

c2# → c2# keeps the trap symbol # alive guaranteeing an infinite loop once
has been generated;

c2h → c2 eliminates the auxiliary object h needed for simulating SUB in-
structions and eventually generated two steps before.

R2: in the second and the third step, the SUB instructions on register 1 are
simulated, i.e., for all l ∈ B

−1 we start with
c1a1 → c1a

′

1
(if present, exactly one copy of a1 can be primed, but only if a

label l− for some l from B
−1 is present) and

c2l
− → c2 l̄

−h, c2l
− → c2 l̄

0 for all l ∈ B
−1;

all other labels l̃ for l ∈ B+∪B
−2 block the catalyst c1 from erasing a copy of

a1 by forcing the application of the corresponding rules c1 l̃ → c1 l̃ for c1 in order
to avoid the introduction of the trap symbol # by the enforced application of a
rule c2 l̃ → c2# with the catalyst c2, i.e., we take

c1 l̃ → c1 l̃, c2 l̃ → c2# for all l ∈ B, and
c1 l̂ → c1 l̂, c2 l̂ → c2# for all l ∈ B

−2;
c2# → c2# keeps the computation alive once the trap symbol has been

introduced.

R3: for all li : (SUB (1) , lj , lk) ∈ I we take

c1 l̄
0

i → c1 l̃k, c2a
′

1
→ c2#, c2 l̄

0

i → c2# (zero test; if a primed copy of a1 is
present, then the trap symbol # is generated);

c2 l̄
−

i → c2 l̃j , c1a
′

1
→ c1, c1h → c1# (decrement; the auxiliary symbol h is

needed to keep the catalyst c1 busy with generating the trap symbol # if we
have taken the wrong guess when assuming the register 1 to be non-empty);

c1 l̃ → c1 l̃, c2 l̃ → # for all l ∈ B (with these labels, we just pass through this
step);

c1 l̂ → c1 l̂, c2 l̂ → # for all l ∈ B
−2 (these labels pass through this step to

become active in the next step);
c2# → c2#.

R4: in the fourth step, the simulation of SUB instructions on register 2 is
initiated by using

c1 l̂ → c1l
−, c1 l̂ → c1l

0 for all l ∈ B
−2, i.e., we make a non-deterministic

guess whether register r is empty (with introducing l0) or not (with introducing
l−);

c1 l̃ → c1 l̃, c2 l̃ → c2# for all l ∈ B (with all other labels, we already only pass
through this step);

c2# → c2#,
c2h → c2 (if h has been introduced by c2l

− → c2 l̄
−h in the second step for

some l ∈ B
−1, the second catalyst now is free to erase h).

R5: in the fifth and the sixth step, the SUB instructions on register 2 are
simulated, i.e., for all l ∈ B

−2 we start with
c1a2 → c1a

′

2
(if present, exactly one copy of a2 can be primed) and

c2l
− → c2 l̄

−h, c2l
− → c2 l̄

0 for all l ∈ B
−2;

c1 l̃ → c1 l̃, c2 l̃ → c2# for all l ∈ B;

Purely Catalytic P Systems: Two Catalysts Can Be Sufficient 163

c2# → c2#.

R6: the simulation of SUB instructions li : (SUB (2) , lj , lk) ∈ I on register 2
is finished by

c1 l̄
0

i → c1lk, c2a
′

2
→ c2#, c2 l̄

0

i → c2# (zero test; if a primed copy of a2 is
present, then the trap symbol # is generated);

c2 l̄
−

i → c2lj , c1a
′

2
→ c1,c1h → c1# (decrement; the auxiliary symbol h is

needed to keep the catalyst c1 busy with generating the trap symbol # if we
have taken the wrong guess when assuming the register 2 to be non-empty; if it
is not used, it can be erased in the next step by using c2h → c2 in R1);

c1 l̃ → c1l, c2 l̃ → c2# for all l ∈ B;

c2# → c2# .

Without loss of generality, we may assume that the final label lh in M is
only reached by using a zero test on register 2; then, at the beginning of a new
cycle, after a correct simulation of a computation from M in the time-varying P
system Π no rule will be applicable in R1 (another possibility would be to take
c1 l̄

0

i → c1 instead of c1 l̄
0

i → c1lh in R6).

At the end of the cycle, in case all guesses have been correct, the requested
instruction of M has been simulated and the label of the next instruction to
be simulated is present in the skin membrane. Only in the case that M has
reached the final label lh, the computation in Π halts, too, but only if during the
simulation of the computation of M in Π no trap symbol # has been generated;
hence, we conclude Ps (M) = Ps (Π).

5 Computational Completeness of P Systems with
Mobile Catalysts

Whereas in [4] it was shown that Y OP3 (mcat1) = Y RE, Y ∈ {N,Ps}, the
following theorem establishes a similar result for purely catalytic P systems
with two mobile catalysts proving Y OP2 (mpcat2) = Y RE; as we see, in the
case of purely catalytic P systems with mobile catalysts there might be a trade-
off between the number of membranes and the number of mobile catalysts, as
their sum in both cases is four.

Theorem 4. Y OP2 (mpcat2) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP2 (mpcat2). Let us consider
a register machine M = (n + 2, B, l0, lh, I) with only the first and the second
register ever being decremented. Again we define A = {a1, . . . , an+2} as the set
of objects for representing the contents of the registers 1 to n + 2 of M ; the
terminal symbols ar for r > 2 are collected in the environment, whereas the
symbols a1 and a2 are stored in the innermost membrane 2. The skin region is
used to take those symbols we need for guiding the simulation of a computation
in M .

164 Rudolf Freund

The set of labels B \ {lh} is divided into three disjoint subsets:

B+ = {li | li : (ADD (r) , lj , lk) ∈ I} ,

B
−r = {li | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B
−

= B
−1 ∪ B

−2 as well as

B′ = {l | l ∈ B} ∪
{

l′, l′′, l−, l0 | l ∈ B
−

}

.

We now construct the following P system:

Π = (O, {c1, c2} , [[]
2

]
1
, c1c2l0l

′

0
, R1, R2, 0),

O = A ∪ B′ ∪ {c1, c2,#} .

In general, for simulating an instruction labeled by l from M , we start with
c1c2l in the skin region, whereas region 2 stores the contents of the registers 1
and 2 by the corresponding numbers of symbols a1 and a2. The sets of rules are
constructed as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r > 2, then the rules
c1li → c1lj (ar, out) , c1li → c1lk (ar, out) are introduced in R1; if r ∈ {1, 2},
in R1 we introduce the rules c1li → c1lj (ar, in) , c1li → c1lk (ar, in). In both
cases, the catalyst c2 remains inactive.

B. The simulation of a SUB instruction li : (SUB (r) , lj , lk), r ∈ {1, 2}, is
carried out by the following rules:

In the first step, from R1 we use the rule crli → l′i (cr, in) to send the corre-
sponding catalyst cr into membrane 2 for there to check the presence of a symbol
ar and eventually erase one copy of it. The second catalyst again remains inactive
and stays in the skin region.

In the second step, in the skin region we use the rule c3−rl
′

i → c3−rl
′′

i . In the
second membrane, the catalyst cr will use the rule crar →

(

crl
−

i , out
)

from R2

in case the register r is not empty, otherwise cr has to stay in region 2.
In the third step, we may face two situations in the skin region: if cr is

present again after having decremented the number of symbols ar in membrane
2, then we have to use the rules crl

′′

i → crlj and c3−rl
−

i → c3−r, thus already
getting the configuration c1c2lj in the skin region for starting the simulation of
the instruction labeled by lj . Moreover, the rule crl

−

i → cr# guarantees that the
two catalysts work together in a correct way, because otherwise, if cr had to stay
in membrane 2, in the skin region we have to use the rule c3−rl

′′

i → c3−r

(

l0i , in
)

.
In this case, we need another step to finish the simulation: in membrane 2 we now
have the two symbol l0i allowing cr to get out by using the rule crl

0

i → (crlk, out),
which yields the configuration c1c2lk in the skin region for starting the simulation
of the instruction labeled by lk.

Finally, the rule c2# → c2# in R1 guarantees that the computation will
never halt once the trap symbol # has been introduced during the simulation
of a SUB instruction.

Purely Catalytic P Systems: Two Catalysts Can Be Sufficient 165

In all cases, the simulation of the SUB instruction works correctly, and we
return to a configuration with the two catalysts and l for some label from B in
the skin region.

The computation in Π halts if and only if we reach the configuration with
c1c2lh in the skin region. In sum, we have the equality Ps (M) = Ps (Π), which
completes the proof.

6 Final Remarks

Several new computational completeness results for purely catalytic P systems
using only two catalysts together with some additional control mechanism were
established in this paper, but the original problem of characterizing the sets
of non-negative integers generated by purely catalytic P systems with only two
catalysts still remains open. For other variants of additional control mechanisms,
the case of purely catalytic P systems with two catalysts remains for future
research, too.

Acknowledgements. This paper is a continuation of the results established to-
gether with Gheorghe Păun in [4], where we considered several variants of control
mechanisms to obtain computational completeness for catalytic P systems with
only one catalyst. I am very grateful to Gheorghe for all the interesting discus-
sions on the topics elaborated in this paper, but especially for pushing me to
again put some energy on considering these topics.

References

1. A. Alhazov, R. Freund, H. Heikenwälder, M. Oswald, Yu. Rogozhin, S. Verlan,

Sequential P systems with regular control. In: E. Csuhaj-Varjú, M. Gheorghe, G.

Rozenberg, A. Salomaa, G. Vaszil (Eds.): Membrane Computing - 13th Interna-

tional Conference, CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised

Selected Papers, LNCS 7762, Springer, 2013, 112–127.

2. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,

1989.

3. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems

without priorities: two catalysts are sufficient. Theoretical Computer Science 330,

2005, 251–266.

4. R. Freund, Gh. Păun: How to obtain universality in P systems with one catalyst,

to appear in Proc. MCU 2013.

5. S.N. Krishna, A. Păun: Results on catalytic and ecolution-communication P sys-

tems. New Generation Computing, 22 (2004), 377–394.

6. K. Krithivasan, Gh. Păun, A. Ramanujan: On controlled P systems. Fundamenta

Informaticae, to appear.

7. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle-

wood Cliffs, New Jersey, USA, 1967.

8. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci., 61 (2000), 108–143

(see also TUCS Report 208, November 1998, www.tucs.fi).

166 Rudolf Freund

9. Gh. Păun: Computing with membranes - a variant. Intern. J. Found. Computer

Sci., 11, 1 (2000), 167–182.

10. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.

11. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.

12. The P Systems Website: http://ppage.psystems.eu.

Solving SAT by P Systems with Active
Membranes in Linear Time in the Number of

Variables

Zsolt Gazdag

Department of Algorithms and their Applications

Faculty of Informatics

Eötvös Loránd University

gazdagzs@inf.elte.hu

Abstract. In this paper we solve the SAT problem (the satisfiability

problem of propositional formulas in conjunctive normal form) by a poly-

nomially uniform family of P systems with active membranes in linear

time in the number of propositional variables occurring in the input

formula. In those polynomially uniform existing solutions which do not

employ non-elementary membrane division or membrane creation the

computation time depends also on the number of the clauses in the for-

mula. In our solution we do not use non-elementary membrane division,

but we use such membrane division rules where the labels of the involved

membranes can change. We also use membrane creation rules, but com-

pared to existing solutions with membrane creation rules our systems use

asymptotically less objects and membranes during their computations.

Keywords: Membrane computing; P systems; SAT problem

1 Introduction

P systems with active membranes [9] are widely investigated variants of P sys-
tems [8]. These systems have the possibility of dividing elementary membranes
which combined with the massive parallelism that is present in these systems
can yield exponential workspace in linear time. This feature is frequently used
in P system based efficient solutions of well known NP-complete problems such
as the SAT problem. The SAT problem (satisfiability problem of propositional
formulas) is probably the best known NP-complete decision problem where the
question is whether a given propositional formula in conjunctive normal form
(CNF) is satisfiable.

Solving SAT efficiently by P systems with active membranes is a subject of
many papers in the literature (see e.g. [1], [2], [3], [4], [6], [7], [9], and [12]). These
solutions differ, for example, in the types of the rules employed, the possibility
of changing the labels of the membranes, and the use of the polarizations of
the membranes. On the other hand, these solutions commonly work in a way
where all possible truth valuations of the input formula are created and then a
satisfying one (if it exists) is chosen.

168 Zsolt Gazdag

The above mentioned works solve SAT by polynomially (semi-)uniform fam-
ilies of P systems. This means that the P systems in these families can be con-
structed in polynomial time by a deterministic Turing machine from the size
of the input formula (in the uniform case) or from the formula itself (in the
semi-uniform case). (For more details on polynomially (semi-)uniform families
of P systems we refer to [11] or [12]). The size of the input formula is usually
described by the number of distinct variables and the number of clauses in the
formula. The P systems introduced in the above works can decide SAT in poly-
nomial time in the size of the input formula. This means that the number of
the computation steps of these systems usually depends also on the number of
clauses. The only exceptions are the solutions of [4] and [6], where SAT is solved
in linear time in the number of variables. However, this efficiency was achieved
in these works by use of additional type of rules. In [4] the presented P systems
employ non-elementary membrane division rules, while in [6] the P systems can
create and dissolve membranes.

In [5] two families of polarizationless P systems were given which use neither
non-elementary membrane division nor membranes creation, but still can solve
SAT in linear time in the number of the variables in the input formula. These
solutions implement a decision procedure which is strongly based on the well
known resolution rule of propositional logic. However, the first solution is not
polynomially uniform since its object alphabet is exponential in the number of
the variables. The second solution, on the other hand, uses a polynomial time
constructable family of P systems, but the P systems are constructed from the
input formula, thus it is a semi-uniform solution.

In this paper we present a family of P systems that is based on these systems
but do not have their drawbacks in the following sense. Our new solution is a
polynomially uniform solution still capable to decide the satisfiability of a for-
mula in linear time in the number of variables. On the other hand, in contrast
to the solutions of [5], we could not avoid the use membrane creation. Because
of this reason, the time efficiency of our solution is comparable to that of the
solution of [6]. However, our P systems use asymptotically less objects and mem-
branes during their computations. A more detailed comparison of the solution of
[6] and our solution will be given after presenting the main result of this paper.

It also should be pointed out that our solution uses such elementary mem-
brane division rules which can change the labels of the membranes involved.
Although these rules are powerful ones, it seems that their relabelling feature
can be traded for the use of polarizations of the membranes. We will discuss this
question in the conclusions section.

The paper is organised as follows. In Section 2 we clarify the used notations
and notions and give the necessary definitions and preliminary results. Section
3 contains our families of P systems, and Section 4 presents some concluding
remarks.

Solving SAT by P Systems in Linear Time in the Number of Variables 169

2 Definitions

Alphabets, Words, Multisets. An alphabet Σ is a non-empty and finite set
of symbols. The elements of Σ are called letters. Σ∗ denotes the set of all finite
words (or strings) over Σ, including the empty word ε. We will use multisets

of objects in the membranes of a P system. As usual, these multisets will be
represented by strings over the object alphabet of the P system. The set of
natural numbers is denoted by N. For a number n ∈ N, we denote the set
{1, 2, . . . , n} by [n].

The SAT Problem. Let X = {x1, x2, x3, . . .} be a recursively enumerable set
of propositional variables (variables, to be short), and, for every n ∈ N, let Xn :=
{x1, . . . , xn}. An interpretation of the variables in Xn (or just an interpretation

if Xn is clear from the context) is a function I : Xn → {true, false}.
The variables and their negations are called literals. A clause C is a disjunc-

tion of finitely many pairwise different literals satisfying the condition that there
is no x ∈ X such that both x and x̄ occur in C, where x̄ denotes the negation
of x. The set of all clauses over the variables in Xn is denoted by Cn. A formula

in conjunctive normal form (CNF) is a conjunction of finitely many clauses. We
denote the conjunction and the disjunction operator by ∧ and ∨, respectively.
However, when it is more convenient, we will treat formulas in CNF as finite sets
of clauses, where the clauses are finite sets of literals. A clause C ∈ Cn is called
a complete clause if, for every x ∈ Xn, x ∈ C or x̄ ∈ C. Let Form be the set
of all formulas in CNF over the variables in X and, for every n ∈ N, let Formn

be the set of those formulas in Form that have variables in Xn. It is easy to
see that Form is a recursively enumerable set (notice that, for a given n ∈ N,
Formn is a finite set).

Let ϕ ∈ Formn (n ∈ N) and let I be an interpretation for ϕ. We say that I
satisfies ϕ, denoted by I |= ϕ, if ϕ evaluates to true under the truth assignment
defined by I. Notice that I |= ϕ if and only if, for every C ∈ ϕ, I |= C. We say
that ϕ is satisfiable if there is an interpretation I such that I |= ϕ. The SAT
problem (boolean satisfiability problem of propositional formulas in CNF) can
be defined as follows:

Given a formula ϕ in CNF, decide whether or not there is an interpre-

tation I such that I |= ϕ.

Let ϕ ∈ Form. The set of variables occurring in ϕ, denoted by var(ϕ), is defined
by var(ϕ) := {x ∈ X | ∃C ∈ ϕ : x ∈ C or x̄ ∈ C}. Next we define an operation
on a clause in Cn. This operation is a key component in our method of solving
the SAT problem by P systems. For a clause C ∈ Cn and a set Y ⊆ Xn (n ∈ N)
such that var(C) ∩ Y = ∅, let CY be the following set of clauses. Assume that
Y = {xi1 , . . . , xik

} (k ≤ n, 1 ≤ i1 < . . . < ik ≤ n). Then let CY := {C ∪
{l1, . . . , lk} | j ∈ [k] : lj ∈ {xij

, x̄ij
}}. Intuitively, CY is the set of those clauses

that can be created by adding, for every variable x ∈ Y , x or x̄ to C. For
example, if C = {x1, x̄2} and Y = {x3}, then CY = {{x1, x̄2, x3}, {x1, x̄2, x̄3}}.

170 Zsolt Gazdag

For a formula ϕ = {C1, . . . , Cm} ∈ Formn (m,n ∈ N), let ϕ′ :=
⋃

C∈ϕ CY ,
where Y := Xn − var(C).

The following statement claims that the satisfiability of a formula ϕ ∈ Formn

can be reduced to the question whether ϕ′ contains every complete clause in Cn.

Proposition 1. For a formula ϕ ∈ Formn (n ∈ N), ϕ is satisfiable if and only

if | ϕ′ |< 2n.

The formal proof of this statement can be found, for example, in [5]. We
only note here that the correctness of this statement is based on the following
observations. For a formula ϕ ∈ Formn, C ∈ ϕ, and x ∈ Xn − var(C), ϕ is
satisfiable if and only if the formula (ϕ − C) ∪ C

{x} is satisfiable. Moreover,
trivially, a set of complete clauses is satisfiable if and only if it contains every
complete clause in Cn, for some n ∈ N.

As an example consider the formula ϕ = (x1 ∨ x̄2) ∧ x̄1 ∧ x2 ∈ Form2. Let
us denote the clauses of ϕ by C1, C2, and C3, respectively. Clearly var(C1) =
{x1, x2}, var(C2) = {x1}, and var(C3) = {x2}. Thus, the clauses of ϕ′ are C1,
C2 ∪{x2}, C2 ∪{x̄2}, C3 ∪{x1}, and C3 ∪{x̄1}, i.e., ϕ′ = (x1 ∨ x̄2)∧ (x̄1 ∨ x2)∧
(x̄1 ∨ x̄2) ∧ (x1 ∨ x2) (notice that the second clause of ϕ′ can be created from
both C2 and C3). As ϕ′ contains every complete clause in C2, using Proposition
1 we can derive that ϕ is unsatisfiable.

Our P systems will be based on the above method of creation of complete
clauses. In fact, we are going to implement Algorithm 1. In this algorithm the
complete clauses are created iteratively, adding missing literals to the clauses of
a formula step by step.

Algorithm 1: Deciding the satisfiability of a formula in CNF by creating
complete clauses

input : A formula ϕ in CNF with n variables
output: yes if ϕ is satisfiable, otherwise no

for i← 1 to n do1

ϕ̂← ∅;2

foreach C ∈ ϕ do3

if xi 6∈ var(C) then4

ϕ̂← ϕ̂ ∪ C
{xi}

;5

else6

ϕ̂← ϕ̂ ∪ C;7

end8

ϕ← ϕ̂;9

end10

if |ϕ| = 2n then11

answer ← no;12

else13

answer ← yes;14

return answer15

Solving SAT by P Systems in Linear Time in the Number of Variables 171

Proposition 2. Let ϕ ∈ Formn (n ∈ N). Then Algorithm 1 with input ϕ ter-

minates with the answer yes is and only if ϕ is satisfiable.

Proof. It is easy to see that after the nth iteration of the loop starting at line 1,
ϕ equals to ϕ′. Thus the statement follows form Proposition 1.

P Systems with Active Membranes. We will use P systems with active
membranes to solve SAT. In these P systems we will use such membrane division
rules that can change the labels of the membranes involved. We will also use
membrane creation and dissolution rules. On the other hand, we will not use the
polarizations of the membranes, thus we leave out this feature from the definition
of these systems. The following is the formal definition of the P systems we will
use (see also [10]).

A (polarizationless) P system with active membranes is a construct Π =
(O,H, µ,w1, . . . , wm, R), where:

– m ≥ 1 (the initial degree of the system);
– O is the alphabet of objects;
– H is a finite set of labels for membranes;
– µ is a membrane structure, consisting of m membranes, labelled (not neces-

sarily in a one-to-one manner) with elements of H;
– w1, . . . , wm are strings over O, describing the multisets of objects (every

symbol in a string representing one copy of the corresponding object) placed
in the m regions of µ;

– R is a finite set of developmental rules, of the following forms:
(a) [a→ v]h, for h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the
label of the membranes, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[]h → [b]h, for h ∈ H, a, b ∈ O
(communication rules, sending an object into a membrane; the label
cannot be modified);

(c) [a]h → []hb, for h ∈ H, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly
modified during this process; the label cannot be modified);

(d) [a]h → b, for h ∈ H, a, b ∈ O
(membrane dissolving rules; in reaction with an object, a membrane can
be dissolved, while the object specified in the rule can be modified);

(e) a→ [b]h, for h ∈ H, a, b ∈ O
(membrane creation rules; in reaction with an object a new membrane
with label h can be created; the object a specified in the rule is replaced
in the new membrane by the object b);

(f) [a]h1
→ [b]h2

[c]h3
, for h1, h2, h3 ∈ H, a, b, c ∈ O

(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with possibly different labels;

172 Zsolt Gazdag

the object a specified in the rule is replaced in the two new membranes
by (possibly new) objects b and c respectively, and the remaining objects
are duplicated);

As usual, Π works in a maximal parallel manner:

– In one step, any object of a membrane that can evolve must evolve, but one
object can be used by only one rule in (a)-(f);

– when some rules in (b)-(f) can be applied to a certain membrane, then one
of them must be applied, but a membrane can be the subject of only one
rule of these rules during each step.

We say that Π is a recognizing P system if

– O has two designated objects yes and no, and every computation of Π halts
and sends out to the environment either yes or no;

– Π has a designated input membrane i0;
– for a word w, called the input of Π, w can be added to the system by placing

it into the region i0 in the initial configuration.

A recognizing P system Π is called deterministic if it has only a single computa-
tion from its initial configuration to its unique halting configuration. It is called
confluent if every computation of Π halts and sends out to the environment
the same object (yes or no). A family Π := (Π(i))i∈N of recognizing P systems
called polynomially uniform if, for every n ∈ N, Π(n) can be constructed from
n by a deterministic Turing machine in polynomial time in n.

We say that SAT can be solved by a family Π := (Π(i))i∈N of recognizing P

systems if, for a formula ϕ ∈ Form with size n (n ∈ N), starting Π(n) with a
polynomial time encoding of ϕ in its input membrane, Π(n) sends out to the
environment yes if and only if ϕ is satisfiable.

3 The Main Result

Here we present a polynomially uniform family Π := (Π(i))i∈N of recognizing
P systems that can solve SAT in linear time in the number of distinct variables
in the input formula. As we have mentioned, the P systems in Π implement
Algorithm 1. We use the following encoding of formulas which is often used in
the theory of P systems (see e.g. the definition of cod(ϕ) on page 314 in [11]).
Let ϕ = C1 ∧ . . . ∧ Cm be a formula. Then

cod(ϕ) :=

m
⋃

j=1

({xj,i | xi ∈ Cj} ∪ {x̄j,i | x̄i ∈ Cj}).

Clearly, for every formula ϕ with m clauses and n variables, cod(ϕ) ⊆ Om,n,
where Om,n := {xj,i | i ∈ [n], j ∈ [m]} ∪ {x̄j,i | i ∈ [n], j ∈ [m]}. We will use the

size function 〈m,n〉 := (n+m)(n+m+1)

2
+ n also used e.g. in [3] to represent the

size of ϕ.

Solving SAT by P Systems in Linear Time in the Number of Variables 173

Definition 1. For every m,n ∈ N, let Π(〈m,n〉) := (O,H, µ,wskin, waux, w1, R),
where:

– O := Om,n∪{yes, no, e}∪{d
(k)

i | i ∈ [2n+1], k ∈ [7]}∪{c
(k)

j | j ∈ [m], k ∈ [3]};
– H := {skin, aux, 1, . . . , 2n + 1} ∪ {cj | j ∈ [m]};
– µ := [[[]1]aux]skin, where the input membrane is []1;

– wskin := ε, waux := ε and w1 := d
(1)

1
;

– R is the set of the following rules (in some cases we also give explanations

of the presented rules):

(a) [d
(1)

1
]1 → [d

(7)

2
]2[d

(7)

3
]3 and [d

(1)

2i+k]2i+k → [d
(7)

2i+2
]2i+2[d

(7)

2i+3
]2i+3, for every

i ∈ [n] and k ∈ {0, 1}
(these rules are for duplicating and separating into new membranes those

objects which encode literals of the input formula);

(b) [d
(j)
i → d

(j−1)

i]2i+k, for every 2 ≤ i ≤ n, 2 ≤ j ≤ 7, k ∈ {0, 1}
(these rules are for counting the steps of the system between two appli-

cations of rules in (a));

(c) [x̄j,i → cn
j]2i and [xj,i → cn

j]2i+1, for every i ∈ [n] and j ∈ [m],

cj → [c
(1)

j]cj
, for every j ∈ [m],

[c
(l)
j → c

(l+1)

j]cj
, for every j ∈ [m] and l ∈ [2],

xj,i → [xj,i]cj
and x̄j,i → [x̄j,i]cj

, for every i ∈ [n] and j ∈ [m],
[xj,i → ε]cj

and [x̄j,i → ε]cj
, for every i ∈ [n] and j ∈ [m],

[c
(3)

j]cj
→ c

(3)

j , for every j ∈ [m],

[c
(3)

j → ε]2i+k, for every i ∈ [n], j ∈ [m] and k ∈ {0, 1}
(these rules are used to select and erase specific objects in those mem-

branes that are created by the rules in (a); the selection is done by intro-

ducing new objects (cj) that can create new membranes ([]cj
); these new

membranes can select the corresponding objects which are then erased by

ε-rules; finally the used axillary membranes and objects are erased also);

(j) [xj,i]2n+k → e and [x̄j,i]2n+k → e, for every i ∈ [n] and k ∈ {0, 1}
(these rules dissolve those membranes with label 2n + k that contain a

literal of a clause of ϕ; during the dissolution of each such membrane an

object e is introduced);

(k) e[]2n+k → [yes]2n+k and [yes]2n+k → []2n+kyes, for every k ∈ {0, 1},
[yes]aux → []auxyes,
[yes]skin → []skinyes
(if there is a membrane with label 2n + k which is not dissolved by the

rules in (j), then the object e introduces the object yes; the other rules

are used to send yes out to the environment);

(l) [e]aux → [e]aux[no]aux,

[no]aux → []auxno,
[no]skin → []skinno
(if every membrane with label 2n+k could be dissolved by the rules in (j),
then e is used to duplicate the membrane with label aux and to introduce

the object no; the other rules are used to send no out to the environment).

174 Zsolt Gazdag

The computation of Π(〈m,n〉), for some m,n ∈ N, when the membrane
with label 1 contains cod(ϕ), for a formula ϕ ∈ Formn with m clauses can be
described as follows:

(1) During the first step the system duplicates the membrane with label 1 creat-
ing two new membranes with label 2 and 3, respectively (using the first rule

in (a)). The object d
(1)

1
involved by this rule is replaced in the two new mem-

branes by the objects d
(7)

2
and d

(7)

3
, respectively. Those objects in membrane

with label 1 which encode literals of the input formula are duplicated and
distributed between the two new membranes. Thus, after the first step, every
clause of the input formula are contained in both of the new membranes.

(2) During the next six steps, the objects d
(7)

2
and d

(7)

3
are evolved to d

(1)

2
and

d
(1)

2
, respectively; meanwhile the following happens:

(a) in membrane with label 2 (resp. with label 3), for every j ∈ [m], xj,1

(resp. x̄j,1) introduces n pieces of the object cj ;
(b) for every j ∈ [m], every object cj creates a membrane with label cj ; these

new membranes contain the object c
(1)

j ;
(c) for every j ∈ [m], the objects xj,1 and x̄j,1 are sent to the membranes

with label cj ; meanwhile the objects c
(1)

j evolve to c
(2)

j ;

(d) the objects xj,1 are erased and the objects c
(2)

j evolve to c
(3)

j ;
(e) the membranes with label cj are dissolved;

(f) the objects c
(3)

j are erased.
In this way, those literals that belong to a clause containing x̄1 are removed
from the membrane with label 2. Likewise, those literals that belong to a
clause containing x1 are removed from the membrane with label 3. Thus,
those clauses of ϕ that contain x1 are placed to membrane 2, those that
contain x̄1 to membrane 3, and those that do not contain x1 or x̄1 are
placed to both membranes. This corresponds to the operation in line 5 of
Algorithm 1.

(3) After carrying out seven steps similar to the above ones n − 1 times, the
membrane system contains 2n membranes with label 2n + k (k ∈ {0, 1}).
Each such membrane can contain objects which encode clauses of ϕ. Then
those membranes with label 2n + k that contain at least one object xj,i

(i ∈ [n], j ∈ [m]) are dissolved by using the rules in (j). During the dissolution
of each membrane an object e is introduced. So far the number of steps of
the system is 7n + 1. At this point the computation can continue in two
different cases.

(4) If every membrane with label 2n + k is dissolved, then, using the first rule
in (l), the system divides the membrane with label aux, and introduces the
object no. In the last two steps, the object no is sent out to the environment,
and the computation halts.

(5) If there is at least one membrane with label 2n+k that is not dissolved, then
only the first rule in (k) can be applied, introducing the object yes (notice
that the division rule in (l) cannot be applied as the membrane with label
2 is not elementary in this case). In the last three steps of the system, the
object yes is sent out to the environment, and the computation halts.

Solving SAT by P Systems in Linear Time in the Number of Variables 175

It is easy to see that the system halts after at most 7n + 5 steps sending out to
the environment either yes or no. We demonstrate the above described work of
our P systems by the following example.

Example 1. Let ϕ = (x1 ∨ x2 ∨ x3) ∧ x̄1 ∧ x̄2 ∧ x̄3. For the better readability
of the computation of Π(〈4, 3〉) on this formula, we denote x1, x2 and x3 by
x, y and z, respectively. Thus, cod(ϕ) = {x1, y1, z1, x̄2, ȳ3, z̄4} (notice that here,
for example, y1 denotes x1,2 meaning that the variable x2, which is denoted by
y, occurs in the first clause of ϕ). Let Π(〈4, 3〉) be the P system constructed
in Definition 1 with cod(ϕ) in its input membrane. The initial configuration of
Π(〈4, 3〉) and its configuration after the first step can be seen on Figure 1.

⇒

x1

x̄2

y1

ȳ3

z1

z̄4

x1

x̄2

y1

ȳ3

z1

z̄4

x1

x̄2

y1

ȳ3

z1

z̄4

aux

skin

1

aux

skin

2 3

d
(1)

1
d
(7)

2
d
(7)

3

Fig. 1. The first step of Π(〈4, 3〉).

Now we consider the next six steps of the system, but we show only the
computation carried out in the membrane with label 3. The initial configuration
of this membrane and its configuration after each step can be seen in Figure 2.

⇒ ⇒ ⇒ ⇒

⇒ ⇒

3

x̄2

y1

ȳ3

z1

z̄4
d
(6)

3

c1 c1 c1

x̄2 ȳ3 z̄4
d
(5)

3

z1y1

c1 c1 c1 3

c
(1)

1
c
(1)

1
c
(1)

1

x̄2 ȳ3 z̄4

c1 c1 c1 3

c
(2)

1
c
(2)

1
c
(2)

1

y1 z1

d
(4)

3

33

x̄2

x1 y1

ȳ3

z1

z̄4
d
(7)

3

3

c
(3)

1
c
(3)

1
c
(3)

1

x̄2 ȳ3 z̄4
x̄2 ȳ3 z̄4

c1 c1 c1 3

c
(3)

1
c
(3)

1
c
(3)

1

d
(3)

3

3

x̄2 ȳ3 z̄4 d
(1)

3
d
(2)

3

Fig. 2. The evolution of the membrane with label 3 using rules in (c).

In the following we shortly describe what is changed in this membrane after
these steps:

(1) x1 introduces three pieces of the object c1;

(2) each c1 creates a membrane []c1
containing c

(1)

1
;

176 Zsolt Gazdag

(3) y1 and z1 are sent to a membrane with label c1 and the objects c
(1)

1
evolve

to c
(2)

1
;

(4) y1 and z1 are erased and the objects c
(2)

1
evolve to c

(3)

1
;

(5) the membranes with label c1 are dissolved and their contents are released in
membrane with label 3;

(6) the objects c
(3)

1
are erased.

The first configuration in Figure 3 is the configuration of the system after
the first seven steps. The rest of the configurations in this figure describe the
evolution of the system during the next fourteen steps.

⇒
∗

⇒ ⇒
∗

⇒

x1

y1

z1

x1

y1

z1

6 7

z̄4
d
(7)

7
d
(7)

6 z̄4

ȳ3

z̄4

d
(7)

6

6 7

ȳ3

z̄4

x̄2

z̄4

d
(7)

7

6

d
(7)

6

x̄2

z̄4

7

d
(7)

7

x̄2

ȳ3

z̄4

6

d
(7)

6

ȳ3

z̄4

x̄2
7

d
(7)

7

skin
aux

x1 6 7 6 7

ȳ3

z̄4

6

x̄2

z̄4

7 6

ȳ3

z̄4

x̄2
7

skin
aux

d
(1)

6
d
(1)

7
d
(1)

6
d
(1)

7
d
(1)

6
d
(1)

7
d
(1)

6
d
(1)

7

z1

y1 z̄4 ȳ3 x̄2

ȳ3

x̄2

5 4 5

skin

aux

x̄2

y1

d
(1)

5
d
(1)

5
d
(1)

4

ȳ3

z̄4 z̄4

x̄2

z̄4

ȳ3

z1

d
(1)

4z̄4

4x1

z1x1 y1

ȳ3 z̄4 d
(1)

2

32

z̄4x̄2 ȳ3

d
(1)

3

aux

skin

d
(7)

5

4
x1

d
(7)

4
z̄4

ȳ3

z1

y1

x1

y1

z1

ȳ3

z̄4 d
(7)

5

5 x̄2

z̄4

ȳ3

d
(7)

4

4 5

skin

aux

ȳ3

z̄4

x̄2

Fig. 3. The evolution of Π(〈4, 3〉) until the last application of rules in (a)–(c).

Let us consider now the last configuration in Figure 3. Here only rules in (j)
can be applied. These rules dissolve those membranes contained in membrane
aux that have at least one object representing a literal of ϕ. The objects in-

Solving SAT by P Systems in Linear Time in the Number of Variables 177

volved by these dissolution rules are chosen non-deterministically. One possible
configuration after the application of these rules can be seen in Figure 4.

z̄4 z̄4

ȳ3

z̄4

skin
aux

d
(1)

6
d
(1)

7
d
(1)

6
d
(1)

7
d
(1)

6
d
(1)

7
d
(1)

6
d
(1)

7

z1

y1

ȳ3

e

e
e

e
e e

e

e

Fig. 4. The configuration of Π(〈4, 3〉) after the application of rules in (j).

The correctness of Π(〈m,n〉) started with a formula ϕ ∈ Formn containing
m clauses (n,m ∈ N) follows from the following statement.

Lemma 1. Let ϕ ∈ Formn containing m clauses (n,m ∈ N). Starting Π(〈m,n〉)
with ϕ in its input membrane, Π(〈m,n〉) sends out to the environment yes if

and only if Algorithm 1 terminates with yes on input ϕ.

Proof. First we define a bijection between the membranes with labels in [2n+1]
and the set {u ∈ {0, 1}∗ | |u| ≤ n} recursively. Let f(1) := ε and consider a
membrane m with label 2i + k (i ∈ [n − 1], k ∈ {0, 1}). Assume that f(m) = u
and let m1 and m2 be those membranes with label 2(i + 1) and 2(i + 1) + 1,
respectively, that are created from m. Then let f(m1) := u0 and f(m2) := u1.
Clearly f is a bijection and it in fact corresponds to a pre-order traversal of these
membranes.

For a clause C ∈ Cn and a word u ∈ {0, 1}∗ with |u| = i, we say that C
contains the literals determined by u if the following holds. For every j ∈ [i],
xj ∈ C if the jth letter of u is 1 and x̄j ∈ C otherwise. Let moreover ϕi be the
formula ϕ̂ after the ith iteration of the loop starting at line 1 in Algorithm 1.
Finally, we call a membrane quasi-empty if it does not contain an object of the
form xj,i or x̄j,i (i ∈ [n], j ∈ [m]). Then it is not difficult to see that the following
holds:

• Π(〈m,n〉) sends out to the environment yes with input cod(ϕ) iff

• there is i ∈ [n] and a word u ∈ {0, 1}∗ with |u| = i such that there is a
quasi-empty membrane m with f(u) = m iff

• there is i ∈ [n] and a word u ∈ {0, 1}∗ with |u| = i such that ϕi does not
contain a clause C such that C contains the literals determined by u iff

• Algorithm 1 terminates with yes on input ϕ.

With this, we finished the proof of the lemma.

178 Zsolt Gazdag

Theorem 1. The SAT can be solved by a family Π := (Π(〈m,n〉))m,n∈N of

polarizationless recognizing P systems with the following properties:

(1) Π is polynomially uniform;

(2) the elements of Π are confluent;

(3) for a formula ϕ with n variables and m clauses, starting Π(〈m,n〉) with

cod(ϕ) in its input membrane, Π(〈m,n〉) stops in linear number of steps in

n.

Proof. The fact that Π solves SAT follows from Lemma 1 and Proposition 2.
Property (1) follows from the fact that Π(〈m,n〉 has polynomial size in 〈m,n〉,
for every n,m ∈ N. Property (2) follows form the following observation. Our
system is non-deterministic only when it dissolves the membranes with label
2n + k (using rules in (j)) and when the objects e chose membranes with label
2n or 2n + 1 (first rules in (k)). Clearly these non-deterministic choices do not
affect the output of the system. Property (3) can be seen using the discussion
after Definition 1 concerning the computation of Π(〈m,n〉.

As we have mentioned before, there is a solution of SAT where the used
P systems employ membrane creation and the number of computation steps of
these systems is bounded by the number of variables of the input formula (see [6]
or Section 12.6.1 in [11]). This solution, roughly, works in the following way. For a
formula ϕ with n variables and m clauses, the P system first creates in 2n steps 2n

membranes, each of them corresponding to a possible evaluation of the variables
in Xn. Meanwhile, the system stores in every membrane, by using new objects,
those clauses of ϕ that are satisfied by the interpretation represented by the
membrane. Finally, the system checks in constant steps, using again membrane
creation, whether there is a membrane such that the objects in that membrane
represent ϕ (i.e., the system decides if there is an interpretation that satisfies
every clause in ϕ). As it is stated in [6], the time complexity of this solution is
θ(n). Moreover, it can be seen that the space complexity of this solution (i.e.,
the maximal number of objects and membranes presented in the system at the
same time during its computation) is θ(2nm) = θ(6n).

On the other hand, it can be seen that the space complexity of our solution
is θ(n4n). Indeed, the number of the objects corresponding to the literals of the
input formula is bounded by 4n, and each of these objects can introduce n new
objects (the objects introduced by the first rules in (c)). Moreover, these new
objects are erased after a constant number of steps. It is also worth mentioning
that the solution of [6] has θ(6n) space complexity whatever the input formula is.
On the other hand, the space complexity of our solution can be asymptotically
less than θ(n4n) in certain cases. For example, if the input formula has only
complete clauses, then our P systems use only θ(n2n) objects and membranes.

In summary, while these solutions have the same time complexity, our solu-
tion has asymptomatically less space complexity. On the other hand, the solution
of [6] does not use membrane separation or membranes division rules, while our
solution uses membrane division.

Solving SAT by P Systems in Linear Time in the Number of Variables 179

4 Conclusions

In this paper we presented a polynomially uniform family of P systems that can
decide the satisfiability of a propositional formula in linear time in the number
of the variables in the formula. The given P systems use the classical rules of
P systems with active membranes and, in addition, membrane creation rules
and such elementary membrane division rules which can change the label of the
involved membranes.

It seems that the membrane label changing property in our solution, like in
case of some existing solutions, can be traded for the use of polarizations. In our
solution the membrane label changing is used for the following reason. When
Π(〈m,n〉) applies the first rule in (c), then the label of the membrane is used
to select the applicable rules: for i ∈ [n], in a membrane with label 2i, only the
objects x̄j,i can be subjects of rules, while in a membrane with label 2i + 1,
only the objects xj,i can be rewritten. If there is no possibility of membrane
label changing, we can use polarizations of the membranes to select whether a
variable or its negation can be rewritten. To ensure that after the ith membrane
division only the ith variable or its negation can be rewritten we can do the
following. We can use n copies of the objects in Om,n and add such rules that
at every step when a membrane division happens a new copy of every object in
Om,n is introduced. Moreover, we can define the rules in (c) such that when the
ith copies of the objects are in the membrane then only the literals containing
the ith variable can be subjects of rules.

It is not clear, on the other hand, whether we can get rid of the membrane
creation rules in our solution. This might be a subject of a further research.

5 Acknowledgements

The author gratefully acknowledges the many helpful suggestions of the anony-
mous referees.

References

1. Alhazov, A.: Minimal parallelism and number of membrane polarizations. The

Computer Science Journal of Moldova 18(2), (2010) 149–170

2. Alhazov, A., Pan, L., Paun, G.: Trading polarizations for labels in P systems with

active membranes. Acta Inf. 41(2-3), (2004) 111–144

3. Cecilia, J. M., Garćıa, J. M., Guerrero G. D., Mart́ınez-del-Amor, M. A., Pérez-

Hurtado, I., Pérez-Jiménez, M. J.: Simulating a P system based efficient solution

to SAT by using GPUs. J. Log. Algebr. Program. 79(6), (2010) 317–325

4. Freund, R., Paun, G., Pérez-Jiménez, M.J.: Polarizationless P Systems with Active

Membranes Working in the Minimally Parallel Mode. In: UC. (2007) 62–76

5. Gazdag, Zs., Kolonits, G.: A new approach for solving SAT by P systems with

active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa,

A., Vaszil, Gy. (eds.) Membrane Computing - 13th International Conference, LNCS

7762, (2013) 195–207

180 Zsolt Gazdag

6. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A uniform

solution to SAT using membrane creation. Theor. Comput. Sci. 371(1-2), (2007)

54–61

7. Pan, L., Alhazov, A.: Solving HPP and SAT by P Systems with Active Membranes

and Separation Rules. Acta Inf. 43(2), (2006) 131–145

8. Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), (2000) 108–

143

9. Paun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems.

Journal of Automata, Languages and Combinatorics 6(1), (2001) 75–90

10. Paun, G.: Introduction to membrane computing. In: Applications of Membrane

Computing, (2006) 1–42

11. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane

Computing. Oxford University Press, Inc., New York, NY, USA (2010), http:

//portal.acm.org/citation.cfm?id=1738939

12. Pérez-Jiménez, M.J., Jiménez, Á.R., Sancho-Caparrini, F.: Complexity classes in

models of cellular computing with membranes. Natural Computing 2(3), (2003)

265–285

Solving Hard Problems in
Evolution-Communication P systems with

Energy

Nestine Hope S. Hernandez, Richelle Ann B. Juayong, Henry N. Adorna

Algorithms & Complexity Lab

Department of Computer Science

University of the Philippines Diliman

Diliman 1101 Quezon City, Philippines

E-mail: {nshernandez,rbjuayong,hnadorna}@up.edu.ph

Abstract. In this paper, we present non-confluent solutions to some

NP-complete problems using recognizer Evolution-Communication P sys-

tems with Energy (ECPe systems). We then evaluate the communication

resources used in these systems using dynamical communication mea-

sures proposed for computations in ECPe systems. Specifically, we eval-

uate based on number of communication steps, communication rules and

energy required for all communication.

Keywords: Membrane computing, recognizer P systems, Evolution-Communica-
tion P systems with Energy, communication complexity

1 Introduction

Evolution-Communication P systems with energy [1] (ECPe systems, for short) is
a cell-like variant of P systems which is introduced to investigate communication
on a system where communication is dependent on some ‘energy’ generated when
objects evolve. In [1], dynamical communication resources are also proposed to
evaluate the communication resources of solving problems in ECPe systems.

This study continues the works in [1] by examining the resources used in
solving decision problems, specifically, Vertex Cover Problem (VCP), Indepen-
dent Set problem (ISP) and 3-SAT Problem (3SP). We construct recognizer P
systems (whose definitions are adapted from [7] and [8]) to non-confluently de-
cide on these problems. We use the dynamical communication measures in [1]
to determine the amount of communication steps, rules, and energy employed
in solving such problems.

The content of this paper is arranged as follows: Section 2 formally defines
the NP-complete problems we investigated, Section 3 discusses the formal def-
inition of ECPe systems and how we can decide on problems using the idea of
non-confluence and recognizer P systems. The main contribution of our work is
provided in Section 4. Finally, our conclusions are given in Section 5.

182 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

2 Definitions of some NP-complete problems

We present formal definitions of the three NP-complete problems of interest
for our study. Two of these problems use graphs as inputs while the remaining
problem involves evaluation of boolean formula.

A graph is denoted by G = (V,E) where V is a set of vertices and E ⊆ V ×V
is the set of edges. Note that in this paper, we only consider simple graphs, that
is, graphs with no loops and parallel edges. Shown in Figure 1 is an example of a
graph where V = {1, 2, . . . , 5} and E = {(1, 2), (1, 3), (1, 5), (2, 3), (3, 4), (4, 5)}.
Without loss of generality, it is imposed that each edge in E is represented by a
pair (i, j), i < j.

1 2

3

4

5

Fig. 1. An example of a graph

A vertex cover V C is a set of vertices in V where for all edge (i, j) ∈ E,
either i ∈ V C or j ∈ V C. We denote V Ck (1 ≤ k ≤ |V |) as a vertex cover with
size less than equal to k. It can be observed that in the graph given in Figure 1,
there exists a vertex cover V C3 = {1, 3, 4}.

Definition 1. Vertex Cover Problem (VCP) Given a graph G = (V,E)
and a positive integer k (1 ≤ k ≤ |V |), is there a vertex cover V Ck?

An independent set IS is a set of vertices where for all pair i, j ∈ IS, there
is no edge in E connecting i and j. We let ISk be an independent set of size
at least k. In Figure 1, IS2 = {2, 5} is an independent set of size 2. It can be
observed that IS2 = V − V C3. This is a consequence of the lemma given in [3]
stating that given a graph G = (V,E) and subset V ′ ⊆ V , then V ′ is a vertex
cover for G if and only if V − V ′ is an independent set of G.

Definition 2. Independent Set Problem (ISP) Given a graph G = (V,E)
and a positive integer k (1 ≤ k ≤ |V |), is there an independent set ISk?

In boolean logic, a boolean formula in conjunctive normal form (CNF) in-
volving a set of variables X is a conjunction of a set of propositional clauses
where a propositional clause is defined as a disjunction of a set of variables in
X that may take on values 1 (true) or 0 (false). Disjunction in a clause involves
performing OR-operations on the variables involved while conjunction involves
performing AND-operations on the result of the clause evaluations.

Solving Hard Problems in ECPe systems 183

Formally, a formula φX in CNF over a set of variables X = {x1, x2, ..., xp} is
a conjunction of a set of propositional clauses represented as:

φX = C1 ∧ C2 ∧ . . . ∧ Cm

where m ∈ Z
+ and Ci’s are propositional clauses such that

Ci = (yi1 ∨ yi2 ∨ . . . ∨ yin)

where n ∈ Z
+ and yij ∈ X ∪ {x̄ | x ∈ X}, 1 ≤ j ≤ n. The notation x̄ implies a

negation so that ¯̄x = x.
We define a k-CNF boolean formula as a boolean formula in CNF where each

clause is a disjunction of exactly k variables. We say that a boolean formula is
satisfiable if there exists an assignment for all variables such that the formula
evaluates to true.

Definition 3. 3-SAT Problem (3SP) Given a 3-CNF boolean formula φ over

a set of variables X, is φ satisfiable?

Let a 3-CNF boolean formula φx = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨

x4) where X = {x1, x2, x3, x4}. We say that φ is satisfiable since the formula
evaluates to true when x1 = 0, x2 = 0, x3 = r, x4 = r, r ∈ {0, 1}.

3 ECPe systems

Before we proceed, the readers are assumed to be familiar with the fundamentals
of formal language theory and membrane computing [6].

A new variant of Evolution-Communication P systems [2] has been intro-
duced in [1] to evaluate communication that is dependent on some energy pro-
duced from evolution rules. A special object e is introduced to the system to
represent a quantum of energy. We use the definition for EC P system with
energy (ECPe system) from [1].

Definition 4. An EC P system with energy is a construct of the form

Π = (O, e, µ, w1, . . . , wm, R1, R
′

1
, . . . , Rm, R′

m, iout)

where:

(i) m pertains to the total number of membranes;
(ii) O is the alphabet of objects;
(iii) µ is the membrane structure which can be denoted by a set of paired square

brackets with labels. We say that membrane i is the parent membrane of
a membrane j, denoted parent(j), if the paired square brackets represent-
ing membrane j is located inside the paired square brackets representing
membrane i, i.e. [i . . . [j]j]i. Reversely, we say that membrane j is a child

membrane of membrane i, denoted j ∈ children(i) where children(i) refers
to the set of membranes contained in membrane i. The relation of parent

184 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

and child membrane becomes more apparent when we represent the mem-
brane structure as a tree. Since order does not matter in our model, there
can be multiple trees (isomorphic with respect to children of a node), each
corresponding to the same membrane structure representation.

(iv) w1, . . . , wm are strings over O∗ where wi denotes the multiset of object
present in the region bounded by membrane i.

(v) R1, . . . , Rm are sets of evolution rules, each associated with a region delim-
ited by a membrane in µ;
◦ An evolution rule is of the form a → v where a ∈ O, v ∈ (O ∪ {e})

∗

.
In the event that this type of rule is applied, the object a transforms
into a multiset of objects v in the next time step. Through evolution
rules, object e can be produced, but e should never be in the initial
configuration and object e is not allowed to evolve.

(vi) R′

1
, . . . , R′

m are sets of communication rules, each associated with a mem-
brane in µ; A communication rule can either be a symport or an antiport
rule:
◦ A symport rule can be of the form (aei, in) or (aei, out), where a ∈ O,

i ≥ 1. By using this rule, i copies of object e are consumed to transport
object a inside (denoted by in) or outside (denoted by out) the membrane
where the rule is defined. To consume copies of object e means that upon
completion of the transportation of object a, the occurrences of e are lost,
they do not pass from a region to another one.

◦ An antiport rule is of the form (aei, out; bej , in) where a, b ∈ O and
i, j ≥ 1. By using this rule, we know that there exists an object a in the
region immediately outside the membrane where the rule is declared,
and an object b inside the region bounded by the membrane. In the
application of this rule, object a and object b are swapped using i and
j copies of object e in the different regions, respectively. As in symport
rules, the copies of object e are lost after the application.

We say that a communication rule has a sending and receiving region. For
a rule r ∈ R′

i associated with an in label, its receiving region is region i and
its sending region is the parent(i). The sending and receiving regions are
reversed for a rule r ∈ R′

i associated with an out label. For an antiport rule
r ∈ R′

i, region i and parent(i) are both sending and receiving region. Also,
note that no communication can be applied without the utilization of object
e.

(vii) iout ∈ {0, 1, . . . ,m} is the output membrane. If iout = 0, this means that the
environment shall be the placeholder of the output.

Rules are applied in a nondeterministic, maximally parallel manner. Nondeter-
minism, in this case, has the following meaning: when there are more than two
evolution rules that can be applied to an object, the system will randomly choose
the rule to be applied for each copy of the object. The system assumes a uni-
versal clock for simultaneous processing of membranes; all applicable rules have
to be applied to all possible objects at the same time. The behavior of maxi-
mally parallel application of rule requires that all object that can evolve (or be
transferred) should evolve (or be transferred).

Solving Hard Problems in ECPe systems 185

Note that there is a one-to-one mapping between region and membrane, how-
ever, strictly, region refers to the area delimited by a membrane. A configuration
at any time i, denoted by Ci, is the state of the system; it consists of the mem-
brane structure and the multiset of objects within each membrane. A transition
from Ci to Ci+1 through nondeterministic and maximally parallel manner of
rule application can be denoted as Ci ⇒ Ci+1. A series of transition is said to
be a computation and can be denoted as Ci ⇒

∗ Cj where i < j. Computation
succeeds when the system halts; this occurs when the system reaches a config-
uration wherein none of the rules can be applied. This configuration is called
a halting configuration. If there is no halting configuration—that is, if the sys-
tem does not halt—computation fails, because the system did not produce any
output. Output can either be in the form of objects sent outside the skin, the
outermost membrane, or objects sent into the output membrane.

3.1 Dynamical communication complexity measures for ECPe

systems

Based on [1], the dynamical communication complexity parameters associated
with a given computation for ECPe systems are:

ComN(Ci =⇒ Ci+1) =















1 if at least a communication
rule is used in this
transition,

0 otherwise

ComR(Ci =⇒ Ci+1) = the number of communi-

cation rules used in this

transition,

ComW (Ci =⇒ Ci+1) = the total energy of the

communication rules used

in this transition.

These parameters are related in that ComN ≤ ComR ≤ ComW . They can
be extended in a natural way to results of computations, systems, and sets of
numbers. Again, we adapt the next definition from [1].

186 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

Definition 5. We let N(Π) be the set of numbers computed by the system. For

ComX ∈ {ComN,ComR, ComW}, the following is defined:

ComX(δ) =
h−1
∑

i=0

ComX(Ci =⇒ Ci+1),

for δ : C0 =⇒ C1 =⇒ . . . =⇒ Ch

is a halting computation,

ComX(n,Π) = min{ComX(δ) |

δ : C0 =⇒ C1 =⇒ . . . =⇒ Ch

in Π with the result n},

ComX(Π) = max{ComX(n,Π) | n ∈ N(Π)},

ComX(Q) = min{ComX(Π) | Q = N(Π)}.

3.2 Solving problems in ECPe systems

When solving problems in P systems, [7] uses the notion of a recognizer P system.
For our definition of recognizer ECPe systems, we use the definition from [8].

Definition 6. Let Π be an ECPe system whose alphabet contains two distinct

objects yes and no, such that every computation of Π is halting and during each

computation, exactly one of the objects yes, no is sent out from the skin to signal

acceptance or rejection. If all the computations of Π agree on the result, then

Π is said to be confluent; if this is not necessarily the case, then it is said to

be non-confluent and the global result is acceptance if and only if there exists an

accepting computation.

From [7], we can formally represent a decision problem as a pair Y = (IY , θY)
where IY is a language over a finite alphabet and θY is a total boolean function
over IY . A representation of an instance of a decision problem in P systems is
given by a pair (cod, s) where s ∈ N and cod refers to an encoding of the instance
which will be placed in an input membrane in the initial configuration.

Our notion of a P system solving a problem is adapted from definitions in
both [7] and [8] where a problem is solved using a family of P systems. A family
Π(n), n ∈ Z

+, of P systems (specifically ECPe systems in our context) is a set
of P systems that takes a parameter n to construct each system.

Definition 7. A family Π(n), n ∈ Z
+, of ECPe systems, solves a problem

(IY , θY) if there exists a pair (cod, s) over IY such that for each instance u ∈ IY :

(i) n = s(u) ∈ N and cod(u) is an input multiset of the system Π(n);
(ii) there exists an accepting computation of Π(n) with input cod(u) if and only

if θY (u) = 1.

The following definitions use dynamical communication measures given in Sec-
tion 3.1 to analyze communication over ECPe systems solving problems.

Solving Hard Problems in ECPe systems 187

Definition 8. Let Y = (IY , θY) be a decision problem, Π(n), n ∈ Z
+, be a

family of recognizer ECPe systems solving Y with a pair (cod, s) over IX . For

each instance u ∈ IY ,

ComX(u,Π(n)) = min{ComX(δ) | δ : C0 =⇒ C1 =⇒ . . . =⇒ Ch in Π(n)

with n = s(u) and cod(u) is an input multiset in Π(n)},

where ComX ∈ {ComN,ComR, ComW}.To analyze the communication re-

sources used by Π(n) in solving problem Y , ComX(Y,Π(n)) is defined as:

ComX(Y,Π(n)) = max{ComX(u,Π(n)) | u ∈ IY }.

Definition 9. Let FComX ∈ {FComN,FComR, FComW}. A decision prob-

lem Y = (IY , θY) ∈ FComX(k) if and only if:

(i) There exists a family Π(n), n ∈ Z
+, of confluent recognizer ECPe systems

that decides Y .

(ii) ComX(Y,Π(n)) = k.

The analogous complexity classes for non-confluent recognizer ECPe systems are

NFComN , NFComR, and NFComW .

We say that Y ∈ FComNRW (p, q, r) if and only if Y ∈ FComN(p),
Y ∈ FComR(q) and Y ∈ FComW (r). We use NFComNRW for non-confluent

recognizer ECPe systems.

We note here that the definition of FComX in the previous definition is slightly
modified from its definition in [1].

4 ECPe system solutions to NP-hard Problems

In this section, we shall present solutions to three NP-hard problems, namely,
the vertex cover problem, the independent set problem and the 3-SAT problem.

Let the Vertex Cover Problem (V CP) be represented by a pair V CP =
(IV CP , θV CP) where IV CP = {w(G,k)|w(G,k) is a string representing a graph G
and a positive integer k}. If the graph G contains a vertex cover of size at most
k, θV CP (w(G,k)) = 1; otherwise, θV CP (w(G,k)) = 0.

Theorem 1. V CP ∈ NFComNRW (6, |VG|+3k+6, 3|EG|+|VG|+k+5) where

EG is the edge set and VG is the vertex set of the input graph G.

Proof. To prove our claim, we need to satisfy the requirements in Definition 9.
To do this, we first introduce a family (denoted by ΠV CP (n)) of ECPe systems
for V CP = (IV CP , θV CP). We then show that ComN(V CP,ΠV CP (n)) = 6,
ComR(V CP,ΠV CP (n)) = |VG|+3k+6, and ComW (V CP, ΠV CP (n)) = 3|EG|+
|VG| + k + 5.

The first part of our proof provides a formal definition of ΠV CP (n). We also
define a pair (cod, s) over IV CP and show that for each instance of IV CP , the

188 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

two conditions given in Definition 7 are satisfied. Our family of ECPe systems
for VCP is defined as a tuple ΠV CP (n):

ΠV CP (n) = (O, [0[1]1[2]2[3]3]0, w0, ∅, ∅, R0, R
′

0
, R1, R

′

1
, R2, R

′

2
, R3, R

′

3
)

where:

◦ O = {Aij , vi, v̂i, i,̂i, i | 1 ≤ i < j ≤ n} ∪ {c, c′, d, d′,#0,#1,#2,#3,#4,#5}

∪ {α0, α1, β0, β1, β2}
◦ w0 = v1v2 . . . vn cod(w(G,k)) #0

◦ R0 = {Aij → ie, Aij → je | 1 ≤ i < j ≤ n} ∪ {vi → v̂ie | 1 ≤ i ≤ n}
∪ {#0 → #1,#1 → #2,#2 → #3,#3 → #4,#4 → #5α0β0e

3

∪ {c → c′e2, d → d′e} ∪ β2 → yese, α1 → no e}
◦ R′

0
= {(no e, out), (yes e, out)}

◦ R1 = {v̂i → ̂i | 1 ≤ i ≤ n} ∪ {c′ → e}
◦ R′

1
= {(v̂ie, in), (ie, in;̂ie, out) | 1 ≤ i ≤ n} ∪ {(c′e, in)}

◦ R2 = {d′ → e} ∪ {̂i → in−2 | 1 ≤ i < j ≤ n} ∪ {α0 → α1}

◦ R′

2
= {(̂ie, in), (ie, in; ie, out) | 1 ≤ i ≤ n} ∪ {(d′e, in), (α0e, in)}

∪ {(#5e, in;α1e, out)}
◦ R3 = {β0 → β1, β1 → β2e}
◦ R′

3
= {β0e, in), (#5e, in;β2e, out)}

We associate a pair (cod, s) over IV CP such that for a given instance w(G,k) ∈

IV CP we have n = s(w(G,k)) = |VG| and the encoding cod(w(G,k)) is a multiset
containing Aij for every (i, j) ∈ EG, k copies of object c and |EG| − k copies of
object d. As shown in the construct ΠV CP (n), the encoding is placed as part
of the input in membrane 0. This guarantees that s(u) is a natural number
and cod(u) is an input multiset for ΠV CP (n), thus, satisfying condition (i) of
Definition 7.

In order to show that condition (ii) of Definition 7 is satisfied, we discuss the
system’s computation:

Setup phase In this phase, for each edge in input region 0, an endpoint is nonde-
terministically chosen to cover that edge and represent that edge in the region.
Also, representations of all the vertices are produced in region 1, along with an
amount of energy equal to the maximum size of the vertex cover.

Initially, objects vi (1 ≤ i ≤ n), c and d evolves to v̂i, c′, and d′, respectively
(through rules vi → v̂ie, c → c′e2, d → d′e). At the same time, objects Aij

nondeterministically evolves to one of i and j through any of rules Aij → ie and
Aij → je. The value i or j represents the vertex that is chosen to cover the edge
(i, j) ∈ E.

In the next step, the single quanta of energy produced in the production of
objects v̂i (1 ≤ i ≤ n), c′, and d′ will be used to communicate the v̂i and c′ in
region 1, and the d′ in region 2. The third step involves evolution of commu-
nicated objects in region 1 and 2. Specifically, c′ will evolve to object e and v̂i

becomes ̂i (through rules c′ → e and v̂i → ̂i (1 ≤ i ≤ n)) in region 1 while d′

changes to e in region 2. Also, in region 0, #m−1 evolves to #m in step m for
m = 1, 2, 3.

Solving Hard Problems in ECPe systems 189

Finding a candidate solution. In region 1, vertices to form a candidate vertex
cover are selected and communicated to region 0.

The next step involves swapping the object ̂i in region 1 with its counterpart
i in region 0 through rule (ie, in;̂ie, out) in membrane 1. In this case, at most
one copy of an object i will be placed in region 1. The set of all objects i
that is transported in region 1 represents the candidate vertex cover chosen by
a computation. Note that the size of the vertex cover is at most k. This size
is assured by the limited number of e’s in region 1 that will be used for the
transportation. Also note that for each i representing a vertex in the candidate
vertex cover, there is now a corresponding ̂i in region 0. Moreover, the second
quanta of energy produced in region 0 in the production of c′ is now utilized in
the selection of a candidate vertex cover. During this selection, at most k of the
edges are already verified to be covered by the vertices in the chosen set. Also,
in region 0, #3 evolves to #4 in this step.

Validating candidate solution. Representation of the vertices in the candidate
solution are produced in region 2. These objects are used to validate that all
edges are covered by the selected vertex cover. This is true if no representation
of the edges is retained in region 0.

In the next step, the ̂i in region 0 is transported to region 2 (through rule

(̂ie, in)) to signal that the vertex represented by i is in the candidate vertex cover.
At the same time, #4 evolves to #5α0β0e

3 in region 0. In the succeeding step, the
objects α0 and β0 are communicated to regions 2 and 3, respectively, using up
two of the quanta of energy, while thêi in region 2 will produce |V |−2 copies of i.
The i will then be used to determine if the vertices chosen to cover the remaining
(|E|−k) unverified edges are present in the candidate. This ascertaining is done
by applying the rule (ie, in; ie, out). Note that the maximum degree of simple
graph is |V | − 1. Since one incident edge for each vertex in the candidate vertex
cover has been verified in the previous phase, then a maximum of (|V |−1)−1 =
|V | − 2 edges that may be incident to a vertex still remain to be verified. Also,
during this step, α0 and β0 evolve to α1 and β1 respectively.

Output phase. In this phase, object yes is released to the environment if a valid
vertex cover is selected. Otherwise, object no will be sent out.

Note that region 2 started with |E| − k quanta of energy which equals the
number of unverified edges at the start of the previous phase. Hence, in the case
where not all of the vertices chosen (nondeterministically) to cover the edges in
the setup phase belong to the candidate vertex cover, at least one e will be left
in region 2. This case will allow the object α1 to be sent out to region 0 and the
object #5 to enter region 2 through the rule (#5e, in;α1e, out). If the candidate
solution is indeed a vertex cover, then no e is left in region 2 not allowing the
rule (#5e, in;α1e, out) to be used. Now, at this same step, object β1 evolves to
β2e. Hence, at the next step, the presence of object #5 in region 0 allows the
rule (#5e, in;β2e, out) to be used and β2 exits to region 0 while #5 enters region
3.

190 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

Finally, note that only one of the objects α1 and β2 will be communicated
to region 0 by a computation. If α1 is in region 0, it evolves to no e and no is
then released to the environment. This case signals that the computation failed
to produce the desired vertex cover. Whereas, if β2 is in region 0, it evolves to
yes e and yes is subsequently released to the environment. This case signals that
the computation succeeded in finding a vertex cover with size at most k of the
input graph G.

To complete our proof, we analyze the communication resources at each stage
of the computation.

◦ The setup phase discussed previously takes three transitions. In this phase,
the system communicates c′, d′ and v̂i (1 ≤ i ≤ |VG|) from membrane 0 in
exactly one communication step. Thus:

• The number of communication steps to accomplish this phase is one.
• The number of communication rules applied is 2 + |VG|

• The number of communicated objects is |EG| + |VG|, i.e. (|EG| − k)
number of d′, k number of c′ and |VG| number of v̂i.

◦ Finding a candidate solution requires at least one communication step. In
this phase, there will be one antiport rule for every member of the candidate
solution. Thus:

• The number of communication steps to accomplish this phase is one.
• The maximum number of communication rules occurs when the size of

the candidate solution is k. In this case, the number of communication
rules applied is k.

• Following the previous item, the maximum number of communicated
objects is 2k since for every antiport rule, two objects are being commu-
nicated at the same time.

◦ For the validation and output phase:

• The first communication step is used to initially place the ̂i representing
the vertices of the candidate solution in membrane 2. This communica-
tion step is also necessary for the initial steps of the output phase. For
validating whether all remaining edges are covered, another communica-
tion step is needed. Finally, two additional communication steps will be
used to produce a yes or a no and send to the environment.

• In the first communication step, a maximum of k rules of the form (̂ie, in)
(1 ≤ i ≤ |V |) will be used. Simultaneously, rule (α0e, in) ∈ R′

2
and

(β0e, in) ∈ R′

3
will be used. In the succeeding communication step, a

maximum of k rules of the form (ie, in; ie, out) will be used to validate the
|EG|−k remaining edges. This case occurs when the size of the candidate
solution is exactly k. The next communication steps involves the used
of either (a) (#5e, in;α1e, out) and (no e; out), or (b) (#5e, in;β2e, out)
and (yes e; out). Thus, the maximum number of communication rules
applied will be k + k+2 + 2.

• Following the previous item, the maximum number of communicated
objects will be k + 2 + 2(|EG| − k) + 3.

Solving Hard Problems in ECPe systems 191

From our discussion above, it can be observed that the path with the most
expensive communication resource (steps, rules and objects) is achieved when
the candidate solution examined is of size equal to k and when this candidate is
evaluated to be true. Summing the communication resources at each phase, we
get ComN(V CP, ΠV CP (n)) = 6, ComR(V CP,ΠV CP (n)) = |VG|+ 3k + 6, and
ComW (V CP,ΠV CP (n)) = 3|EG| + |VG| + k + 5.

An Example for VCP Given an instance represented in Figure 1 with k = 3, an
ECPe system solving VCP is a construct:

ΠV CP (5) = (O, [0[1]1[2]2[3]3]0, w0, ∅, ∅, R0, R
′

0
, R1, R

′

1
, R2, R

′

2
, R3, R

′

3
)

where:

◦ O = {Aij , vi, v̂i, i,̂i, i | 1 ≤ i < j ≤ 5} ∪ {c, c′, d, d′,#0,#1,#2,#3,#4,#5}

∪ {α0, α1, β0, β1, β2}

◦ w0 = v1v2v3v4v5A12A13A15A23A34A45c
3d3#0

◦ R0 = {Aij → ie, Aij → je | 1 ≤ i < j ≤ 5} ∪ {vi → v̂ie | 1 ≤ i ≤ 5}
∪ {#0 → #1,#1 → #2,#2 → #3,#3 → #4,#4 → #5α0β0e

3

∪ {c → c′e2, d → d′e} ∪ β2 → yes e, α1 → no e}
◦ R′

0
= {(no e, out), (yes e, out)}

◦ R1 = {v̂i → ̂i | 1 ≤ i ≤ 5} ∪ {c′ → e}

◦ R′

1
= {(v̂ie, in), (ie, in;̂ie, out) | 1 ≤ i ≤ 5} ∪ {(c′e, in)}

◦ R2 = {d′ → e} ∪ {̂i → i3 | 1 ≤ i < j ≤ 5} ∪ {α0 → α1}

◦ R′

2
= {(̂ie, in), (ie, in; ie, out) | 1 ≤ i ≤ 5} ∪ {(d′e, in), (α0e, in)}

∪ {(#5e, in;α1e, out)}
◦ R3 = {β0 → β1, β1 → β2e}
◦ R′

3
= {β0e, in), (#5e, in;β2e, out)}

Below is an example of a computation for ΠV CP (5), represented as a series
of configurations (Ci) (0 ≤ i ≤ 11):
C0: [0 v1v2v3v4v5 A12A13A15A23A34A45 c3 d3 #0 [1]1 [2]2 [3]3]0
C1: [0 v̂1e v̂2e v̂3e v̂4e v̂5e 1e 3e 1e 3e 3e 4e c′3e6 d′3e3 #1 [1]1 [2]2 [3]3]0
C2: [0 1 3 1 3 3 4 e9 #2 [1 v̂1v̂2v̂3v̂4v̂5 c′3]1 [2 d′3]2 [3]3]0
C3: [0 1 3 1 3 3 4 e9 #3 [1 ̂1 ̂2 ̂3 ̂4 ̂5 e3]1 [2 e3]2 [3]3]0
C4: [0 ̂1 ̂3 1 3 3 ̂4 e6 #4 [1 1 ̂2 3 4 ̂5]1 [2 e3]2 [3]3]0
C5: [0 1 3 3 e3 #5α0β0e

3 [1 1 ̂2 3 4 ̂5]1 [2 ̂1 ̂3 ̂4 e3]2 [3]3]0
C6: [0 1 3 3 e3 #5e [1 1 ̂2 3 4 ̂5]1 [2 13 33 43 e3 α0]2 [3β0]3]0
C7: [0 1 3 3 #5e [1 1 ̂2 3 4 ̂5]1 [2 1 3 3 12 3 43 α1]2 [3 β1]3]0
C8: [0 1 3 3 #5e [1 1 ̂2 3 4 ̂5]1 [2 1 3 3 12 3 43 α1]2 [3 β2e]3]0
C9: [0 1 3 3 β2 [1 1 ̂2 3 4 ̂5]1 [2 1 3 3 12 3 43 α1]2 [3 #5]3]0
C10: [0 1 3 3 yese [1 1 ̂2 3 4 ̂5]1 [2 1 3 3 12 3 43 α1]2 [3 #5]3]0
C11: yes [0 1 3 3 [1 1 ̂2 3 4 ̂5]1 [2 1 3 3 12 3 43 α1]2 [3 #5]3]0

Configurations C0 to C3 represents the set-up phase where necessary objects
are placed in their respective regions for the succeeding phases. At the same time,

192 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

transition C0 ⇒ C1 makes use of rules in {Aij → ie, Aij → je | 1 ≤ i, j ≤ 5}
to choose the vertex that covers the edge represented by object Ai,j . Transition
C3 ⇒ C4 represents the phase where a candidate vertex cover is chosen; in the
example computation, the candidate vertex cover is V C3 = {1, 3, 4} as repre-
sented by objects 1, 3 and 4 in region 2. Computation C4 ⇒∗ C7 represents the
verification phase to assure that selected vertex used to cover an edge belongs
to the candidate vertex cover. Lastly, the computation C8 ⇒∗ C11 represents
the output phase. Since all es in region 2 where used up, then α1 will not exit
the region and #5 stays in region 0. This allows β2 to exit region 3, resulting
to the object yes to be communicated to the environment. This means that the
computation succeeded in finding a vertex cover with size at most k of the input
graph G.

If a different transition C0 ⇒ C ′

1
is introduced where

C ′

1
: [0 v̂1e v̂2e v̂3e v̂4e v̂5e 1e 3e 1e 2e 4e 5e c′3e6 d′3e3 #1 [1]1 [2]2 [3]3]0

then the set of vertices chosen to cover the edges of the input graph is {1, 2, 3, 4, 5}.
Since only 3 quanta of energy is present in region 2, the use of rule (ie, in; i′e, out)
(i ∈ {1, 2, 3, 4, 5}) in region 1 is limited to 3 applications. This case implies that
two of the objects 1, 2, 3, 4 and 5 will remain in region 0. Hence, the corre-
sponding ̂i for these remaining object will never exit region 1 and thus cannot
be communicated to region 2 through rule (̂ie, in). This scenario implies that
there will be two e’s left in region 2. This case will allow α1 to be communicated
to region 0 in step 8 and subsequently, no is released to the environment in step
10. This means that not all of the vertices chosen to cover the edges in the setup
phase belong to the candidate vertex cover.

The constructed family of ECPe systems used for VCP can also be used to
solve ISP. This becomes apparent due to the lemma given in [3]. Note that the
only difference will be the encoding of the instance for ISP where the initial
copies of object c will be |VG| − k and d has |EG| − (|VG| − k). Also, at the end
of a successful computation, the elements of ISk, 1 ≤ k ≤ |V | is represented by

object ̂i in region 1 (as illustrated by objects ̂2,̂5 representing IS2 = {2, 5} in
the previous example).

Formally, let the Independent Set Problem (ISP) be represented by a pair
ISP = (IISP , θISP) where IISP = {w(G,k)|w(G,k) is a string representing a graph
G and a positive integer k}. If the graph G contains an independent set of size
at least k, θISP (w(G,k)) = 1; otherwise, θISP (w(G,k)) = 0.

Corollary 1. ISP ∈ NFComNRW (6, 4|VG| − 3k + 6, 3|EG| + 2|VG| − k + 5)
where EG is the edge set and VG is the vertex set of the input graph G.

We now present a solution to the 3-SAT problem in ECPe systems. Let
the 3-SAT problem (3SP) be represented by a pair (I3SP , θ3SP) where I3SP =
{wφX

|wφX
is a string representing a 3-CNF boolean formula φX}. Boolean func-

tion θ3SP (wφX
) evaluates to 1 if φ is satisfiable, otherwise, θ3SP (wφX

) = 0.

Theorem 2. 3SP ∈ NFComNRW (5, 2n+3, 4n+3) where n is the number of

clauses for the input 3-CNF boolean formula φX .

Solving Hard Problems in ECPe systems 193

Proof. A family of ECPe systems that solves the 3-SAT problem is represented
as a construct Π3SP :
Π3SP (n) = (O, [0[1]1 . . . [n]n[n+1]n+1]0, w0, ∅, . . . , ∅, R0, R

′

0
, R1, R

′

1
, . . . , Rn, R′

n,
Rn+1, R

′

n+1
)

where:

◦ O = {xd, d, d̂ | 1 ≤ d ≤ 3n} ∪ {0dq, 1dq | 1 ≤ d ≤ 3n, 1 ≤ q ≤ n}

∪ {Ai1i2i3,q, Bi1i2i3,q | 1 ≤ q ≤ n and ir ∈
3n
⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}}

∪ {c,#0,#1,#2,#3,#4, Ω, β0, β1,no, yes, e}

◦ w0 = x1x2 . . . x3n #0 cod(wφX
)

◦ R0 = {xd → 0d10d20d3, xd → 1d11d21d3 | 1 ≤ d ≤ 3n}

∪ {Ai1i2i3,q → Bi1i2i3,qce
2 | 1 ≤ q ≤ n and ir ∈

3n
⋃

d=1

{d, d̂}, ∀r ∈ {1, 2, 3}}

∪ {#0 → #1Ωe,#1 → #2,#2 → #3,#3 → #4,#4 → yes e2}

∪ {d → e, d̂ → e | 1 ≤ d ≤ 3n}

◦ R′

0
= {(no e, out), (yes en+2, out)}

◦ For 1 ≤ q ≤ n:

• Rq = {Bi1i2i3,q → i1i2i3β0e | ir ∈
3n
⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {β0 → β1}

• R′

q = {(Bi1i2i3,qe, in) | ir ∈
3n
⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {(ce, in;β1e, out)}

∪ {(0dqe, in; d̂e, out), (1dqe, in; de, out) | 1 ≤ d ≤ 3n}

◦ Rn+1 = {Ω → no e}
◦ R′

n+1
= {(Ωe, in), (β1e, in; no e, out)}

We associate a pair (cod(wφX
), s(wφX

)) over IφX
where for each instance wφX

∈

IφX
we have s(wφX

) being the number of clauses for the boolean formula φX ,
i.e. s(wφX

) = n. The encoding cod(wφX
) is a multiset containing Ai1i2i3,q for

1 ≤ q ≤ n where if Cq = yi1,q ∨ yi2,q ∨ yi3,q, then

il =

{

d if yil,q = xd

d̂ if yil,q = x̄d

for l = 1, 2, 3, where xd ∈ {x1, x2, . . . , x3n}. It can be noticed that we limit the
cardinality of X to be at most 3n since the maximum number of variables that
can simultaneously exist on a 3-CNF boolean formula is 3n (that is, when all
variables in all clauses are distinct). If cardinality of the set X is more than the
number of variables present in the boolean formula, then the extra variables can
take any boolean value without affecting the satisfiability of the formula being

194 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

evaluated. Our choice of s(wφX
) for an instance wφX

∈ IφX
assures that s(wφX

)
is a natural number. Furthermore, our constructed Π3SP includes the encoding
cod(wφX

) in region 1. This restriction guarantees that condition (i) of Definition
7 is satisfied.

To show that condition (ii) holds, we discuss how the computation proceeds
as follows:

Setup and finding a candidate solution phase. In these steps, each variable is
assigned a truth value. The input representation of each clause is also distributed
to different regions.

The initial configuration requires object Ai1i2i3,q in region 0 as input to rep-
resent each clause in φX where q (1 ≤ q ≤ n) symbolizes clause Cq and i1, i2
and i3 corresponds to the variables contained in the clause Cq. In the next step,
objects Ai1i2i3,q will evolve to object Bi1i2i3,q and c, producing two quanta of

energy through rules Ai1i2i3,q → Bi1i2i3,qc e2 (1 ≤ q ≤ n, il ∈
3n
⋃

d=1

{d, d̂}). Objects

xd will be consumed through one of rules xd → 0d10d20d3 and xd → 1d11d21d3

(1 ≤ d ≤ 3n) simultaneously. This choice represents the possible truth assign-
ment for all variable xd such that if the latter rule is used, this means xd = 1,
otherwise, xd = 0. Also, during this step, #0 evolves to #1Ωe. Upon completion
of this step, the system determines a candidate assignment for variables in X.

Validating candidate solution and output phase. Simultaneously, each clause is
checked whether it evaluates to true. If all clauses evaluate to true, the object
yes is sent to the environment, otherwise, object no is sent out.

The next step involves validating the current candidate assignment. In this
time step, object Bi1i2i3,q is communicated to region q through rule (Bi1i2i3,qe, in).
At the same time, #1 in region 0 evolves to #2 while Ω enters region n+1. While
#2 in region 0 evolves to #3 and Ω in region n+1 evolves to no e, the Bi1i2i3,q’s
evolve through rule Bi1i2i3,q → i1i2i3β0e. The objects i1, i2 and i3 produced by

this rule may take on values d (interpreted as xd is contained in clause Cq) or d̂
(interpreted as clause Cq contains x̄d), xd ∈ X. Also, #2 in region 0 evolves to
#3 while Ω in region n + 1 evolves to no e.

The quanta of energy left in region 0, as well as the object e produced in the
aforementioned rule can be utilized to apply the antiport rules (0dqe, in; d̂e, out)
and (1dqe, in; de, out) in any one of the objects i1, i2 and i3 present in a region
q (1 ≤ q ≤ n). Meanwhile, #3 evolves to #4 in region 0 and β0 evolves to
β1 in regions 1 to n. Note that only a single application of any one of the
antiport rules can be applied per region, which represents that for a clause
Cq = (yi1,q ∨ yi2,q ∨ yi3,q), at least one of the yil,q’s (1 ≤ q ≤ 3) evaluates
to 1. If all Cq’s are satisfied, all the quanta of energy in regions 0 to n will
be consumed. Henceforth, communication rules will no longer be applicable in
membranes 1 to n+1. Afterwhich, #4 evolves to yes e then yes is communicated
to the environment. If at least one of the Cq’s is not satisfied, then at least one of
regions 1 to n will have an e left, enabling at least one β1 to be communicated to
region 0. The presence of a β1 in region 0 will allow the rule (β1e, in; no e, out) to

Solving Hard Problems in ECPe systems 195

be used. This scenario results to the presence of no in region 0 and subsequently,
the release of no to the environment.

We now evaluate the communication resources used as final requirement to
satisfy Definition 9.

◦ In the setup and finding a candidate phase, only one communication step is
needed to communicate each B object (representing a particular clause) from
membrane 0 using one symport rule for each clause. This communication step
also involves transporting an object Ω in membrane n + 1.

• number of communication step is one.
• number of communication rules is n+1.
• number of communication steps is n+1.

◦ In the validation and output phase,

• the maximum number of communication step occurs when some clauses
are satisfied and other clauses are not satisfied. This scenario will require
two communication steps for the validation phase. Another two commu-
nication steps will be dedicated to communication a no to the skin, and
outside the system. Thus, maximum number of communication step is
four.

• the maximum number of communication rules occurs when the chosen
variable assignment of the system evaluates to false. In such a case, each
of the n clauses will use any one of antiport rules (0dqe, in; ̂de, out) or
(1dqe, in; de, out) where d refers to a variable and q refers to a clause (for
satisfied clauses) and (ce, in;β1e, out) (for unsatisfied clauses). Note that
since our rules are local to membranes/regions, the (ce, in;β1e, out) in
a membrane i is different from (ce, in;β1e, out) in a membrane j. The
output phase will be using two communication rules, (β1e, in; no e, out)
and (no e, out). Therefore, the maximum number of communication rules
will be n + 2.

• the maximum number of communication rules occurs when the chosen
variable assignment of the system evaluates to true. In such a case, there
will be 2n quanta of energy needed for executing antiport rules for satis-
fied clause (as shown in previous item) and another n quanta of energy
for executing (yes en+2, out). This occurrence means the maximum num-
ber of quanta of energy used is 3n + 2.

It can be observed that the computations to compute the maximum number of
communication steps, rules and objects are not necessarily the same. In fact,
while the maximum number of communication rules occurs when the chosen
variable assignments evaluates to false, the maximum number of energy for com-
munication occurs when the chosen variable assignment evaluates to true. In
summary, ComN(3SP, Π3SP (n)) = 5, ComR(3SP,Π3SP (n)) = 2n + 3, and
ComW (3SP,Π3SP (n)) = 4n + 3.

An Example for 3SP. Given an instance of a 3-CNF boolean formula
φx = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) where X = {x1, x2, x3, x4},

196 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

an ECPe system solving 3SP is a construct:

Π3SP (3) = (O, [0[1]1[2]2[3]3[4]4]0, w0, ∅, . . . , ∅, R0, R
′

0
, R1, R

′

1
, R2, R

′

2
, R3, R

′

3
, R4, R

′

4
)

where:

◦ O = {xd, d, d̂ | 1 ≤ d ≤ 9} ∪ {0dq, 1dq | 1 ≤ d ≤ 9, 1 ≤ q ≤ 3}

∪ {Ai1i2i3,q, Bi1i2i3,q | 1 ≤ q ≤ 3 and ir ∈
9
⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}}

∪ {c,#0,#1,#2,#3,#4, Ω, β0, β1,no, yes, e}

◦ w0 = x1x2 . . . x9 #0 cod(wφX
)

◦ R0 = {xd → 0d10d20d3, xd → 1d11d21d3 | 1 ≤ d ≤ 9}

∪ {Ai1i2i3,q → Bi1i2i3,qce
2 | 1 ≤ q ≤ 3 and ir ∈

9
⋃

d=1

{d, d̂}, ∀r ∈ {1, 2, 3}}

∪ {#0 → #1Ωe,#1 → #2,#2 → #3,#3 → #4,#4 → yese2}

∪ {d → e, d̂ → e | 1 ≤ d ≤ 9}

◦ R′

0
= {(no e, out), (yes e5, out)}

◦ For 1 ≤ q ≤ 3:

• Rq = {Bi1i2i3,q → i1i2i3β0e | ir ∈
9
⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {β0 → β1}

• R′

q = {(Bi1i2i3,qe, in) | ir ∈
9
⋃

d=1

{d, d̂},∀r ∈ {1, 2, 3}} ∪ {(ce, in;β1e, out)}

∪ {(0dqe, in; d̂e, out), (1dqe, in; de, out) | 1 ≤ d ≤ 9}

◦ R4 = {Ω → no e}
◦ R′

4
= {(Ωe, in), (β1e, in; no e, out)}

Below is an example of a computation for Π3SP (3), represented as a series
of configurations (Ci) (0 ≤ i ≤ 6):
C0: [0 x1x2x3x4x5x6x7x8x9 #0 A

1̂23,1A12̂3,2A1̂24,3 [1]1 [2]2 [3]3 [4]4]0
C1: [0 011012013 021022023 031032033 141142143 051052053 061062063 071072073

081082083091092093 #1Ωe B
1̂23,1ce

2 B
12̂3,2ce

2 B
1̂24,3ce

2 [1]1 [2]2 [3]3 [4]4]0
C2: [0 011012013 021022023 031032033 141142143 051052053 061062063 071072073

081082083 091092093 #2 c3e3[1 B
1̂23,1]1 [2 B

12̂3,2]2 [3 B
1̂24,3]3 [4 Ω]4]0

C3: [0 011012013 021022023 031032033 141142143 051052053 061062063 071072073

081082083 091092093 #3 c3e3[1 1̂23β0e]1 [2 12̂3β0e]2 [3 1̂24β0e]3 [4 no e]4]0
C4: [0 1̂ 012013 021 2̂ 023 031032033 141142 4 051052053 061062063 071072073

081082083 091092093 #4 c3 [1 011 23 β1]1 [2 1 022 3 β1]2 [3 1̂2 143 β1]3 [4 no e]4]0
C5: [0 e 012013 021 e 023 031032033 141142 e 051052053 061062063 071072073

081082083 091092093 yes e2 c3 [1 011 23 β1]1 [2 1 022 3 β1]2 [3 1̂2 143 β1]3 [4 no e]4]0
C6: yes [0 012013 021023 031032033 141142 051052053 061062063 071072073

Solving Hard Problems in ECPe systems 197

081082083 091092093 c3 [1 011 23 β1]1 [2 1 022 3 β1]2 [3 1̂2 143 β1]3 [4 no e]4]0

Configurations C0 to C3 represent the set-up phase where necessary objects
are placed in their respective regions for the succeeding phases. At the same time,
transition C0 ⇒ C1 makes use of rules in {xd → 0d10d20d3, xd → 1d11d21d3 | 1 ≤

d ≤ 9} to choose assignment for each variable xd ∈ X.
Transition C3 ⇒ C4 represents the validation phase where the antiport rules

{(0dqe, in; d̂e, out), (1dqe, in; de, out) | 1 ≤ d ≤ 9} are used to check if the candi-
date assignments satisfies all clauses.

Note that in C4 all the quanta of energy in regions 0 to 3 were consumed.
Henceforth, communication rules will no longer be applicable in membranes 1 to
4. Finally, transition C4 ⇒∗ C6, represents the output phase where the object yes
is released to the environment to mean that a satisfying assignment was found
for the given 3-CNF formula.

If we introduce a different transition C0 ⇒ C ′

1
where configuration C ′

1
is

represented as:

C ′

1
: [0 111112113 021022023 131132133 041042043 051052053 061062063 071072073

081082083091092093 #1Ωe B
1̂23,1ce

2 B
12̂3,2ce

2 B
1̂24,3ce

2 [1]1 [2]2 [3]3 [4]4]0

representing the assignment x1 = 1, x2 = 0, x3 = 1, x4 = 0. Note that in
step 4, a quanta of energy is left in each of the regions 0 and 3. Hence, in the
next step, we can apply the communication rule (ce, in;β1e, out) in membrane
3. The presence of β1 in region 0 allows the application of (β1e, in; no e, out) in
membrane 4. Finally, in step 7, the object no is released to the environment to
mean that the candidate solution does not satisfy the given 3-CNF formula.

5 Conclusion

In this paper, we studied the communication resources needed to non-confluently
decide NP-complete problems namely, Vertex Cover Problem (VCP), conse-
quently Independent Set Problem (ISP), and 3-SAT problem (3SP) using recog-
nizer Evolution-Communication P systems with energy (ECPe systems).

In the solutions presented, it can be observed that while the number of mem-
branes needed to solve VCP is constant (exactly four membranes), the number
of membranes needed to solve 3SP is dependent on the number of clauses. How-
ever, in the results presented in both solutions, the number of communication
steps are constant whereas the number of communication rules and energy for
communication is dependent on the number of vertices and edges (for VCP),
and clauses (for 3SP).

It remains an open problem whether we can reduce the number of communi-
cation steps, rules and energy; for example, can we construct recognizer ECPe
systems using constant amount of rules or energy for communication? Also, from
our results, it can be observed that the amount of communication steps needed
to solve VCP is greater than the amount needed to solve 3SP, can we achieve a

198 N.H. S. Hernandez, R.A. B. Juayong, H. N. Adorna

better result? Otherwise, can we characterize the class of problems that can be
decided using five communication steps? six communication steps? or lower num-
ber of communication steps? It is also worth mentioning that the constructed
ECPe systems used in this paper decides non-confluently. Evaluating commu-
nication resources on ECPe systems that decide on problems confluently also
remains to be explored.

As final remarks, part of our future work includes exploring the use of carpets
in understanding communication over the recognizer ECPe systems defined for
solving VCP and 3SP. It is worth noting that Sevilla carpets can be used to
provide a visualization of communication on ECPe systems as explored in [5].

Acknowledgments

N.H. S. Hernandez would like to thank the UP Diliman College of Engineering
through the Jose P. Dans Jr. professorial chair for the financial support. R.A. B.
Juayong is supported by the Engineering Research and Development for Tech-
nology (ERDT) Scholarship Program. H.N. Adorna is funded by a DOST-ERDT
research grant and the Semirara Mining Corporation professorial chair of the UP
Diliman, College of Engineering.

References

1. H. Adorna, Gh. Păun, M. Pérez-Jiménez. On Communication Complexity in

Evolution-Communication P systems, Romanian Journal of Information Science

and Technology, Vol. 13, No. 2, pp. 113-130, 2010.

2. M. Cavaliere. Evolution-Communication P systems. Membrane Computing.

Proc. WMC 2002, Curtea de Argeş (Gh. Păun et al., eds.), LNCS 2597, Springer,

Berlin, pp. 134-145, 2003.

3. M.R. Garey, D.S. Johnson. Computers and Intractability, A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979, ISBN 0-7167-1044-7.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez. Computing Backwards with P sys-

tems. WMC10, Curtea de Argeş, Romania, pp. 282-295, 2009.

5. R.A. B. Juayong, H. N. Adorna. Communication Complexity of Evolution-

Communication P systems with Energy and Sevilla Carpet. Philippine Com-

puting Journal, Vol. 6, No. 1, pp. 34-40, 2010.

6. Gh. Păun. Introduction to Membrane Computing. In: Gabriel Ciobanu, Mario J.

Pérez-Jiménez and Gheorghe Păun, eds: Applications of Membrane Computing,

Natural Computing Series. Springer, pp.1-42. (2006)

7. M. Pérez-Jiménez. A Computational Complexity Theory in Membrane Comput-

ing. Workshop on Membrane Computing, pp. 125-148, 2009.

8. A. E. Porreca, G. Mauri, C. Zandron. Non-confluence in divisionless P systems

with active membranes. Theoretical Computer Science Vol. 411, No. 6, pp. 878-

887, 2010.

9. X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L. Pan, M. Pérez-Jiménez. Ma-

trix Representation of Spiking Neural P Systems, Membrane Computing: Lecture

Notes in Computer Science, Vol. 6501, pp. 377-391, 2011.

About One-Sided One-Symbol
Insertion-Deletion P Systems

Sergiu Ivanov1 and Sergey Verlan1,2

1
Laboratoire d’Algorithmique, Complexité et Logique,

Université Paris Est – Créteil Val de Marne,

61, av. gén. de Gaulle, 94010 Créteil, France

email: {sergiu.ivanov,verlan}@u-pec.fr
2

Institute of Mathematics and Computer Science,

Academy of Sciences of Moldova,

Academiei 5, Chisinau, MD-2028, Moldova

Abstract. In this article we consider insertion-deletion P systems in-

serting or deleting one symbol in one or two symbol(s) left context (more

precisely of size (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)). We show that com-

putational completeness can be achieved by using only 3 membranes in

a tree-like structure. Hence we obtain a trade-off between the sizes of

contexts of insertion and deletion rules and the number of membranes

sufficient for computational completeness.

1 Introduction

The operations of insertion and deletion were first considered with a linguis-
tic motivation [19, 8, 22]. Another inspiration for these operations comes from
the fact that the insertion operation and its iterated variants are generalized
versions of Kleene’s operations of concatenation and closure [14], while the dele-
tion operation generalizes the quotient operation. A study of properties of the
corresponding operations may be found in [10–12]. However, insertion and dele-
tion also have interesting biological motivations, e.g., they correspond to a mis-
matched annealing of DNA sequences; these operations are also present in the
evolution processes in the form of point mutations as well as in RNA editing, see
the discussions in [3, 4, 26] and [24]. These biological motivations of insertion-
deletion operations led to their study in the framework of molecular computing,
see, for example, [6, 13, 24, 27].

In general, an insertion operation means adding a substring to a given string
in a specified (left and right) context, while a deletion operation means removing
a substring of a given string from a specified (left and right) context. A finite
set of insertion-deletion rules, together with a set of axioms provide a language
generating device: starting from the set of initial strings and iterating insertion-
deletion operations as defined by the given rules, one gets a language.

Even in their basic variants, insertion-deletion systems are able to charac-
terize the recursively enumerable languages. Moreover, as it was shown in [20],
the context dependency may be replaced by insertion and deletion of strings of

200 Sergiu Ivanov and Sergey Verlan

sufficient length, in a context-free manner. If the length is not sufficient (less or
equal to two) then such systems are decidable and a characterization of them
was shown in [28].

Similar investigations were continued in [21, 16, 17] on insertion-deletion sys-
tems with one-sided contexts, i.e., where the context dependency is present only
from the left or only from the right side of all insertion and deletion rules. The
papers cited above give several computational completeness results depending
on the size of parameters of insertion and deletion rules. We recall the interest-
ing fact that some combinations are not leading to computational completeness,
i.e., there are recursively enumerable languages that cannot be generated by
such devices, in particular, by systems of size (1, 1, 0; 1, 1, 0), where the first
three numbers represent the maximal size of the inserted string and the maxi-
mal size of the left and right contexts, respectively, while the last three numbers
provide the same information about deletion rules.

In order to increase the computational power of the corresponding variants
they were considered in the framework of P systems [18] and it was shown that
computational completeness can be achieved if 5 membranes are used. In [7]
tissue P systems are considered and computational completeness is achieved with
4 membranes. In [2] computational completeness is achieved by simpler insertion-
deletion rules, but instead using priorities. A summary of related results can be
found in [1, 29].

In this article we would like to consider the trade-offs between the sizes of
the contexts and the number of membranes. We consider insertion-deletion P
systems of size (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0), and show that computational
completeness can be achieved with only 3 membranes. We remind that pre-
viously it was shown that 4 membranes are enough to achieve computational
completeness with insertion and deletion rules of size (1, 1, 0).

2 Preliminaries

In this paper, the empty string is denoted by λ, the family of recursively enu-
merable, context-sensitive, and context-free languages by RE, CS and CF , re-
spectively. We will use the notation |w| for the length of a string w, while the
number of occurrences of the symbol a in the string w will be referred to by the
notation |w|a. We do not define the standard concepts of the theory of formal
languages in this section; the reader is invited to consider [25] for further details.

A type-0 grammar G = (N,T, S, P) is said to be in Geffert normal form [9]
if the set of non-terminals N is defined as N = {S,A,B,C,D}, T is an alphabet
and P only contains context-free rules of the forms S → uSv with u ∈ {A,C}+

and v ∈ (T ∪{B,D})+ as well as S → λ and two (non-context-free) erasing rules
AB → λ and CD → λ.

We remark that according to [9] the generation of a string using a grammar
in this normal form is done in two stages. During the first stage only context-free
rules S → uSv can be applied (this follows from the fact that u ∈ {A,C}+ and
v ∈ ({B,D} ∪ T)+). During the second stage only non-context-free rules can

About One-Sided One-Symbol Insertion-Deletion P Systems 201

be applied (because there is no more symbol S in the string). The transition
between the stages is done by the rule S → λ (note that in [9] a set of rules of
the form S → uv is used instead leading to an equivalent result). Note that the
symbols A,B,C,D are treated like terminals during the first stage and so, each
rule S → uSv is in some sense “linear”.

Throughout this paper we will use the special Geffert normal form. Let G =
(N,T, S, P) be a grammar with N = N ′ ∪ N ′′, N ′ ∩ N ′′ = ∅, where N ′′ =
{A,B,C,D} and N ′ is a set of non-terminals containing S, S′ and some other
auxiliary non-terminals (that are introduced by the translation from the Geffert
normal form to the special variant). We say that G is in the special Geffert

normal form if it only has two (non-context-free) erasing rules AB → λ and
CD → λ and several context-free rules of one of the following forms:

X → bY, where X,Y ∈ N ′, b ∈ N ′′, X 6= Y
X → Y b, where X,Y ∈ N ′, b ∈ T ∪ N ′′, X 6= Y
S′ → λ.

Moreover, it may be assumed without loss of generality that for any two rules
X → w and U → w in P with the first symbol of w different from S, S′, we have
U = X.

Any grammar G in the Geffert normal form can be transformed into a gram-
mar G′ in the special Geffert normal form generating the same language by
replacing the “linear” rules by right- and left-linear ones. Let S′ be a new non-
terminal that will be used to mark the transition from the first stage to the
second. The rule S → uSv of G, where u = a1 . . . an and v = b1 . . . bm is re-
placed in G′ by the following rules: S → a1X1, X1 → a2X2, . . . , Xn−1 → anXn,
Xn → Xn+1bm, . . . , Xn+m → Sb1, where X1, . . . , Xn+m are new non-terminals
different from each other as well as from the corresponding non-terminals intro-
duced by the translation of other rules. We also add rules Xn+m → S′bm and
S′ → λ to G′ in order to mark the transition to the second stage. Note that the
rule S → λ is not preserved in G′.

We also note that during the first stage of the derivation of a grammar in the
special Geffert normal form there is exactly one non-terminal from N ′ present
in the string and during the second stage the string does not contain any symbol
from N ′.

An insertion-deletion system is a construct Γ = (V, T,A, I,D), where V is
an alphabet, T ⊆ V is the terminal alphabet (the symbols from V \T are called
non-terminal symbols), A ⊆ V ∗ is the set of axioms, and I and D are finite sets
of triples of the form (u, α, v), where u, α, and v are strings over V , with α 6= λ.
The triples in I are called insertion rules, and those in D are called deletion

rules.
An insertion rule (u, α, v) ∈ I indicates that the string α can be inserted

between u and v, while a deletion rule (u, α, v) ∈ D indicates that α can be
removed from between the contexts u and v. In other words, (u, α, v) ∈ I
corresponds to the rewriting rule uv → uαv, while (u, α, v) ∈ D corresponds to
the rewriting rule uαv → uv.

202 Sergiu Ivanov and Sergey Verlan

We denote the “derives by insertion” relation induced by insertion rules by
=⇒ins. Formally, x =⇒ins y (“x derives y by insertion”) if and only if x = x1uvx2

and y = x1uαvx2, x1, x2 ∈ V ∗, and there exists (u, α, v) ∈ I. By the notation
=⇒del we refer to the “derives by deletion” relation defined by deletion rules.
Formally, x =⇒del y (“x derives y by deletion”) if and only if x = x1uαvx2 and
y = x1uvx2, x1, x2 ∈ V ∗, and there exists (u, α, v) ∈ D. By =⇒ we refer to the

union of the relations =⇒ins and =⇒del, and by
∗

=⇒ we denote the reflexive and
transitive closure of =⇒.

Instead of relying on separate sets I and D, we will often consider their union
R = I∪D and distinguish between insertion and deletion rules by the subscripts

ins and del. Thus instead of (u, α, v) ∈ I, we will write (u, α, v)ins, and instead
of (u, α, v) ∈ D, we will write (u, α, v)del.

The language generated by the insertion-deletion system Γ = (V, T,A, I,D)
is defined as follows:

L(Γ) = {w ∈ T ∗ | x
∗

=⇒ w, x ∈ A}.

The complexity of an insertion-deletion system Γ = (V, T,A, I,D) is de-
scribed by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},
m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},
m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

The total size of an insertion-deletion system Γ of size (n,m,m′; p, q, q′) is de-
fined as the sum of all the numbers from the vector: Σ(Γ) = n+m+m′+p+q+q′.

By INSm,m′

n DELq,q′

p we denote the families of languages generated by inser-
tion-deletion systems of size (n,m,m′; p, q, q′).

If ∗ is specified instead of one of the parameters n, m, m′, p, q, or q′, then
there are no restrictions on the length of the corresponding component. In partic-
ular, INS0,0

∗
DEL0,0

∗
denotes the family of languages generated by context-free

insertion-deletion systems.
If one of the numbers from the pairs m, m′ or q, q′ is equal to zero, while the

other one is not, we say that the family is with one-sided context.
An insertion-deletion P system of degree n is the following construct:

Π = (V, T, µ,M1, . . . ,Mn, R1, . . . , Rn)

where

– V is a finite alphabet,
– T ⊆ V is the terminal alphabet,
– µ is the membrane (tree) structure of the system which has n membranes

(nodes). This structure will be represented by a word containing correctly
nested marked parentheses.

– Mi, for each 1 ≤ i ≤ n is a finite language associated with the membrane i.

About One-Sided One-Symbol Insertion-Deletion P Systems 203

– Ri, for each 1 ≤ i ≤ n is a set of insertion and deletion rules with tar-
get indicators associated with membrane i and having the following forms:
(u, x, v; tar)ins, where (u, x, v) is an insertion rule, and (u, x, v; tar)del, where
(u, x, v) is an deletion rule, and tar, called the target indicator, is from the
set {here, in, out}.

Any n-tuple (N1, . . . , Nn) of languages over V is called a configuration of Π.
For two configurations (N1, . . . , Nn) and (N ′

1
, . . . , N ′

n) of Π we write (N1, . . . ,
Nn) =⇒ (N ′

1
, . . . , N ′

n) if one can pass from (N1, . . . , Nn) to (N ′

1
, . . . , N ′

n) by
applying the insertion and deletion rules from each region of µ, in the maximally
parallel way, i.e., in parallel to all possible strings from the corresponding regions,
and following the target indications associated with the rules. We assume that
every string represented in a membrane has arbitrary many copies. Hence, by
applying a rule to a string we get both arbitrary many copies of resulting string
as well as old copies of the same string.

More specifically, if w ∈ Ni and r = (u, x, v; tar)ins ∈ Ri, respectively r =
(u, x, v; tar)del ∈ Ri, such that w =⇒r

ins w′, respectively w =⇒r
del w′, then w′

will go to the region indicated by tar. If tar = here, then the string remains in
Ni, if tar = out, then the string is moved to the region immediately outside the
membrane i (maybe, in this way the string leaves the system), if tar = in, then
the string is moved to one of the regions immediately below region j.

A sequence of transitions between configurations of a given insertion-deletion
P system Π, starting from the initial configuration (M1, . . . ,Mn), is called a
computation with respect to Π. The result of a computation consists of all strings
over T which are sent out of the system at any time during the computation.
We denote by L(Π) the language of all strings of this type. We say that L(Π)
is generated by Π.

As in [23] we denote by ELSPk(insm,m′

n , delq,q′

p) the family of languages
generated by insertion-deletion P systems of degree at most k ≥ 1 having the
size (n,m,m′; p, q, q′).

3 Computational power of one-sided insertion-deletion
systems of small size

In this section we consider insertion-deletion P systems of size (1, 2, 0; 1, 1, 0)
and (1, 1, 0; 1, 2, 0). While the computational power of normal insertion-deletion
systems with these parameters is not yet known, based on observations from [15]
we conjecture that the corresponding models are not computationally complete.
We also recall that most combinations of parameters involving left and right
contexts as well as the insertion or deletion of more than one symbol are known
to produce computationally complete insertion-deletion systems, see [29] for a
complete list.

Theorem 1 ELSP3(ins2,0
1

, del1,0
1

) = RE.

204 Sergiu Ivanov and Sergey Verlan

Proof. Consider a type-0 grammar G = (N,T, P, S) in the special Geffert normal
form and let N ′′ = {A,B,C,D} ⊆ N . We construct an insertion-deletion P
system

Π = (V, T, [1[2[3]3]2]1, {{XS}}, ∅, ∅, R1 ∪ R′

1
, R2, R3)

that simulates G as follows. The rules from P are supposed to be labeled in
a one-to-one manner with labels from the set [1..|P |]. The alphabet of Π is
V = N ∪ T ∪ {Mi | i : X → α ∈ P} ∪ {K,K ′,X}. The sets of rules R1, R2, R3

of Π are defined as follows.
For any rule i : X → bY ∈ P we consider following sets of rules:

Ri
1

= {i.1 : (X, Mi, λ; in)ins},

Ri
2

= {i.2 : (XMi, Y, λ; in)ins} ∪ {i.3 : (a, Mi, λ; out)del | a ∈ N ′′},

Ri
3

= {i.4 : (a, X, λ;here)del | a ∈ N ′′} ∪ {i.5 : (aMi, b, λ; out)ins | a ∈ N ′′}.

For any rule i : X → Y b we consider following sets of rules:

Ri
1

= {i.1 : (X, Mi, λ; in)ins},

Ri
2

= {i.2 : (XMi, b, λ; in)ins} ∪ {i.3 : (a, Mi, λ; out)del | a ∈ N ′′},

Ri
3

= {i.4 : (a, X, λ;here)del | a ∈ N ′′} ∪ {i.5 : (aMi, Y, λ; out)ins | a ∈ N ′′}.

For the rules i1 : AB → λ and i2 : CD → λ and i3 : S′ → λ we consider
following sets of rules:

Ri1
1

= {i1.1 : (λ, K, λ; in)ins},

Ri1
2

= {i1.2 : (K, A, λ; in)del} ∪ {i1.3 : (λ, K, λ; out)del},

Ri1
3

= {i1.4 : (K, B, λ; out)del},

Ri2
1

= {i2.1 : (λ, K ′, λ; in)ins},

Ri2
2

= {i2.2 : (K ′, C, λ; in)del} ∪ {i2.3 : (λ, K, λ; out)del},

Ri2
3

= {i2.4 : (K ′, D, λ; out)del},

Ri3
1

= {i3.1 : (λ, S′, λ;here)del}.

Now for j = 1, 2, 3 we define Rj = ∪1≤i≤|P |
Ri

j and we define R′

1
= {X :

(λ, X , λ; out)del}.
We state that L(Π) = L(G). For this we show how each rule of G can be

simulated in Π. Consider a string wXw′ in membrane 1 and suppose that there
is a rule i : X → bY in P . Then the following unique evolution can happen:

(wXw′, 1) =⇒i.1 (wXMiw
′, 2) =⇒i.2 (wXMiY w′, 3) =⇒i.4

=⇒i.4 (wMiY w′, 3) =⇒i.5 (wMibY w′, 2) =⇒i.3 (wbY w′, 1).

About One-Sided One-Symbol Insertion-Deletion P Systems 205

In the second step it was possible to apply the rule i.3, yielding string wXw′

in membrane 1, but this just returns to the previous configuration.
The rule X → Y b is simulated in a similar manner:

(wXw′, 1) =⇒i.1 (wXMiw
′, 2) =⇒i.2 (wXMibw

′, 3) =⇒i.4

=⇒i.4 (wMibw
′, 3) =⇒i.5 (wMiY bw′, 2) =⇒i.3 (wY bw′, 1).

The rule i1 : AB → λ is simulated as follows (the case of rule i2 : CD → λ
is treated in an analogous way). First a symbol K is inserted in a context-free
manner into the string ww′ by using the rule i1.1, yielding wKw′. If the symbol
to the right of K is not an A, then the only possibility is to apply rule i1.3 which
deletes K and returns the string ww′ to membrane 1. If K is inserted in front of
a symbol A (w′ = Aw′′) then rule i1.2 can be applied and string wKw′′ goes to
membrane 3. Now if w′′ does not start with B, then the computation of this word
is stopped and it does not yield a result. Otherwise (w′′ = Bw′′′), rule i1.4 is
applied yielding wKw′′′ in membrane 2. Now the computation may be continued
in the same manner and K either eliminates another couple of symbols AB if
this is possible, or the string appears in the skin membrane without K and then
is ready for new evolutions.

When the system Π reaches the configuration Xw with w ∈ T ∗, rule X from
R′

1
can be applied yielding a terminal string w in the environment as a result of

the computation.
Now in order to complete the proof, we observe that the only sequences of

rules leading to a terminal derivation in Π correspond to the groups of rules as
defined above. Hence, a derivation in G can be reconstructed from a derivation
in Π. ⊓⊔

Theorem 2 ELSP3(ins1,0
1

del2,0
1

) = RE.

Proof. Consider the type-0 grammar G = (N,T, S, P) in the special Geffert
normal form and denote N ′′ = {A,B,C,D} ⊆ N . Consider as well that the
rules from P are bijectively labelled with the numbers from the set [1..|P |]. We
will now construct the following insertion-deletion P system Π which simulates
G:

Π = (V, T, [1[2[3]3]2]1, {{XS}}, ∅, ∅, R1 ∪ R′

1
, R2 ∪ R′

2
, R3 ∪ R′

3
).

The set of objects of Π will contain new special symbols per each rule of G and
is constructed in the following way:

V = {Mi, Ȳi,M
′

i | i : X → bY ∈ P}

∪ {Mi, Ni, Ȳi,M
′

i | i : X → Y b ∈ P}

∪ {K,K ′,X} ∪ N ∪ T.

For each i : X → bY ∈ R, we construct the following three sets of rules:

Ri
1

= {i.1 : (λ, Mi, λ; in)ins},
Ri

2
= {i.2 : (Mi, Ȳi, λ;here)ins} ∪ {i.3 : (Mi, b, λ; in)ins}

∪ {i.4 : (bȲi, X, λ; out)del},
Ri

3
= {i.5 : (λ, Mi, λ; out)del}.

206 Sergiu Ivanov and Sergey Verlan

For each i : X → Y b ∈ R, we construct the following three sets of rules:

Ri
1

= {i.1 : (λ, Mi, λ; in)ins},
Ri

2
= {i.2 : (Mi, Ni, λ;here)ins} ∪ {i.3 : (Ni, b, λ; in)ins}

∪ {i.4 : (Ȳib, X, λ; out)del},
Ri

3
= {i.5 : (Mi, Ȳi, λ;here)ins} ∪ {i.6 : (λ, Mi, λ;here)del}

∪ {i.7 : (aȲi, Ni, λ; out)del | a ∈ N ′′}.

Moreover, we also build the following three sets:

R′

1
= {i′

1
: (λ, M ′

i , λ; in)ins | i : X → bY ∈ P or i : X → Y b ∈ P},
Ri

2
= {i′

2
: (M ′

i , Y, λ; in)ins | i : X → bY ∈ P or i : X → Y b ∈ P}

∪ {i′
3

: (λ, M ′

i , λ; in)del | i : X → bY ∈ P or i : X → Y b ∈ P},
Ri

3
= {i′

4
: (M ′

iY, Ȳi, λ; out)del | i : X → bY ∈ P or i : X → Y b ∈ P}.

Finally, for the rules i1 : AB → λ, i2 : CD → λ, and i3 : S′ → λ we consider the
following sets of rules:

Ri1
1

= {i1.1 : (λ, K, λ; in)ins},

Ri1
2

= {i1.2 : (K, A, λ; in)del} ∪ {i1.3 : (λ, K, λ; out)del},

Ri1
3

= {i1.4 : (K, B, λ; out)del},

Ri2
1

= {i2.1 : (λ, K ′, λ; in)ins},

Ri2
2

= {i2.2 : (K ′, C, λ; in)del} ∪ {i2.3 : (λ, K, λ; out)del},

Ri2
3

= {i2.4 : (K ′, D, λ; out)del},

Ri3
1

= {i3.1 : (λ, S′, λ;here)del}.

Now for j = 1, 2, 3 we define the sets Rj = ∪1≤i≤|P |
Ri

j and also R′

1
= {X :

(λ, X , λ; out)del}.
We state that L(Π) = L(G). For this we show how each rule of G can be

simulated in Π. Consider a string wXw′ in membrane 1 and suppose that there
is a rule i : X → bY in P . The simulation of this rule occurs in two phases: in
the first phase we rewrite X to bȲi, while in the second one we substitute Ȳi

with Y . The following is the valid first-phase simulation sequence in Π:

(wXw′, 1) =⇒i.1 (wMiXw′, 2) =⇒i.2 (wMiȲiXw′, 2) =⇒i.3 (wMibȲiXw′, 3)
=⇒i.5 (wbȲiXw, 2) =⇒i.4 (wbȲiw

′, 1).

The second phase happens due to the rules in the sets R′

i, i = 1, 2, 3, and consists
of the following steps:

(wȲibw
′, 1) =⇒i′.1 (wM ′

i Ȳibw
′, 2) =⇒i′.2 (wM ′

iY Ȳibw
′, 3)

=⇒i′.4 (wM ′

iY bw′, 2) =⇒i′.3 (wY bw′, 1).

We claim the both the first phase and the second phase simulation sequences
are the only ones which can happen in valid derivations of Π. Indeed, consider

About One-Sided One-Symbol Insertion-Deletion P Systems 207

the wXw′ into which i.1 has inserted an instance of Mi. By inspecting the
symbol requirements of the rules associated with membrane 2, we conclude that
only the rules i.2 and i.3 may become applicable. Suppose that rule i.3 is applied
directly. If, for example, Mi has been inserted to the right of X, this will produce
the string γMibγ

′′Xw′, which will be moved into membrane 3. The case when
i.1 inserts Mi to the right of X is treated in a similar way. Now, the only way
to further move the computation out of membrane 3 is by applying the rule
i.5 which will remove the instance of Mi and move the string into the second
membrane. However, no more rules will be applicable from now on, because the
string contains no service symbols at all, but is in the second membrane.

Suppose now that, after the application of i.1, the rule i.2 is applied k > 1
times. The subsequent application of the rule i.3 will insert an instance of b
after Mi, thus yielding the substring Mib(Ȳi)

k. Again, the only way to move the
string out of membrane 3 is to erase the symbol Mi which produces a string
with a substring of k instances of Ȳi. It is clear that, if X is situated to the left
of this (Ȳi)

k, the string cannot contain ȲiX, which is required by i.3. On the
other hand, if X is to the right of (Ȳi)

k, it will not be possible to apply i.3 again,
because the string does not contain the substring ȲiX preceded by a symbol
from N ′′.

Finally, it is rather clear that, if i.1 does not insert the Mi just to the left
of X, Π will not be able to move the string containing a Ȳi and an X out of
membrane 2, thus blocking without producing any meaningful result.

We will focus on the second-phase simulation sequence now. The application
of the rule i′.1 inserts an instance of M ′

i somewhere and moves the string into
membrane 2. There are only two rules that may become applicable: i′.2 and i′.3.
Suppose that i′.3 is applied directly after i′.1. In this case the system will come
back into the configuration it has been in before the application of i′.1 without
doing any changes to the string whatsoever. Therefore, to actually modify the
string, the rule i′.2 must be applied.

An application of the rule i′.2 inserts exactly one instance of Y after M ′

i and
puts the string into the innermost membrane 3. Now, the only way to exit this
membrane is by applying the rule i′.4, which means that, if the application of the
rule i′.1 has not inserted M ′

i to the left of Ȳi, the system Π will unproductively
block in the third membrane. Consequently, after the application of i′.4, the
string in the second membrane must be of the form wM ′

iY bw′. At this point, two
rules are still applicable, i′.2 and i′.3. Suppose indeed that the rule i′.2 is applied
a second time and inserts another instance of Y after M ′

i , thus yielding the string
wM ′

iY Y bw′ and moving it into membrane 3. Now, however, the rule i′.4 is not
applicable because the string lacks Ȳi and Π will thus block. Therefore, the only
productive way to move the string wM ′

iY bw′ out of the second membrane is to
apply i′.3.

Now consider a rule i : X → Y b. Again, the simulation of i happens in
two phases: in the first phase we rewrite X to Ȳib, while in the second phase
we substitute Ȳi with Y . Since the second phase of the simulation happens in
exactly the same way as in the case of the rule X → bY , we will only focus on

208 Sergiu Ivanov and Sergey Verlan

the first-stage simulation sequence:

(wXw′, 1) =⇒i.1 (wMiXw′, 2) =⇒i.2 (wMiNiXw′, 2) =⇒i.3 (wMiNibXw′, 3)
=⇒i.5 (wMiȲiNibXw′, 3) =⇒i.6 (wȲiNibXw′, 3)

=⇒i.7 (wȲibXw′, 2) =⇒i.4 (wȲibw
′, 1).

We claim that the first-phase simulation sequence we have just shown is the
only possible valid derivation of Π. We will now consider the variations that can
interfere with this subderivation and show that none of them can influence the
result of a computation of Π.

Consider the application of i.1 which inserts Mi into the original string wXw′

and moves the new string, say γMiγ
′Xw′, into membrane 2. The case when Mi

is inserted to the right of X is treated in a similar way. In the current situation,
the only applicable rule is i.3, which may insert k instances of Ni, thus yielding
the string γMi(Ni)

kγ′Xw′. If one discards the possibility to produce yet more
instances of Ni, the only other way to evolve is the application of the rule i.3 to
insert a b after one of the Ni’s and thereby to move the string into membrane 3.

In the new configuration, membrane 3 will contain γMi(Ni)
k1b(Ni)

k2γ′Xw′,
where k1 ≥ 1 and k1 + k2 = k. We immediately remark that the only way for
Π to move out of this membrane is to apply the rule i.7. This rule requires
that there is a substring of ȲiNi preceded by a symbol from N ′′. The string
γMi(Ni)

k1b(Ni)
k2γ′Xw′, with which the system Π has just arrived in membrane

3, does not contain any instances of Ȳi, but the rule i.5 can introduce them.
Suppose this latter rule is applied t times, t ≥ 0, thus yielding the following
result:

γMi(Ȳi)
t(Ni)

k1b(Ni)
k2γ′Xw′.

Clearly, the rule i.7 is not yet applicable, because there are no instances of Ȳi

preceded by symbols from N ′′. The only way to reach this situation is to apply
the rule i.6 to obtain the string

γ(Ȳi)
t(Ni)

k1b(Ni)
k2γ′Xw′.

The rule i.7 imposes an even stronger requirement: the instance of Ȳi which
is preceded by a symbol from N ′′ must be immediately followed by Ni. Since
instances of Ȳi can only be inserted to the right of Mi, and since the process of
inserting Ni’s has already been completed in membrane 2, applying i.7 actually
requires that exactly one instance of Ȳi has been inserted by i.5 (i.e., it requires
that t = 1), giving

γȲi(Ni)
k1b(Ni)

k2γ′Xw′.

An application of the rule i.7 will erase the leftmost instance of Ni and will
put the following string into membrane 2:

γȲi(Ni)
k1−1b(Ni)

k2γ′Xw′.

The rule i.3 will still be applicable at this moment. Remark, however, that the
string which will be moved into membrane 3 by this application will contain no

About One-Sided One-Symbol Insertion-Deletion P Systems 209

instances of Mi, so the rule which may be applicable is i.7, which will remove yet
another instance of Ni following Ȳi. Applications of the rules i.3 and i.7 in a loop
will only be possible as long as there are instances of Ni just to the right of Ȳi

and then Π will either block in membrane 3 or move the string into membrane
1 with an application of i.4.

Based on the observations we have made in the previous paragraph, we can
assert that the general form of the strings which may appear in membrane 2 after
at least one traversal of membrane 3 is γȲi(N

∗

i (Nib)
∗)∗γ′Xw′. If we discard the

possibility of yet again re-tracing the loop formed by the rules i.3 and i.7, the only
other way for Π to proceed is to apply i.4 and move the string into membrane 1.
However, the rule i.4 imposes a strong condition on the form of the string it can
be applied to: there has to exist a substring ȲibX. Clearly, the only way to have
exactly one b between Ȳi and X is, firstly, to have i.1 insert Mi exactly to the
left of X (that is, γ′ should be zero) and, secondly, to only apply i.3 once during
the whole simulation process, thus obtaining the string γȲibXw′ in membrane 2.
The application of i.4 will thus erase the X and successfully finish the rewriting
of X into Ȳib.

We conclude the proof by stating the simulation of the rules AB → λ and
CD → λ is done in exactly the same way as in the case of the systems from the
class ELSP3(ins2,0

1
del1,0

1
). ⊓⊔

4 Conclusion

In this article we considered insertion-deletion P systems of size (1, 2, 0; 1, 1, 0)
and (1, 1, 0; 1, 2, 0) and showed that computational completeness can be achieved
with 3 membranes. Compared to [7] this result shows an interesting trade-off
between the size of contexts in insertion-deletion rules and the number of mem-
branes: with 4 membranes, computational completeness is obtained already with
insertion and deletion rules of size (1, 1, 0). Now it remains an open question if
the number of membranes can be further decreased for the investigated systems
or for systems having bigger contexts for the insertion or deletion rules.

References

1. A. Alhazov, A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Small size insertion

and deletion systems. In C. Martin-Vide, ed., Scientific Applications of Language

Methods, volume 2 of Mathematics, Computing, Language, and Life: Frontiers in

Mathematical Linguistics and Language Theory, chap. 9, 459–524. World Sci., 2010.

2. A. Alhazov, A. Krassovitskiy, Y. Rogozhin, S. Verlan, P Systems with Minimal

Insertion and Deletion, Theoretical Computer Science, 412(1-2), 136–144, (2011).

3. R. Benne. RNA Editing: The Alteration of Protein Coding Sequences of RNA.

Ellis Horwood, Chichester, West Sussex, 1993.

4. F. Biegler, M. J. Burrell, and M. Daley. Regulated RNA rewriting: Modelling RNA

editing with guided insertion. Theor. Comput. Sci., 387(2):103 – 112, 2007.

5. E. Csuhaj-Varjú, A. Salomaa, Networks of Parallel Language Processors, Lecture

Notes in Computer Science, 1218, 299-318, 1997.

210 Sergiu Ivanov and Sergey Verlan

6. M. Daley, L. Kari, G. Gloor, and R. Siromoney. Circular contex-

tual insertions/deletions with applications to biomolecular computation. In

SPIRE/CRIWG, 47–54, 1999.

7. R. Freund, M. Kogler, Y. Rogozhin, and S. Verlan. Graph-controlled insertion-

deletion systems. In I. McQuillan and G. Pighizzini, eds, Proc. of 12th Workshop

on Descriptional Complexity of Formal Systems, vol. 31 of EPTCS, 88–98, 2010.

8. B. Galiukschov. Semicontextual grammars. Matem. Logica i Matem. Lingvistika,

38–50, 1981. Tallin University (in Russian).

9. V. Geffert. Normal forms for phrase-structure grammars. ITA, 25:473–498, 1991.

10. D. Haussler. Insertion and Iterated Insertion as Operations on Formal Languages.

PhD thesis, Univ. of Colorado at Boulder, 1982.

11. D. Haussler. Insertion languages. Information Sciences, 31(1):77–89, 1983.

12. L. Kari. On Insertion and Deletion in Formal Languages. PhD thesis, University

of Turku, 1991.

13. L. Kari, G. Păun, G. Thierrin, and S. Yu. At the crossroads of DNA computing and

formal languages: Characterizing RE using insertion-deletion systems. In Proc. of

3rd DIMACS Workshop on DNA Based Computing, 318–333. Philadelphia, 1997.

14. S. C. Kleene. Representation of events in nerve nets and finite automata. In

C. Shannon and J. McCarthy, eds, Automata Studies, 3–41. Princeton University

Press, Princeton, NJ, 1956.

15. A. Krassovitskiy. Complexity and Modeling Power of Insertion-Deletion Systems.

PhD thesis, Universitat Rovira i Virgili, Tarragona, Spain, 2011.

16. A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Further results on insertion-deletion

systems with one-sided contexts. In C. Mart́ın-Vide et al., eds, Language and

Automata Theory and Applications, Second International Conference, LATA 2008.

Revised Papers, vol. 5196 of LNCS, 333–344. Springer, 2008.

17. A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Computational power of P systems

with small size insertion and deletion rules. In T. Neary, D. Woods, A. K. Seda,

and N. Murphy, eds, Proc. International Workshop on The Complexity of Simple

Programs, Cork, Ireland, 6-7th December 2008, vol. 1 of EPTCS, 108–117, 2009.

18. A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Computational power of insertion-

deletion (P) systems with rules of size two. Natural Computing, 10(2), 835–852,

2011.

19. S. Marcus. Contextual grammars. Rev. Roum. Math. Pures Appl., 14:1525–1534,

1969.

20. M. Margenstern, G. Păun, Y. Rogozhin, and S. Verlan. Context-free insertion-

deletion systems. Theor. Comput. Sci., 330(2):339–348, 2005.

21. A. Matveevici, Y. Rogozhin, and S. Verlan. Insertion-deletion systems with one-

sided contexts. In J. O. Durand-Lose and M. Margenstern, eds, Machines, Com-

putations, and Universality, 5th International Conference, MCU 2007, Orléans,

France, Proceedings, vol. 4664 of LNCS, 205–217. 2007.

22. G. Păun. Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell,

MA, USA, 1997.

23. G. Păun. Membrane Computing. An Introduction. Springer-Verlag, 2002.

24. G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing

Paradigms. Springer, 1998.

25. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages. Springer-

Verlag, Berlin, 1997.

26. W. D. Smith. DNA computers in vitro and in vivo. In R. Lipton and E. Baum,

editors, Proceedings of DIMACS Workshop on DNA Based Computers, DIMACS

About One-Sided One-Symbol Insertion-Deletion P Systems 211

Series in Discrete Math. and Theoretical Computer Science, 121–185. Amer. Math.

Society, 1996.

27. A. Takahara and T. Yokomori. On the computational power of insertion-deletion

systems. In M. Hagiya and A. Ohuchi, eds, Proc. of 8th International Workshop

on DNA Based Computers, Revised Papers, vol. 2568 of LNCS, 269–280. 2002.

28. S. Verlan. On minimal context-free insertion-deletion systems. Journal of Au-

tomata, Languages and Combinatorics, 12(1-2):317–328, 2007.

29. S. Verlan. Study of language-theoretic computational paradigms inspired by biol-

ogy. Habilitation thesis, University of Paris Est, 2010.

Flattening and Simulation of Asynchronous

Divisionless P Systems with Active Membranes

Alberto Leporati1, Luca Manzoni2, and Antonio E. Porreca1

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,porreca}@disco.unimib.it

2 Laboratoire i3S, Université Nice Sophia Antipolis,
CS 40121 – 06903 Sophia Antipolis CEDEX, France

luca.manzoni@i3s.unice.fr

Abstract. We prove that asynchronous P systems with active mem-
branes without division rules can be simulated by single-membrane tran-
sition P systems using cooperative rules, even if the synchronisation
mechanisms provided by electrical charges and membrane dissolution
are exploited. In turn, the latter systems can be simulated by means of
place/transition Petri nets, and hence are computationally weaker than
Turing machines.

1 Introduction

P systems with active membranes [10] are parallel computation devices inspired
by the structure and functioning of biological cells. A tree-like hierarchical struc-
ture of membranes divides the space into regions, where multisets of objects
(representing chemical substances) are located. The systems evolve by means of
rules rewriting or moving objects, and possibly changing the membrane struc-
ture itself (by dissolving or dividing membranes) or the state of the membranes
(by changing their electrical charge).

Under the maximally parallel updating policy, whereby all components of
the system that can evolve concurrently during a given computation step are
required to do so, these devices are known to be computationally universal.
Alternative updating policies have also been investigated. In particular, asyn-
chronous P systems with active membranes [7], where any, not necessarily max-
imal, number of non-conflicting rules may be applied in each computation step,
have been proved able to simulate partially blind register machines [8], computa-
tion devices equivalent under certain acceptance conditions to place/transition
Petri nets and vector addition systems [11]. This simulation only requires object
evolution (rewriting) rules and communication rules (moving objects between
regions).

In an effort to further characterise the effect of asynchronicity on the compu-
tational power of P systems, we prove that asynchronous P systems with active
membranes without dissolution can be flattened if we allow the use of cooperative

214 Alberto Leporati, Luca Manzoni, and Antonio E. Porreca

rules, obtaining a system that can be easily simulated by place/transition Petri
nets, and as such they are not computationally equivalent to Turing machines:
indeed, the reachability of configurations and the deadlock-freeness (i.e., the halt-
ing problem) of Petri nets are decidable [2]. This holds even when membrane
dissolution, which provides an additional synchronisation mechanism (besides
electrical charges) whereby all objects are released simultaneously from the dis-
solving membrane, is employed by the P system being simulated. Unfortunately,
this result does not seem to immediately imply the equivalence with partially
blind register machines, as the notion of acceptance for Petri nets employed here
is by halting and not by placing a token into a “final” place [8].

The paper is organised as follows: in Section 2 we recall the relevant defi-
nitions of P systems with active membranes and place/transition Petri nets; in
Section 3 we prove that asynchronous P systems with active membranes are com-
putationally equivalent to their sequential version, where a single rule is applied
during each computation step; in Section 4 we show that sequential P systems
with dissolution rules can be simulated by sequential transition P systems with
cooperative rules having only one membrane; finally, in Section 5 we show how
sequential single-membrane transition P systems using cooperative rules can be
simulated by Petri nets. Section 6 contains our conclusions and some open prob-
lems.

2 Definitions

We first recall the definition of P systems with active membranes and its various
operating modes.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a
tuple Π = (Γ,Λ, µ,wh1

, . . . , whd
, R), where:

– Γ is an alphabet, i.e., a finite nonempty set of objects;
– Λ is a finite set of labels for the membranes;
– µ is a membrane structure (i.e., a rooted unordered tree) consisting of d

membranes injectively labelled by elements of Λ;
– wh1

, . . . , whd
, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial

multisets of objects located in the d regions of µ;
– R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or nega-
tive (−) and is always neutral before the beginning of the computation.

The following four kinds of rules are employed in this paper.

– Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

Flattening and Simulation of Asynchronous Divisionless P Systems 215

– Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β.

– Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

– Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are released in the surrounding region unaltered, except that an
occurrence of a becomes b.

We recall that the most general form of P systems with active membranes [10]
also includes membrane division rules, which duplicate a membrane and its con-
tents; however, these rules are not used in this paper.

Each instantaneous configuration of a P system with active membranes is
described by the current membrane structure, including the electrical charges,
together with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane several evolution
rules having the same left-hand side, or the same evolution rule can be
applied simultaneously; this includes the application of the same rule with
multiplicity).

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication and dissolution rules involving
the membranes themselves; this process is then repeated to the membranes
containing them, and so on towards the root (outermost membrane). In
other words, the membranes evolve only after their internal configuration
has been updated. For instance, before a membrane dissolution occurs, all
chosen object evolution rules must be applied inside it; this way, the objects
that are released outside during the dissolution are already the final ones.

– The outermost membrane cannot be dissolved, and any object sent out from
it cannot re-enter the system again.

In the maximally parallel mode, the multiset of rules to be applied at each step
must be maximal, in the sense that no further rule can be added without creating

216 Alberto Leporati, Luca Manzoni, and Antonio E. Porreca

conflicts. In the asynchronous mode, any nonempty multiset of applicable rules
can be chosen. Finally, in the sequential mode, exactly one rule per computation
step is applied. In the following, only the latter two modes will be considered.

A halting computation of the P system Π is a finite sequence of configu-
rations C = (C0, . . . , Cn), where C0 is the initial configuration, every Ci+1 is
reachable from Ci via a single computation step, and no rule can be applied
in Cn. A non-halting computation C = (Ci : i ∈ N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

The other model of computation we will employ is Petri nets. In particular,
with this term we denote place/transition Petri nets with weighted arcs, self-
loops and places of unbounded capacity [4]. A Petri net N is a triple (P, T, F)
where P is the set of places, T the set of transitions (disjoint from P) and F ⊆

(P×T)∪(T×P) is the flow relation. The arcs are weighted by a function w : F →

(N−{0}). A marking (i.e., a configuration) is a function M : P → N. Given two
markings M , M ′ of N and a transition t ∈ T we say that M ′ is reachable from
M via the firing of t, in symbols M →t M ′, if and only if:

– for all places p ∈ P , if (p, t) ∈ F and (t, p) /∈ F then M(p) ≥ w(p, t)
and M ′(p) = M(p) − w(p, t);

– for all p ∈ P , if (t, p) ∈ F and (p, t) /∈ F then M ′(p) = M(p) + w(t, p);
– for all p ∈ P , if both (p, t) ∈ F and (t, p) ∈ F then M(p) ≥ w(p, t)

and M ′(p) = M(p) − w(p, t) + w(t, p).

Petri nets are nondeterministic devices, hence multiple markings may be reach-
able from a given configuration. We call halting computation a sequence of mark-
ings (M0, . . . Mn) where M0 →t1 M1 →t2 · · · →tn

Mn for some t1, . . . , tn, and
no transition may fire in Mn. Several problems related to the reachability of
markings and halting configurations (or deadlocks) are decidable [2].

3 Asynchronicity and Sequentiality

In this section we show how it is possible to construct, for every asynchronous
P system with active membranes, a sequential version that is equivalent to the
original one in the sense that they both halt on the same inputs and produce
the same outputs.

The main idea is that each asynchronous step where more than one rule is
applied can be substituted by a sequence of asynchronous steps where the rules
are reordered and applied one at a time.

Proposition 1. Let Π be a P system with active membranes using object evo-
lution, communication, and dissolution rules. Then, the asynchronous and the
sequential updating policies of Π are equivalent in the following sense: for each
asynchronous (resp., sequential) computation step C → D we have a series of
sequential (resp., asynchronous) steps C = C0 → · · · → Cn = D for some n ∈ N.

Flattening and Simulation of Asynchronous Divisionless P Systems 217

Proof. Every asynchronous computation step C → D consists in the application
of a finite multiset of rules {e1, . . . , ep, c1, . . . , cq, d1, . . . , dr}, where e1, . . . , ep

are object evolution rules, c1, . . . , cq are communication rules (either send-in or
send-out), and d1, . . . , dr are dissolution rules.

Since evolution rules do not change any charge nor the membrane structure
itself, the computation step C → D can be decomposed into two asynchronous
computation steps C → E → D, where the step C → E consists in the applica-
tion of the evolution rules {e1, . . . , ep}, and the step E → D in the application
of the remaining rules {c1, . . . , cq, d1, . . . , dr}. Notice that in E there still exist
enough objects to apply these communication and dissolution rules, since by
hypothesis C → D is a valid computation step.

Furthermore, notice how there is no conflict between object evolution rules
(once they have been assigned to the objects they transform). Therefore, the
application of the rules {e1, . . . , ep} can be implemented as a series of sequential
steps C = C0 → · · · → Cp = E .

Each membrane can be subject to at most a single rule of communication or
dissolution type in the computation step C → D; hence, applying one of these
rules does not interfere with any other. Thus, these rules can also be serialised
into sequential computation steps E → Cp+1 → · · · → Cp+q+r = D. Once again,
all rules remain applicable since they were in the original computation step.

By letting n = p + q + r, the first half of the proposition follows. The second
part is due to the fact that every sequential computation step is already an
asynchronous computation step. ⊓⊔

4 Single-Membrane Transition P Systems

In this section we recall the notion of transition P system, imposing as an addi-
tional constraint that the system has only one membrane. For a description of
a general framework in which these systems can be described see [6]. As proved
in [5], these systems are not universal; indeed, a simple simulation by means
of Petri nets, inspired by [3], is provided in the next section. Our simulation
involves a flattening of the membrane structure and the use of cooperative rules;
the first simulation of this type was presented in [1] and, in fact, out construc-
tion is similar. Unlike that construction, however, the semantics that we use is
sequential and we do not include promoters and inhibitors.

Definition 2. A single-membrane transition P system is a structure

Π = (Γ,w,R)

where Γ is a finite alphabet, w is a multiset of elements representing the initial
state of the system, and R is a set of cooperative rules in the form v → w where
v and w are multisets of objects of Γ .

Notice that the definition is a simplified version of the original definition of
transition P systems [9], since specifying the membrane structure is not needed.

218 Alberto Leporati, Luca Manzoni, and Antonio E. Porreca

We can now show that single-membrane transition P systems are equivalent to
divisionless P systems with active membranes when operating under the sequen-
tial semantics.

Let Π = (Γ,Λ, µ,wh1
, . . . , whd

, R) be a P system with active membranes and
C a configuration of Π. The flattened encoding of C is the multiset E(C) over
(Γ ∪ {−, 0,+}) × Λ defined as follows:

1. If there are n copies of the object a contained in a membrane h in C, then
E(C) contains n copies of the element (a, h).

2. If a membrane h has charge c, then the object (c, h) is in E(C).

It is easy to see that, for a fixed Π, the encoding function is a bijection between
the configurations of Π and its image, that is, the function E is invertible. Hence,
for any multiset A that is the encoding of some configuration, the decoding is
uniquely identified, i.e., for any configuration C, E−1(E(C)) = C.

Proposition 2. Let Π = (Γ,Λ, µ,wh1
, . . . , whd

, R) be a P system with active
membranes working in the sequential mode and using object evolution, commu-
nication, and dissolution rules, with initial configuration C0. Then, there exists
a single-membrane transition P system Π ′ =

(

(Γ ∪ {−, 0,+} ∪ {•}) × Λ, v,R′

)

,
for some initial multiset v, working in the sequential mode, such that:

(i) If C = (C0, C1, . . . , Cm) is a halting computation of Π, then there exists a
halting computation D = (E(C0),D1, . . . ,Dn) of Π ′ such that Dn is the
union of E(Cm) and the set of all the elements in the form (•, h) where h
is a membrane that has been dissolved in C.

(ii) If D = (E(C0),D1, . . . ,Dn) is a halting computation of Π ′, then there
exists a halting computation C = (C0, C1, . . . , Cm) of Π such that Dn can
be written as the union of the set of elements in the form (•, h), where h
is a membrane that was dissolved in C, and the set E(Cm).

(iii) Π admits a non-halting computation (C0, C1, . . .) if and only if Π ′ admits
a non-halting computation (E(C0),D1, . . .).

Proof. The main idea is to replace every dissolution rule of a membrane h in R
with a cooperative rule such that an object in the form (•, h) is generated and
all the objects in the form (a, h) are rewritten to (a, h′), where h′ is the lowest
ancestor of h in µ that has not been dissolved.

Let [a]αh1
→ b be a dissolution rule in R. Then, R′ contains the following

cooperative rules:

(a, h1)(α, h1) → (b, h1)(•, h1). (1)

The objects that have h1 as the second component are then rewritten by means
of the following rules:

(a, h1)(•, h1) → (a, h2)(•, h1) (2)

where h2 is the parent membrane of h1 in µ. Notice that, if (•, h2) exists, then
membrane h2 has been dissolved during a previous computation step; this means

Flattening and Simulation of Asynchronous Divisionless P Systems 219

that there exists another rule of type (2) rewriting all the objects having h2 as
the second component. This process continues as long as there are objects with
the label of a dissolved membrane as their second component (excluding the ones
having • as the first component).

An object evolution rule [a → w]αh is simulated by the following cooperative
rule:

(a, h)(α, h) → (w1, h) . . . (wn, h)(α, h). (3)

A send-out communication rule [a]αh1
→ []βh1

b is replaced by the following rules:

(a, h1)(α, h1) → (b, h2)(β, h1) (4)

where h2 is the parent membrane of h1 in µ. As mentioned before, if (•, h2)
exists, then a rule of type (2) will subsequently rewrite (b, h2).

Finally, a send-in communication rule a []αh1
→ [b]βh1

is simulated as follows.
Let (hn, hn−1, . . . , h2, h1) be a sequence of nested membranes surrounding h1,
i.e., a descending path in the membrane tree µ. For every such sequence, we add
the following rules to R′:

(•, hn−1) · · · (•, h2)(α, h1)(a, hn) → (•, hn−1) · · · (•, h2)(β, h1)(b, h1). (5)

These rules rewrite the object (a, hn) into (b, h1) if in Π all the membranes
between hn and h1 have been dissolved. Observe that the number of descending
paths leading to h1 is bounded above by the depth of µ.

Notice how every rule of R′ is exactly of one type among (1)–(5); in particular,
given a rule in R′ of type (1), (3), (4), or (5), it always possible to reconstruct
the original rule in R.

Each computation step of Π consisting in the application of an evolution or
send-in communication rule is simulated by a single computation step of Π ′ by
means of a rule of type (3) or (5), respectively.

The dissolution of a membrane h1 in Π requires a variable number of steps
of Π ′: first, a rule of type (1) is applied, then each object in the form (a, h1)
must be rewritten, by using rules of type (2), in order to obtain an object in
the form (a, hn), where hn is the lowest ancestor membrane of h1 that has not
been dissolved in the original system. The exact number of steps depends on the
number of objects located inside h1 and the number of membranes that have
been dissolved. The reasoning is analogous for send-out communication rules,
simulated by means of rules of type (4) and (2).

Part (i) of the proposition directly follows from the semantics of the above
cooperative rules.

Now let D = (D0 = E(C0),D1, . . . ,Dn) be a halting computation of Π ′.
Then there exists a sequence of rules r = (r1, . . . , rn) in R′ such that

D0 →r1
D1 →r2

· · · →rn−1
Dn−1 →rn

Dn

220 Alberto Leporati, Luca Manzoni, and Antonio E. Porreca

where the notation X →r Y indicates that configuration Y is reached from X

by applying the rule r. Let f : N → N be defined as

f(t) =
∣

∣{ri : 1 ≤ i ≤ t and ri is not of type (2)}
∣

∣.

We claim that there exists a sequence of rules s = (s1, . . . , sm) such that the
computation C = (C0, . . . , Cm) of Π generated by applying the rules of s, i.e.,

C0 →s1
C1 →s2

· · · →sm−1
Cm−1 →sm

Cm

has the following property P (t) for each t ∈ {0, . . . , n}:

For all h ∈ Λ and a ∈ Γ , if (γ, h) with γ ∈ {+, 0,−} is in configuration
Dt of Π ′, then the number of copies of the objects of the form (a, h′)
with h′ any descendant of h in µ, or h itself, is equal to the number of
copies of a contained in the membrane substructure rooted in h in Cf(t),
and h has the charge γ. If (•, h) is in Dt, then h does not appear in Cf(t)

(having been dissolved before).

We prove this property by induction on t. The case t = 0 clearly holds, by the
definition of the encoding function: E(Cf(0)) = E(C0) = D0, as f(0) = |∅|.

Now suppose P (t) holds for some t < n. If rt+1 is a rule of type (2) then for
each object a ∈ Γ , the only change in the objects with a as the first component is
when the second component h is the label of a membrane that has been dissolved
in Π and the objects retain a as the first component while the second one became
the label of the parent membrane of h in µ. Furthermore, no symbol in the form
(γ, h), where γ is a charge, is rewritten to a different symbol. Since rt+1 is of
type (2), we have f(t + 1) = f(t) hence Cf(t+1) = Cf(t), and property P (t + 1)
holds.

On the other hand, if rt+1 is not of type (2), then f(t + 1) = f(t) + 1 by
definition. Let sf(t)+1 = sf(t+1) be the rule corresponding to the cooperative
rule rt+1 as described above (an object evolution rule if rt+1 is of type (3), a
dissolution rule if rt+1 is of type (1), and so on). Observe that if rt+1 is applicable
in Dt, then sf(t)+1 is applicable in Cf(t) by induction hypothesis:

– if (γ, h) is in Dt then the membrane h has charge γ in Cf(t);
– if rt+1 is of type (1), (3), or (4) and uses an object (a, h) in Dt, then a copy

of a appears in membrane h in Cf(t);
– if rt+1 is of type (5) and uses an object (a, h) and (•, h) is in Dt, then the

object a appears in Cf(t) inside the membrane having the same label as the
lowest ancestor of h in the original membrane structure such that (γ, h) with
γ 6= • is in Dt.

The configuration Cf(t)+1 such that Cf(t) →sf(t)+1
Cf(t)+1, due to the semantics

of the corresponding rules applied by Π and Π ′, is such that the property P (t+1)
holds.

In particular, P (n) holds: configurations Dn and Cf(n) have the following
properties: the encoding E(Cf(n)) is contained in Dn and all other objects non

Flattening and Simulation of Asynchronous Divisionless P Systems 221

contained in E(Cf(n)) are in the form (•, h), where h is the label of a membrane
that has been dissolved during the computation. Notice that Cf(n) is a halting
configuration, since otherwise any rule applicable from it could be simulated
from Dn as in statement (i). Furthermore, if an object (•, h) is in Dn then no
object in form (a, h) with a ∈ Γ exists, otherwise further rules of type (2) could
be applied, contradicting the hypothesis that Dn is a halting configuration. For
all membranes h in Cf(n) and for all objects a ∈ Γ , the number of copies of a
that are inside the membrane h in Cf(n) is equal to the number of objects in the
form (a, h) in Dn, and statement (ii) follows.

Finally, let us consider a non-halting computation of Π. Each time a com-
putation of Π can be extended by one step by applying a rule, that rule can be
simulated by Π ′ using the same argument employed to prove statement (i), thus
yielding a non-halting computation of Π ′. Vice versa, in a non-halting computa-
tion of Π ′ it is never the case that infinitely many rules of type (2) are applied
sequentially, as only finitely many objects exist at any given time, and eventually
they are rewritten to have the form (a, h) without also having the object (•, h).
As soon as a rule of type (1), (3), (4), or (5) is applied, the corresponding rule
can also be applied by Π, thus yielding a non-halting computation. ⊓⊔

5 Simulation with Petri Nets

The single-membrane transition P systems described in the last section can be
simulated by Petri nets in a straightforward way. The idea of using Petri nets as
a device for the simulation is originally due to [3].

Proposition 3. Let Π = (Γ,w,R) be a single-membrane sequential transition
P system. Then, there exists a Petri net N , having Γ among its places, such that
C → C′ is a computation step of Π if and only if M → M ′ is a computation step
of N , where M(a) is the number of instances of a in C.

Proof. The set of places of N is defined as Γ ∪ {lock}, where lock is a place
always containing a single token that is employed in order to ensure the firing of
at most one transition per step. For each cooperative rule v1 · · · vn → u1 · · ·um

the net has a transition defined as follows:

v1 v2 vn. . .

. . .u1 u2 um

lock r

222 Alberto Leporati, Luca Manzoni, and Antonio E. Porreca

Notice that the output places need not be distinct, as the multiset in the left
hand side may contain multiple occurrences of the same symbol; in that case,
a weighted arc is used. The output places need not be distinct from the input
places either; in that case, the net contains a corresponding loop.

The initial marking M0 of N is given by M0(a) = |w|a, for all a ∈ Γ , where
|w|a is the multiplicity of a in w.

Notice that a transition r in N is enabled exactly when the corresponding
rule r ∈ R is applicable, producing a transition M →r M ′ corresponding to a
computation step C →r C′ of Π as required. In every moment the number of
tokens in a place is equal to the multiplicity of the corresponding object in the
configuration of Π. ⊓⊔

By combining Propositions 1, 2, and 3, we can finally prove the following
theorem.

Theorem 1. For every asynchronous P system with active membranes Π using
evolution, communication, and dissolution rules, there exists a Petri net N such
that (i) every halting configuration of Π corresponds to a halting configuration
of N and vice versa (under the encoding of Propositions 2 and 3), and (ii) every
non-halting computation of Π corresponds to a non-halting computation of N
and vice versa. ⊓⊔

Notice that, given the strict correspondence of computations and their halt-
ing configurations (if any) between the two devices, this result holds both for
P systems computing functions over multisets/Parikh vectors and those recog-
nising or generating families of multisets/Parikh vectors, since the only difference
between these computing modes is the initial configuration and the acceptance
condition; these are translated directly into the simulating Petri net.

6 Conclusions

We have proved that asynchronous P systems with active membranes (without
division rules) can be flattened and simulated by single-membrane transition
P systems using cooperative rules. These systems can, in turn, be easily sim-
ulated by place/transition Petri nets, and hence are not computationally uni-
versal. In order to achieve this result, we exploited the equivalence between the
asynchronous and the sequential parallelism policies for divisionless P systems
with active membranes.

The conjectured equivalence of asynchronous P systems with active mem-
branes and Petri nets does not seem to follow immediately from our result and
the previous simulation of partially blind register machines by means of asyn-
chronous P systems with active membranes [7]. Indeed, an explicit signalling
(putting a token into a specified place) instead of accepting by halting seems to be
required in order to simulate Petri nets with partially blind register machines [8].
Directly simulating Petri nets with asynchronous P systems with active mem-
branes is also nontrivial, since transitions provide a stronger synchronisation

Flattening and Simulation of Asynchronous Divisionless P Systems 223

mechanism than the limited context-sensitivity of the rules of a P system with
active membranes. This equivalence is thus left as an open problem.

Acknowledgements

We would like to thank Luca Bernardinello for his advice on the theory of Petri
nets. We would also like to thank the anonymous reviewers for pointing out
relevant literature that allowed a simplification of the original construction.

This research was partially funded by Lombardy Region under project NEDD
and by the French National Research Agency project EMC (ANR-09-BLAN-
0164).

References

1. Agrigoroaiei, O., Ciobanu, G.: Flattening the transition P systems with dissolution.
In: Conference on Membrane Computing, CMC 11. LNCS, vol. 6501, pp. 53–64.
Springer (2011)

2. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoretical
Computer Science 147, 117–136 (1995)

3. Dal Zilio, S., Formenti, E.: On the dynamics of PB systems: A Petri net view. In:
Workshop on Membrane Computing, WMC3. pp. 153–167. LNCS, Springer (2004)

4. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) Lectures on Petri nets I: Basic models, Advances in Petri Nets, vol. 1491,
pp. 122–173. Springer (1998)

5. Freund, R.: Asynchronous P systems and P systems working in the sequential
mode. In: Workshop on Membrane Computing, WMC4. LNCS, vol. 3365, pp. 36–
62. Springer (2005)

6. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Work-
shop on Membrane Computing, WMC8. LNCS, vol. 4860, pp. 271–284. Springer
(2007)

7. Frisco, P., Govan, G., Leporati, A.: Asynchronous P systems with active mem-
branes. Theoretical Computer Science 429, 74–86 (2012)

8. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7, 311–324 (1978)

9. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

10. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

11. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall (1981)

Enzymatic Numerical P Systems

Using Elementary Arithmetic Operations

Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{leporati,mauri,porreca,zandron}@disco.unimib.it

Abstract. We prove that all-parallel enzymatic numerical P systems
whose production functions can be expressed as a combination of sums,
differences, products and integer divisions characterise PSPACE when
working in polynomial time. We also show that, when only sums and
differences are available, exactly the problems in P can be solved in
polynomial time. These results are proved by showing how EN P systems
and random access machines, running in polynomial time and using the
same basic operations, can simulate each other efficiently.

1 Introduction

Numerical P systems have been introduced in [8] as a model of membrane sys-
tems inspired both from the structure of living cells and from economics. Each
region of a numerical P system contains some numerical variables, that evolve
from initial values by means of programs. Each program consists of a production
function and a repartition protocol ; the production function computes an output
value from the values of some variables occurring in the same region in which the
function is located, while the repartition protocol distributes this output value
among the variables in the same region as well as in the neighbouring (parent
and children) ones.

In [8], and also in Chapter 23.6 of [9], some results concerning the compu-
tational power of numerical P systems are reported. In particular, it is proved
that nondeterministic numerical P systems with polynomial production func-
tions characterize the recursively enumerable sets of natural numbers, while de-
terministic numerical P systems, with polynomial production functions having
non-negative coefficients, compute strictly more than semilinear sets of natural
numbers.

Enzymatic Numerical P systems (EN P systems, for short) have been intro-
duced in [10] as an extension of numerical P systems in which some variables,
named the enzymes, control the application of the rules, similarly to what hap-
pens in P systems with promoters and inhibitors [2]. As shown in [11, 3] and
references therein, the most promising application of EN P systems seems to be
the simulation of control mechanisms of mobile and autonomous robots.

226 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

The computational power of EN P systems has also been thoroughly investi-
gated. In [6] a short review of previously known universality results is presented,
together with an improvement on some of them: linear production functions in-
volving only one variable suffice to obtain universality in the one-parallel and
all-parallel modes.

In this paper we deal with computational complexity issues, and show how
the choice of arithmetical operations allowed in the production functions influ-
ences the efficiency of computation of all-parallel EN P systems, exactly as it
happens for random access machines [5]. Indeed, we prove that these two com-
putation devices can simulate each other efficiently in some relevant cases. As
a consequence, we show the limitations of linear production functions, and how
these are overcome by allowing multiplication and integer division, leading to
polynomial time solutions to PSPACE-complete problems.

The paper is organised as follows. In Section 2 we recall the definitions of
EN P systems and random access machines, together with the relevant results
from the literature. In Section 3 we show, as a technical result, how indirect
addressing can be eliminated when RAMs operate in polynomial time, thus
simplifying the simulation by means of all-parallel EN P systems that is presented
in Section 4. The converse simulation is illustrated in Section 5, leading to our
main result about the computational complexity of all-parallel EN P systems.
Finally, conclusions and open problems are described in Section 6.

2 Definitions and Previous Results

An enzymatic numerical P system (EN P system, for short) is a construct of the
form:

Π =
(

m,H, µ, (Var1,Pr1,Var1(0)), . . . , (Varm,Prm,Varm(0))
)

where m ≥ 1 is the degree of the system (the number of membranes), H is
an alphabet of labels, µ is a tree-like membrane structure with m membranes
injectively labeled with elements of H, Var i and Pr i are respectively the set of
variables and the set of programs that reside in region i, and Var i(0) is the vector
of initial values for the variables of Var i. All sets Var i and Pr i are finite. In the
original definition of EN P systems [10] the values assumed by the variables
may be real, rational or integer numbers; in what follows we will allow instead
only integer numbers. The variables from Var i are written in the form xj,i, for j
running from 1 to |Var i|, the cardinality of Var i; the value assumed by xj,i at
time t ∈ N is denoted by xj,i(t). Similarly, the programs from Pr i are written in
the form Pl,i, for l running from 1 to |Pr i|.

The programs allow the system to evolve the values of variables during com-
putations. Each program is composed of two parts: a production function and
a repartition protocol. The former can be any function using variables from the
region that contains the program. Using the production function, the system
computes a production value, from the values of its variables at that time. This
value is distributed to variables from the region where the program resides, and to

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 227

variables in its upper (parent) and lower (children) compartments, as specified by
the repartition protocol. Formally, for a given region i, let v1, . . . , vni

be all these
variables; let x1,i, . . . , xki,i be some variables from Var i, let Fl,i(x1,i, . . . , xki,i)
be the production function of a given program Pl,i ∈ Pr i, and let cl,1, . . . , cl,ni

be natural numbers. The program Pl,i is written in the following form:

Fl,i(x1,i, . . . , xki,i) → cl,1|v1 + cl,2|v2 + · · · + cl,ni
|vni

(1)

where the arrow separates the production function from the repartition protocol.
Let Cl,i =

∑ni

s=1
cl,s be the sum of all the coefficients that occur in the repartition

protocol. If the system applies program Pl,i at time t ≥ 0, it computes the value

q =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i

that represents the “unitary portion” to be distributed to variables v1, . . . , vni

proportionally with coefficients cl,1, . . . , cl,ni
. So each of the variables vs, for

1 ≤ s ≤ ni, will receive the amount q · cl,s. An important observation is that
variables x1,i, . . . , xki,i involved in the production function are reset to zero after
computing the production value, while the other variables from Var i retain their
value. The quantities assigned to each variable from the repartition protocol are
added to the current value of these variables, starting with 0 for the variables
which were reset by a production function. As pointed out in [12], a delicate
problem concerns the issue whether the production value is divisible by the
total sum of coefficients Cl,i. As it is done in [12], in this paper we assume that
this is the case, and we deal only with such systems; see [8] for other possible
approaches.

Besides programs (1), EN P systems may also have programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i
→ cl,1|v1 + cl,2|v2 + · · · + cl,ni

|vni

where ej,i is a variable from Var i different from x1,i, . . . , xki,i and v1, . . . , vni
.

Such a program can be applied at time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).
Stated otherwise, variable ej,i operates like an enzyme, that enables the execu-
tion of the program but, as happens with catalysts, it is neither consumed nor
modified by the execution of the program. However, in EN P systems enzymes
can evolve by means of other programs, that is, enzymes can receive “contribu-
tions” from other programs and regions.

A configuration of Π at time t ∈ N is given by the values of all the vari-
ables of Π at that time; in a compact notation, we can write it as the sequence
(Var1(t), . . . ,Varm(t)), where m is the degree of Π. The initial configuration
can thus be described as the sequence (Var1(0), . . . ,Varm(0)). The system Π
evolves from an initial configuration to other configurations by means of compu-
tation steps, in which one or more programs of Π (depending upon the mode of
computation) are executed. In [12], at each computation step the programs to be
executed are chosen in the so called sequential mode: one program is nondeter-
ministically chosen in each region, among the programs that can be executed at

228 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

that time. Another possibility is to select the programs in the so called all-parallel
mode: in each region, all the programs that can be executed are selected, with
each variable participating in all programs where it appears. Note that in this
case EN P systems become deterministic, since nondeterministic choices between
programs never occur. A variant of parallelism, analogous to the maximal one
which is often used in membrane computing, is the so called one-parallel mode:
in each region, all the programs which can be executed can be selected, but the
actual selection is made in such a way that each variable participates in only one
of the chosen programs. We say that the system reaches a final configuration if
and when it happens that no applicable set of programs produces a change in
the current configuration.

EN P systems may be used as (polynomial) time-bounded recognising devices
as follows. Notice that we use two variables (instead of just one of them), named
accept and reject , to signal the end of computations. This is done because some
programs of the system may be applied forever, causing the system to never halt
even if the configuration does not change any more. By using two variables, the
event of reaching a final configuration is made visible and distinguishable from
the outside.

Definition 1. Let L ⊆ {0, 1}⋆ be a language, and let Π be a deterministic
EN P system with two distinguished variables accept and reject . We say that Π
decides L in polynomial time iff, for all x ∈ {0, 1}⋆, when the integer hav-
ing binary representation 1x is initially given to a specified input variable1 the
P system Π reaches a final configuration such that

– if x ∈ L, then accept = 1 and reject = 0
– if x /∈ L, then accept = 0 and reject = 1

within a number of steps bounded by O(|x|k) for some k ∈ N.

As proved in [6], every all-parallel and one-parallel EN P system can be “flat-
tened” into an equivalent (both in terms of output and number of computation
steps) system having only one membrane. For simplicity, in the following sections
we shall always deal with flattened EN P systems.

The proofs in this paper will be based on random access machines [7, 5]. We
define the specific variant we will employ:

Definition 2 (RAM). A random access machine consists of an infinite number
of registers (ri : i ∈ N) having values in N, initially set to zero, and a finite
sequence of instructions injectively labelled by elements ℓ ∈ N. The instructions
are of the following types:

– assignment of a constant k ∈ N: “ℓ : ri := k” (ri is assigned a constant value)
– copying a register: “ℓ : ri := rj” (ri is assigned the content of a fixed register)
– indirect addressing: “ℓ : ri := rrj

” (ri is assigned the content of a register
whose number is given by a fixed register)

1 The “1” is prefixed to the input string x in order to keep the leading zeroes.

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 229

– arithmetic operations, with • ∈ {+,−,×,÷}: “ℓ : ri := rj • rk”

– conditional jump, with ℓ1, ℓ2 ∈ N: “ℓ : if ri 6= 0 then ℓ1 else ℓ2”

– halt and accept: “ℓ : accept”

– halt and reject: “ℓ : reject”.

The labels of the instructions will sometimes be left implicit.

We assume, without loss of generality, that it is never the case that a reg-
ister or a label are mentioned multiple times in the same instruction (e.g.,
in “ℓ : ri := rj • rk” we assume i 6= j, j 6= k, and i 6= k).

Since RAMs operate on natural numbers, we only allow non-negative sub-
traction, i.e., x − y = 0 when y > x.

Definition 3. Let L ⊆ {0, 1}⋆ be a language, and let M be a RAM. We say
that M decides L in polynomial time iff, for all x ∈ {0, 1}⋆, when the inte-
ger having binary representation 1x is loaded into a specified input register, the
machine M behaves as follows:

– if x ∈ L, then M reaches an “accept” instruction

– if x /∈ L, then M reaches a “reject” instruction

within a number of steps bounded by O(|x|k) for some k ∈ N.

In the rest of this paper we will denote the class of random access machines
using the set of basic operations X ⊆ {+,−,×,÷} by RAM(X), and the class of
all-parallel EN P systems whose production functions can be expressed in terms
of X by ENP(X). In particular, we are interested in all-parallel EN P systems
having linear production functions, ENP(+,−), and those with production func-
tions consisting of polynomials augmented by integer division, ENP(+,−,×,÷).

We shall also employ the following notation for complexity classes:

Definition 4. Let D be one of the classes of computing devices described above.
Then, by P-D we denote the class of decision problems solvable in polynomial
time by devices of type D.

The computational power of polynomial-time RAMs is strictly dependent on
the set of basic operations that can be computed in a single time step. When
only addition and subtraction are available, then polynomial-time RAMs are
equivalent to polynomial-time Turing machines [4].

Proposition 1. P-RAM(+,−) = P. ⊓⊔

On the other hand, multiplication and division considerably increase the
efficiency of polynomial-time RAMs [1]:

Proposition 2. P-RAM(+,−,×,÷) = PSPACE. ⊓⊔

230 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

1 e := y
2 z := 1

3 while e > 0 do

4 {xe
× z = xy

}

5 p := 1

6 p′
:= 2

7 a := x
8 a′

:= x × x
9 while p′

≤ e do

10 p := p′

11 p′
:= p′

+ p′

12 a := a′

13 a′
:= a′

× a′

14 end

15 {e − p ≤ e/2}

16 e := e − p
17 z := z × a

18 end































O(log y) iterations















































































































O(log y) iterations

Fig. 1. Polynomial-time exponentiation algorithm by repeated squaring.

3 Avoiding Indirect Addressing

In this section we recall how indirect addressing may be eliminated from random
access machines by encoding any number of registers as a single large integer.
The resulting machine only needs a constant number of registers and, when the
original machine runs in polynomial time, the slowdown is only polynomial.

In order to eliminate indirect addressing we employ multiplication, integer
division and exponentiation. The first two operations, which are built-in on
a RAM(+,−,×,÷), can be computed in quadratic time by a RAM(+,−) using
repeated doubling.

Proposition 3. The product x × y and the quotient x ÷ y can be computed
in O

(

(log y)2
)

time and O
(

(log x)2)
)

time respectively by a RAM(+,−) using a
constant number of auxiliary registers. ⊓⊔

Exponentiation can be also computed in polynomial time, using a repeated
squaring algorithm, both by a RAM(+,−) and a RAM(+,−,×,÷).

Proposition 4. The exponential xy can be computed in O
(

(log y)2
)

time by

a RAM(+,−,×) and in O
(

(y log y log x)2
)

time by a RAM(+,−) using a con-
stant number of auxiliary registers.

Proof. The algorithm of Fig. 1 computes z := xy by repeated squaring.
The outermost loop maintains the invariant xe × z = xy, and the innermost

loop computes the largest power 2i less than or equal to e, which is then sub-
tracted from e, thus reducing the value of this register by half or more (hence,

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 231

eventually, to 0); the product of the values x2
i

is accumulated into z. In other
words, the algorithm computes the value xy as

xy = xym2
m

× xym−12
m−1

× · · · × xy12
1

× xy02
0

= xym2
m

+ym−12
m−1

+···+y12
1
+y02

0

where ymym−1 · · · y1y0 is the binary expansion of y.
Each line of the algorithm is performed by a RAM(+,−,×) in constant time,

for a total of O
(

(log y)2
)

time. On a RAM(+,−), the product of line 8 is com-

puted in O
(

(log x)2
)

time, and the products of lines 13 and 17 in O
(

(log xy)2
)

=

O
(

(y log x)2
)

time, since a reaches the value xy in the worst case (i.e., when y

is a power of 2). The total time is thus O
(

(y log y log x)2
)

. ⊓⊔

An arbitrary random access machine never uses more registers than time
steps; however, in principle, the largest register index employed can be exponen-
tial on a RAM(+,−), or even doubly exponential on a RAM(+,−,×,÷). The
following proposition [5] obviates the problem.

Proposition 5. Let M be a RAM with addition, subtraction and possibly mul-
tiplication and division, working in time t(n). Then there exists a RAM with the
same basic operations working in time O

(

t(n)2
)

, having the same output as M ,

and using only its first O
(

t(n)
)

registers. ⊓⊔

The three Propositions 3, 4, and 5 allow us to simulate indirect addressing
from polynomial-time RAMs with a polynomial slowdown.

Proposition 6. Let M1 be a RAM(+,−) (respectively, a RAM(+,−,×,÷))
working in polynomial time O(nk). Then, there exists a RAM(+,−) (resp.,
a RAM(+,−,×,÷)) M2 working O

(

n8k(log n)2
)

time (resp., O
(

n2k(log n)2
)

)
and computing the same result as M1 without using indirect addressing.

Proof. Since M1 works in polynomial time, by Proposition 5 there exists another
RAM M ′

1
with the same output as M1, working in polynomial time t = c1n

2k+c0

and using at most the first m = d1n
k + d0 registers (for some c0, c1, d0, d1 ∈ N).

The machine M2 simulates M ′

1
as follows. All the registers (r0, . . . , rm−1)

of M ′

1
are stored in a single register r of M2 as a base-b number:

r = bm−1rm−1 + bm−2rm−2 + · · · + b1r1 + b0r0.

The base b is one more than the largest number that can ever be stored in a
register by M ′

1
, which can be computed as follows:

– If M ′

1
is a RAM(+,−), the most expensive instruction (in terms of magnitude

of the values of the registers) is “x := x + x”, where x is the input register.
After t steps, the value of any register is thus bounded by 2tx, and we choose
b = 2tx + 1.

232 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

– If M ′

1
is a RAM(+,−,×,÷), then the most expensive instruction is squaring,

i.e., “x := x×x”, leading to an upper bound of x2
t

after t steps. In this case,
we choose b = x2

t

+ 1.

Notice that r has an upper bound of bm+1.
The machine M2 first computes the length n = O(log x) of the input (con-

tained in the register x) as follows:

1 y := x
2 n := 0
3 while y 6= 0 do

4 y := y ÷ 2
5 n := n + 1

6 end

This requires O(log x) steps on a RAM(+,−,×,÷), and O
(

(log x)3
)

steps on
a RAM(+,−), due to the cost of the division of line 4.

M2 then computes the number of steps t of M ′

1
to be simulated:

7 t := c1n
2k + c0

Line 7 can be executed in O(1) time by a RAM(+,−,×,÷), since k, c0, and c1

are constants; on a RAM(+,−) the time is O
(

(log n)2
)

= O
(

(log log x)2
)

. Notice
that evaluating such complex expressions only requires a constant number of
auxiliary registers.

The base b described above is then computed. For a RAM(+,−) the calcu-
lation is

8 b := 2tx + 1

which executes in O
(

(t log t)2 + (log x)2
)

= O
(

(n2k log n)2
)

time.
For a RAM(+,−,×,÷) the calculation is

8 b := x2
t

+ 1

which executes in O(t2) = O(n4k) time.
The last phase of the initialisation of M2 sets up register r, which initially

contains only x in its 0-th position:

9 r := x

Every time a register of M ′

1
, say ri (with i a constant), has to be read, its value

can be extracted from the register of r of M2 and stored in an auxiliary register,
say y, as follows:

y := (r ÷ bi) mod b

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 233

where a mod b = a − (a ÷ b × b). This requires

O
(

(log b)2 + (log r)2
)

= O
(

(log b)2 + (log bm+1)2
)

= O
(

(log bm+1)2
)

= O
(

(m log b)2
)

= O
(

((d1n
k + d0) log(2tx + 1))2

)

= O
(

(nk(t + log x))2
)

= O(n6k)

time on a RAM(+,−), and O(1) time on a RAM(+,−,×,÷).
If indirect access is needed, that is, we read ri where i < m is not a constant,

then the computation time becomes

O
(

(i log i log b)2 + (log r)2
)

= O
(

(m log m log b)2 + (m log b)2
)

= O
(

(m log m log b)2
)

= O
(

(nk log n log b)2
)

= O
(

(nk log n · (t + log x))2
)

= O
(

(nk log n · n2k)2
)

= O
(

(n3k log n)2
)

= O
(

n6k(log n)2
)

on a RAM(+,−), and

O
(

(log i)2
)

= O
(

(log m)2
)

= O
(

(log n)2
)

on a RAM(+,−,×,÷). Hence, reading a register of M ′

1
(and, in particular,

indirect addressing) can be simulated in polynomial time both on a RAM(+,−)
and on a RAM(+,−,×,÷).

The operation of writing the value of a register y of M2 into a simulated
register ri of M ′

1
is similar:

1 z := (r ÷ bi) mod b
2 r := r − (z × bi) + (y × bi)

and has the same asymptotical time complexity as above (keeping in mind that i
is a constant in this case).

We can now finally describe how the instructions of M ′

1
are simulated by M2.

– Assignment of a constant “ri := c”

z := (r ÷ bi) mod b
r := r − (z × bi) + (c × bi)

– Copying the value of a register “ri := rj”

y := (r ÷ bj) mod b
z := (r ÷ bi) mod b
r := r − (z × bi) + (y × bi)

– Copying the value of a register through indirect addressing “ri := rrj
”

y := (r ÷ bj) mod b
y′ := (r ÷ by) mod b
z := (r ÷ bi) mod b
r := r − (z × bi) + (y′ × bi)

234 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

– Arithmetical operations “ri := rj • rk” with • ∈ {+,−} (for a RAM(+,−))
or • ∈ {+,−,×,÷} (for a RAM(+,−,×,÷))

y1 := (r ÷ bj) mod b

y2 := (r ÷ bk) mod b
y := y1 • y2

z := (r ÷ bi) mod b
r := r − (z × bi) + (y × bi)

– Conditional jump “if ri 6= 0 then ℓ1 else ℓ2”

y := (r ÷ bi) mod b
if y 6= 0 then ℓ′

1
else ℓ′

2

where ℓ′
1

(resp., ℓ′
2
) is the label of the first of the instructions of M2 simulating

the instruction ℓ1 (resp., ℓ2) of M ′

1
.

The discussion above implies that simulating each instruction of M ′

1
requires at

most O
(

n6k(log n)2
)

for a RAM(+,−), and O
(

(log n)2
)

for a RAM(+,−,×,÷).

Hence, the total number of steps to complete the simulation is O
(

n8k(log n)2
)

and O
(

n2k(log n)2
)

respectively. ⊓⊔

4 Simulating RAMs without Indirect Addressing

We now prove that each RAM, whose instructions satisfy the mild constraints
we have imposed in the definition, and do not use indirect addressing, can be
simulated by an appropriate EN P system working in the all-parallel mode. The
simulation is efficient, in the sense that each RAM instruction is simulated in
just one step.

Theorem 1. Let M be a RAM that does not use indirect addressing. Then, for
each instruction of M there exists a set of programs for an all-parallel EN P
system Π that simulates it in one computation step.

Proof. We proceed by examining all possible cases. In what follows, z is a variable
whose value is always zero, variables ri, rj , rk represent registers of M (contain-
ing non negative integer values), and variables pℓ assume values in {0, 1} to
indicate the next instruction of M to be simulated.

RAM instructions of type “ℓ : ri := k” can be simulated by the following set
of all-parallel programs:

0ri + k + z|pℓ
→ 1|ri

pℓ → 1|pℓ+1

When pℓ = 0 the first program is not executed, while the second program ze-
roes pℓ (thus leaving its value unaltered) and gives a contribution of zero to
variable pℓ+1, thus behaving as a nop (No OPeration). Hence no interference is
produced in the variables involved in the RAM instruction currently simulated.
On the other hand, if pℓ = 1 then the first program first zeroes ri and then

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 235

assigns the value k to it, while the second program zeroes pℓ and sets pℓ+1 to 1,
thus pointing to the next instruction of M to be simulated.

Assignment instructions of type “ℓ : ri := rj”, with j 6= i, can be simulated
using the following programs:

0ri + 2rj + z|pℓ
→ 1|ri + 1|rj

pℓ → 1|pℓ+1

As in the previous case, when pℓ = 0 the first program is not active while the
second one operates like a nop. When pℓ = 1, instead, the first program first
zeroes both ri and rj and then assigns to them the old value of rj ; the second
program, as before, passes the control to instruction ℓ+1. Albeit in our definition
of RAMs we have avoided the case when j = i, here we just observe that we can
also easily deal with it: we simply remove the first program, since in this case it
always operates like a nop.

Arithmetic instructions of type “ℓ : ri := rj • rk”, with • ∈ {+,−,×,÷}

and i 6= j, j 6= k, and i 6= k, can be simulated as follows:

0ri + rj • rk + z|pℓ
→ 1|ri

rj + z|pℓ
→ 1|rj (2)

rk + z|pℓ
→ 1|rk (3)

pℓ → 1|pℓ+1

When pℓ = 0 the first three programs are not executed, while the last program
behaves as a nop. On the other hand, if pℓ = 1 then the first program first zeroes
variables ri, rj and rk, and then it assigns to ri the result of the operation rj •rk,
using the old values of rj and rk. Programs (2) and (3) are used to preserve the
old values of variables rj and rk, whereas the last program passes the control to
instruction ℓ + 1.

Finally, instructions of type “ℓ : if ri 6= 0 then ℓ1 else ℓ2”, with ℓ 6= ℓ1, ℓ 6= ℓ2,
and ℓ1 6= ℓ2, can be simulated by the following programs:

pℓ → 1|pℓ1

ri − 1|pℓ
→ 1|pℓ1 (4)

ri + 1|pℓ
→ 1|pℓ2 (5)

in which we assume ri 6= 0 and correct if this is not the case. Note, in particular,
that programs (4) and (5) are active if and only if pℓ = 1 and ri = 0. So,
when pℓ = 0 only the first program is executed, behaving as a nop. When pℓ = 1
and ri > 0, the first program passes the control to instruction ℓ1 whereas the
other two programs are not executed. Finally, when pℓ = 1 and ri = 0 the first
program zeroes pℓ and (incorrectly) sets pℓ1 to 1. This time, however, also the
other two programs are executed: after resetting once again the value of ri to 0,
program (4) gives a contribution of −1 to pℓ1 , so that its final value will be zero,
whereas program (5) sets pℓ2 to 1, indicating the next instruction of M to be
simulated. ⊓⊔

236 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

5 Simulating all-parallel EN P Systems with RAMs

Having proved that all-parallel EN P systems are able to simulate efficiently
random access machines using the same arithmetic operations, we now turn our
attention to the converse simulation. Without loss of generality, we assume that
the all-parallel EN P systems being simulated have a single membrane [6].

Since the production functions of EN P systems may evaluate to negative
numbers, even if the variables themselves are always non-negative, it is conve-
nient to employ RAMs with registers holding values in Z. This poses no restric-
tion, since signed integers may be simulated with a constant-time slowdown by
RAMs using non-negative numbers, for instance by storing them with a sign-
and-modulus representation.

Proposition 7. Let Π be an ENP(+,−) (respectively, an ENP(+,−,×,÷))
working in all-parallel mode and polynomial time t(n) ≤ c1n

k + c0. Then, there
exists a RAM(+,−) (respectively, a RAM(+,−,×,÷)) M computing the same
output as Π in time O

(

t(n)3
)

(respectively, O
(

t(n)
)

).

Proof. Let x1, . . . , xm be the variables of Π. The machine M stores the values
of these variables in registers that we will denote with the same names, and
will have the same value in the initial configuration, including the input variable
of Π. Let p1, . . . , ph be the programs of Π.

Before describing the simulation proper, let us compute the maximum value
of a variable of Π. If Π is an ENP(+,−), then the rules have one of the following
forms:

ai1xi1 ± · · · ± aik
xik

± a → b1|x1 + · · · + bm|xm

ai1xi1 ± · · · ± aik
xik

± a|e → b1|x1 + · · · + bm|xm

for some constants a, ai1 , . . . , aik
, b1, . . . , bm ∈ N. The following program, with

some constant a ∈ N, produces the maximum increase in the variable x, which
we assume to be the input variable:

ax → 1|x (6)

After t = c1n
k + c0 computation steps, the value of x reaches its maximum atx.

(Naturally, a program such as (6) is not admissible in a halting EN P system;
that program is considered here only in order to provide an upper bound to the
value of the variables of Π.)

On the other hand, if Π is an ENP(+,−,×,÷), the program that maximises
the value of x is

xa → 1|x

for some a ∈ N. In this case, after t steps the value of x reaches xat

. These
upper bounds to the values of the variables of Π will be used later in order to
determine the time required by M in order to simulate the EN P system.

The following is an overview of the simulation of Π:

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 237

repeat

save the current values of the variables
compute the variations due to p1 (if applicable)
...
compute the variations due to ph (if applicable)
compute the new values of the variables

until a final configuration is reached
if Π accepted then

accept

else
reject

end

At the beginning of each simulated step, the current values of the variables are
copied:

x′

1
:= x1

...
x′

m := xm

In the variables ∆1, . . . ,∆m, initially zero, we accumulate the contributions to
x1, . . . , xm given by the programs of Π during the current step:

∆1 := 0
...
∆m := 0

Each program pi of the form f(xi1 , . . . , xik
) → a1|x1 + · · ·+ am|xm is simulated

as follows:

f := f(xi1 , . . . , xik
)

x′

i1
:= 0

...
x′

ik
:= 0

u := f ÷ (a1 + · · · + am)
∆1 := ∆1 + a1u
...
∆m := ∆m + amu

First, the value of the production function is computed. This requires O(1) time,
since by construction Π and M admit the same basic arithmetic operations.
Then, the copies of the variables occurring on the left-hand side of the program
are zeroed.

238 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

The unit u to be distributed according to the repartition protocol is then com-
puted. Here the division is performed in O(1) time if M is a RAM(+,−,×,÷),
but O

(

(log f)2
)

= O
(

(log(atx))2
)

= O(t2) = O(n2k) if it is a RAM(+,−).
Finally, the contributions to the variables of Π are updated according to the

repartition protocol. This only requires O(1) times, as a1, . . . , am are constants.
Programs pi of the form f(xi1 , . . . , xik

)|e → a1|x1+· · ·+am|xm are simulated
analogously, only with an extra test in order to ensure that the value of the
enzyme is larger than the minimum of the variables.

if e > xi1 or e > xi1 or · · · or e > xik
then

f := f(xi1 , . . . , xik
)

x′

i1
:= 0

...
x′

ik
:= 0

u := f ÷ (a1 + · · · + am)
∆1 := ∆1 + a1u
...
∆m := ∆m + amu

end

The time required is again O(1) if Π is an ENP(+,−,×,÷) and O(n2k) if it is
an ENP(+,−).

After all programs have been examined (and applied, when possible), we
can check whether a final configuration is reached: this occurs when, for each
variable xi, we have xi = x′

i +∆i, i.e., when the old value xi equals the (possibly
zeroed) value increased by the sum of the contributions it received in the current
simulated step. If this is not the case, then the values of the variables are updated:

x1 := x′

1
+ ∆1

...
xm := x′

m + ∆m

and the next step of Π is simulated.
When a final configuration is actually reached, the machine M checks the

value of the accept variable of Π and provides the same result:

if accept = 1 then
accept

else
reject

end

The total time required in order to perform the simulation of Π is O(n3k) for
an ENP(+,−), and O(nk) for an ENP(+,−,×,÷). ⊓⊔

Enzymatic Numerical P Systems Using Elementary Arithmetic Operations 239

We can now state our main result, summarising the computational efficiency
of EN P systems using arithmetic operations.

Theorem 2. The following complexity classes coincide:

P-ENP(+,−) = P-RAM(+,−) = P

P-ENP(+,−,×,÷) = P-RAM(+,−,×,÷) = PSPACE

Furthermore, the inclusion P-ENP(+,−,×) ⊆ P-RAM(+,−,×) holds. ⊓⊔

6 Conclusions

We have analysed the computational efficiency of all-parallel EN P systems
and their relationships with more traditional computing devices such as RAMs
and Turing machines. We have showed some efficient simulations of all-parallel
EN P systems by RAMs and vice versa, when the same basic arithmetic opera-
tions are used.

Hence we found that, by using only addition and subtraction, EN P systems
working in polynomial time and all-parallel mode characterise the complexity
class P, whereas by also allowing multiplication and integer division we obtain
a characterisation of PSPACE.

Establishing the precise efficiency of all-parallel EN P systems (as well as
random access machines) with addition, subtraction and multiplication is still
an open problem. The possibility to extend the results exposed in this paper to
EN P systems working in the sequential or in the one-parallel mode, as well as
to numerical P systems not using the enzyme control, is also open.

References

1. Bertoni, A., Mauri, G., Sabadini, N.: A characterization of the class of functions
computable in polynomial time on random access machines. In: STOC ’81 Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing. pp.
168–176 (1981), http://dx.doi.org/10.1145/800076.802470

2. Bottoni, P., Martin-Vide, C., Păun, Gh., Rozenberg, G.: Membrane systems with
promoters/inhibitors. Acta Informatica 38(10), 695–720 (2002)

3. Buiu, C., Vasile, C., Arsene, O.: Development of membrane con-
trollers for mobile robots. Information Sciences 187, 33–51 (2012),
http://dx.doi.org/10.1016/j.ins.2011.10.007

4. Cook, S.A., Reckhow, R.A.: Time bounded random access ma-
chines. Journal of Computer and System Sciences 7, 354–375 (1973),
http://dx.doi.org/10.1016/S0022-0000(73)80029-7

5. Hartmanis, J., Simon, J.: On the power of multiplication in random access ma-
chines. In: IEEE Conference Record of 15th Annual Symposium on Switching and
Automata Theory. pp. 13–23 (1974), http://dx.doi.org/10.1109/SWAT.1974.20

6. Leporati, A., Porreca, A.E., Zandron, C., Mauri, G.: Improving universality re-
sults on parallel enzymatic numerical P systems. In: Proceedings of the Eleventh
Brainstorming Week on Membrane Computing (2013), to appear

240 A. Leporati, G. Mauri, A. E. Porreca, C. Zandron

7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
8. Păun, Gh., Păun, R.: Membrane computing and economics: Numer-

ical P systems. Fundamenta Informaticae 73(1–2), 213–227 (2006),
http://iospress.metapress.com/content/7xyefwrwy7mkg46a/

9. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

10. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems – A new class of
membrane computing systems. In: Li, K., Tang, Z., Li, R., Nagar, A.K., Tham-
buraj, R. (eds.) Proceedings 2010 IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA 2010). pp. 1331–1336
(2010), http://dx.doi.org/10.1109/BICTA.2010.5645071

11. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for mod-
eling mobile robot controllers. Natural Computing 11(3), 387–393 (2012),
http://dx.doi.org/10.1007/s11047-011-9286-5

12. Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, Gh.: On the power of
enzymatic numerical P systems. Acta Informatica 49, 395–412 (2012),
http://dx.doi.org/10.1007/s00236-012-0166-y

Communication Rules Working in Generated
Membrane Boundaries

Tamás Mihálydeák1, Zoltán Ernő Csajbók2, and Péter Takács2

1
Department of Computer Science, Faculty of Informatics, University of Debrecen

Kassai út 26, H-4028 Debrecen, Hungary

mihalydeak.tamas@inf.unideb.hu
2

Department of Health Informatics, Faculty of Health, University of Debrecen,

Sóstói út 2-4, H-4400 Nýıregyháza, Hungary

{csajbok.zoltan,takacs.peter}@foh.unideb.hu

Abstract. In natural processes, the events represented by communi-

cation rules in membrane computing are taken place in the vicinity

of membranes. Looking at regions as multisets, partial approximation

spaces generalized for multisets give a plausible opportunity to model

membrane boundaries in an abstract way. Thus, motivated by natural

phenomena, the abstract notion of “to be close enough to a membrane”

can be built in membrane computing.

Keywords: Membrane computing, multiset theory, partial approximation of
multisets.

1 Introduction

Membrane computing invented by Păun [15–17] is motivated by biological and
chemical processes. Membranes delimit regions for which a set of rules is given.
Evolution rules model reactions inside regions (e.g., like chemical processes work),
whereas communication rules model movements of objects through membranes
(e.g., like biological processes work).

In natural processes, however, the events represented by communication rules
are taken place in the vicinity of a membrane. In membrane computing, there
are some attempts to interpret membrane boundary based on space perception
[1, 3]. In regions, however, there is no precise information about the nature of
the space of objects or their positions in general [4].

In [11], an abstract, not necessarily space–like, membrane boundary was pro-
posed. Accordingly, looking at regions as multisets, partial approximation spaces
generalized for multisets give a plausible opportunity to model the abstract con-
cept of “to be close enough to a membrane”.

The paper, with the help of examples, undertakes to show what happens when
the executions of communication rules are constrained to membrane boundaries
defined in an abstract way. Having outlined the fundamental notions of partial
multiset approximation spaces in Section 2, Section 3 and 4 present its applica-
tion to membrane computing and the examples indicated before.

242 T. Mihálydeák, Z.E. Csajbók, P. Takács

2 General Multiset Approximation Spaces

Set approximations were invented by Pawlak [13, 14]. There are many different
generalizations of Pawlakian rough set theory, among others, for multisets re-
lying on equivalence or general multirelations [6, 8]. Partial nature of real–life
problems, however, requires working out partial approximation schemes. Such a
scheme for multiset first was proposed in [10, 11] in connection with membrane
computing introduced by Păun [15–17]. In this section, the most important fea-
tures of partial multiset approximation spaces are summarized (based on [11]).

2.1 Set-Theoretical Relations and Operations for Multisets

Let U be a finite nonempty set. A multiset M , or mset M for short, over U is
a mapping M : U → N ∪ {∞}, where N is the set of natural numbers. The set
M∗ = {a ∈ U | M(a) 6= 0} is called the support of M . M is finite if M(a) < ∞

for all a ∈ M∗. The mset M over U is the empty mset, denoted by ∅ if M∗ = ∅.
Let MS(U) denote the set of all msets over U .
A set M of finite msets over U is called a macroset M over U [9]. We define

the following two fundamental macrosets: MSn(U) (n ∈ N), the set of all msets
M over U such that M(a) ≤ n for all a ∈ U , and MS<∞(U) =

⋃

∞

n=0
MSn(U).

The basic set–theoretical relations can be generalized for msets as follows.

Definition 1 ([11]). Let M , M1, M2 be msets over U .

1. Multiplicity relation for an mset M over U is:

a ∈ M (a ∈ U) if M(a) ≥ 1.
2. Let n ∈ N

>0 be a positive integer. n–times multiplicity relation for an mset

M over U is: a ∈n M (a ∈ U) if M(a) = n.

3. M1 = M2 if M1(a) = M2(a) for all a ∈ U (mset equality relation).

4. M1 ⊑ M2 if M1(a) ≤ M2(a) for all a ∈ U (mset inclusion relation).

The next definitions give the generalizations for msets of the basic set–
theoretical operations.

Definition 2 ([11]). Let M,M1,M2 ∈ MS(U) be msets over U and M ⊆

MS(U) be a set of msets over U .

1. (M1 ⊓ M2)(a) = min{M1(a),M2(a)} for all a ∈ U (intersection).

2. (
d

M)(a) = min{M(a) | M ∈ M} for all a ∈ U .

3. (M1 ⊔ M2)(a) = max{M1(a),M2(a)} for all a ∈ U (set–type union).

4. (
⊔

M)(a) = sup{M(a) | M ∈ M} for all a ∈ U . By definition,
⊔

∅ = ∅.

5. (M1 ⊕ M2)(a) = M1(a) + M2(a) for all a ∈ U (mset addition).

6. For any n ∈ N, n-times addition of M , denoted by ⊕nM , is given by the

following inductive definition:

(a) ⊕0M = ∅;

(b) ⊕1M = M ;

(c) ⊕n+1M = ⊕nM ⊕ M .

7. (M1 ⊖ M2)(a) = max{M1(a) − M2(a), 0} for all a ∈ U (mset subtraction).

Communication Rules Working in Membrane Boundaries 243

By the n-times addition, the n-times inclusion relation (⊑n) can be defined.

Definition 3. Let M1 6= ∅,M2 be two msets over U .

For any n ∈ N, M1 ⊑n M2 if ⊕nM1 ⊑ M2 but ⊕n+1M1 6⊑ M2.

Corollary 1. Let M1 6= ∅,M2 be two msets over U .

Then for all n ∈ N, M1 ⊑n M2 if and only if nM1(a) ≤ M2(a) for all a ∈ U
and there is an a′ ∈ U such that (n + 1)M1(a

′) > M2(a
′).

Note that U 〈MS(U),⊔,⊓〉 is a complete lattice [2, 5, 7], and 〈MS(U),⊑〉

is a partially ordered set in which M1 ⊑ M2 if and only if M1 ⊔ M2 = M2, or
equivalently, M1 ⊓ M2 = M1 (M1,M2 ∈ MS(U)).

In addition, 〈MS<∞(U),⊔,⊓〉 is the sublattice of 〈MS(U),⊔,⊓〉. However,
〈MS<∞(U),⊔,⊓〉 is not a complete lattice because of it lacks a top element.
For more details, see [12].

2.2 General Multiset Approximation Spaces

A general mset approximation space has four basic components:

– a set of msets as the domain of the space whose members are approximated;
– some distinguished msets of the domain as the basis of approximations;
– definable msets which are derived from base msets in some way and candi-

dates for possible approximations of members of the domain;
– an approximation pair determines the lower and upper approximations of

members of the domain relying on definable msets.

Definition 4 ([11]). The ordered 5–tuple MAS(U) = 〈MS<∞(U),B,DB, l, u〉
is a (general) mset approximation space over U with the domain MS<∞(U) if

1. B ⊆ MS<∞(U) and if B ∈ B, then B 6= ∅ (in notation B = {Bγ | γ ∈ Γ}

where Γ is an arbitrary non–empty set of indexes);

B is called the base system, its members are called the base msets;
2. DB ⊆ MS<∞(U) is an extension of B satisfying the following minimal

requirement: if B ∈ B, then ⊕nB ∈ DB for all n ∈ N; members in DB are

called definable msets;
3. the functions l, u : MS<∞(U) → MS<∞(U) (called lower and upper ap-

proximations) form a weak approximation pair 〈l, u〉 if

(C0) l(MS<∞(U)), u(MS<∞(U)) ⊆ DB (definability of l, u);3

(C1) the functions l and u are monotone, i.e., for all M1,M2 ∈ MS<∞(U) if

M1 ⊑ M2, then l(M1) ⊑ l(M2), u(M1) ⊑ u(M2) (monotonicity of l, u);
(C2) u(∅) = ∅ (normality of u);
(C3) if M ∈ MS<∞(U), then l(M) ⊑ u(M) (weak approximation property).

Corollary 2. l(∅) = ∅ (normality of l).

3
l(MS

<∞
(U)), and u(MS

<∞
(U)) denote the range of the functions l and u.

244 T. Mihálydeák, Z.E. Csajbók, P. Takács

MAS(U) is total, if for any M ∈ MS<∞(U) there is a definable mset D ∈ DB

such that M ⊑ D, it is partial otherwise.
It is reasonable to assume that the base msets and their n-times additions

are exactly approximated from “lower side”. In certain cases, it is also required
of definable msets.

Definition 5. A weak approximation pair 〈l, u〉 is

(C4) granular if B ∈ B, then l(⊕nB) = ⊕nB (n ∈ N) (in other words, l is

granular);

(C5) standard if D ∈ DB, then l(D) = D (in other words, l is standard).

An important question is how lower and upper approximations relate to the
approximated mset.

Definition 6. A weak approximation pair 〈l, u〉 is

(C6) lower semi–strong if l(M) ⊑ M (M ∈ MS<∞(U)) (l is contractive);
(C7) upper semi–strong if M ⊑ u(M) (M ∈ MS<∞(U)) (u is extensive);
(C8) strong if it is lower and upper semi–strong simultaneously, i.e., each subset

M ∈ MS<∞(U) is bounded by l(M) and u(M): l(M) ⊑ M ⊑ u(M).

Definition 7. The general mset approximation space MAS(U) is a weak/gran-
ular/standard/lower semi-strong/upper semi-strong/strong mset approximation

space, if the approximation pair 〈l, u〉 is weak/granular/standard/lower semi-

strong/upper semi-strong/strong, respectively.

2.3 Generalized Pawlakian Multiset Approximation Spaces

It is a natural assumption that DB is obtained (derived) from B by some sorts
of transformations, for the most important cases, see [11]. In order to build a
generalized Pawlakian mset approximation space, first, we define DB as follows.

Definition 8 ([11]). MAS(U) is a strictly set–union type mset approximation

space if DB is given by the following inductive definition:

1. ∅ ∈ DB;

2. B ⊆ DB;

3. if B
⊕ = {⊕nB | B ∈ B, n = 1, 2, . . . } and B

′ ⊆ B
⊕, then

⊔

B
′ ∈ DB.

The next proposition summarizes the most important features of strictly
set–union type mset approximation spaces.

Proposition 1 ([12]). Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly

set–union type mset approximation space over U .

1. For any definable set D ∈ DB,

D =
⊔

{⊕nB ∈ B
⊕ | n ∈ N

>0, B ∈ B, B ⊑n D}.

2. If MAS(U) is also granular and lower semi–strong, for any M ∈ MS<∞(U),

l(M) =
⊔

{⊕nB ∈ B
⊕ | n ∈ N

>0, B ∈ B, B ⊑n M}.

Communication Rules Working in Membrane Boundaries 245

Next, the Pawlakian approximation pair for msets is generalized in strictly
set–union type mset approximation spaces.

Definition 9 ([11]). Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–

union type mset approximation space.

The functions l, u : MS<∞(U) → MS<∞(U) are a (generalized) Pawlakian
mset approximation pair 〈l, u〉 if for any mset M ∈ MS<∞(U)

1. l(M) =
⊔

{⊕nB | n ∈ N
>0, B ∈ B and B ⊑n M},

2. b(M) =
⊔

{⊕nB | B ∈ B, B 6⊑ M, B ⊓ M 6= ∅ and B ⊓ M ⊑n M},

3. u(M) = l(M) ⊔ b(M),

where the function b gives the Pawlakian boundary of the mset M .

It is easy to check by Definition 9 that when MAS(U) is a strictly set–
union type mset approximation space with a Pawlakian mset approximation
pair, MAS(U) is a lower semi–strong mset approximation space, and l is granu-
lar. In other words, MAS(U) fulfills the conditions (C0)–(C3), (C4), (C6).

Definition 10. A strictly set–union type approximation space with a Pawlakian

mset approximation pair is called a Pawlakian mset approximation space.

3 Applications in Membrane Computing

Definition 11. A membrane structure µ of degree m (m ≥ 1) is a rooted tree

with m nodes identified with the integers 1, . . . ,m.

A membrane structure µ of degree m (m ≥ 1) can be represented by the set
Rµ ⊆ {1, . . . ,m} × {1, . . . ,m}. 〈i, j〉 ∈ Rµ means that there is an edge from i
(parent) to j (child) of the tree µ which is formulated by parent(j) = i.

Definition 12. Let µ be a membrane structure with m nodes and V be a finite

alphabet. The tuple

Π = 〈V, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm〉

is a P system if

1. wi ∈ MS<∞(V) for i = 1, 2, . . . ,m;

2. Ri is a finite set of rules for i = 1, 2, . . . ,m such that if r ∈ Ri, its form is

one of the following:

(a) symport rules: 〈u, in〉, 〈u, out〉, where u 6= λ and there is an mset M ∈

MS<∞(V) such that u represents M ;

(b) antiport rule: 〈u, in; v, out〉, where u 6= λ, v 6= λ and there are msets

M1,M2 ∈ MS<∞(V) such that u, v represent M1,M2, respectively.

246 T. Mihálydeák, Z.E. Csajbók, P. Takács

If the P system Π = 〈V, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm〉 is given, let
MAS(Π) = 〈MS<∞(V),B,DB, l, u〉 be a strictly set–union type mset approx-
imation space with a generalized Pawlakian approximation pair 〈l, u〉. MAS(Π)
is called a joint membrane approximation space.

Having given a membrane system Π and its joint membrane approximation
space MAS(Π), we can define the boundaries of the regions w1, w2, . . . , wm as
msets with the help of approximative functions l, u, b specified in Definition 9.4

Definition 13 ([11]). Let Π = 〈V, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm〉 be a P
system and MAS(Π) = 〈MS<∞(V),B,DB, l, u〉 be its joint membrane approxi-

mation space. If B ∈ B and i = 1, 2, . . . ,m, let

N(B, i) =







0, if B ⊑ wi or B ⊓ wi = ∅;

n, if i = 1 and B ⊓ w1 ⊑n w1;

min{k, n | B ⊓ wi ⊑
k wi, and B ⊖ wi ⊑

n wparent(i)}, otherwise.

Then, for i = 1, . . . ,m,

bnd(wi) =
⊔

{⊕N(B,i)B | B ∈ B}; bndout(wi) = bnd(wi) ⊖ wi;

bndin(wi) = bnd(wi) ⊖ bndout(wi).

The functions bnd, bndout, bndin give membrane boundaries, outside and inside

membrane boundaries, respectively.
The general notion of boundaries given in Definition 9 cannot be used here,

because membrane boundaries have to follow the given membrane structure
µ. The lower approximations l(wi) (i = 1, . . . ,m) obey the membrane struc-
ture. The upper approximation u(w1) and the Pawlakian boundaries b(w1) are
wholly within the environment of the membrane structure. However, the upper
approximation u(wi), therefore the Pawlakian boundary b(wi) (i = 2, . . . ,m) do
not obey the membrane structure in general. Thus, the Pawlakian boundaries
have to be adjusted to the membrane structure by the function bnd. Of course,
b(w1) = bnd(w1), but b(wi) 6= bnd(wi) (i = 2, . . . ,m) in general. Moreover,
membrane boundaries bnd(wi) (i = 1, . . . ,m) are split into two parts, inside and
outside membrane boundaries.

Using membrane boundaries, the following constraints for rule executions are
prescribed: a rule r ∈ Ri of a membrane i (i = 1, . . . ,m) has to work only in the
membrane boundary of its region. More precisely,

– a symport rule of the form 〈u, in〉 is executed only in the case when
u ⊑ bndout(wi);

– a symport rule of the form 〈u, out〉 is executed only in the case when
u ⊑ bndin(wi);

– an antiport rule of the form 〈u, in; v, out〉 is executed only in the case when
u ⊑ bndout(wi) and v ⊑ bndin(wi).

It can be shown that the membrane computation actually works in the mem-
brane boundaries, see [11], Theorem 1.

4
We are speaking about the boundaries of regions but, to tell the truth, these bound-

aries are the boundaries of msets of different regions.

Communication Rules Working in Membrane Boundaries 247

4 An Illustrative Example

In this section, we follow the customary representations of msets. Accordingly,
if an mset M is finite, it is represented by all permutations of the string w:

w =

{

a
M(ak1

)

k1
a

M(ak2
)

k2
. . . a

M(akl
)

kl
, if M is nonempty;

λ, otherwise;

where M∗ = {ak1
, ak2

, . . . , akl
} ⊆ U and λ is the empty string.

As usual, with a slight abuse of terminology, simply “the mset w” is said
instead of “the mset M represented by the string w and all of its permutations”.
Moreover, any permutation of the string w can also represent M .

4.1 Giving the P system and its Joint Membrane Approximation

Space

Let the P system be Π = 〈U, µ,w1, R〉, where

– U = {a, b, c, d, e, f} is a finite alphabet;
– µ is a membrane structure of degree 1;
– the region w1 is represented by the multiset w1 = ab11c3d9e;
– R = {〈ac; out〉, 〈b6d6; out〉, 〈d3e; out〉} is the set of communication rules.

Let the joint membrane approximation space of Π be a strictly set–union
type mset approximation space with a generalized Pawlakian approximation
pair. That is let MAS(Π) = 〈MS<∞(U),B,DB, l, u〉, where

– MS<∞(U) is the domain of MAS(Π);
– B = {a2b, abcdef, ac, b3cd2, b3d2, b3d2f, c, e3, f2, f4} is the base system;
– DB is the set of definable sets such that

• ∅ ∈ DB;
• B

⊕ = {a2b, a4b2, a6b3, . . . , abcdef, a2b2c2d2e2f2, a3b3c3d2e3f3, . . . ,
ac, a2c2, a3c3, . . . , b3cd2, b6c2d4, b9c3d6, . . . , b3d2, b6d4, b9d6, . . . ,
b3d2f, b6d4f2, b9d6f3, . . . , c, c2, c3 . . . , e3, e6, e9, . . . ,
f2, f4, f6, . . . , f8, f12}, and for any B

′ ⊆ B
⊕,

⊔

B
′ ∈ DB;

• DB does not have any other member;
– 〈l, u〉 is a Pawlakian mset approximation pair.

Throughout the computation processes, we utilize the fact that M1 ⊑n M2

if and only if ⊕nM1 ⊑1 M2 (M1,M2 ∈ MS<∞(U), n ∈ N
>0).

4.2 Computing the Pawlakian Lower- and Upper Approximations

and the Boundary

Computation of l(w1) By Definition 9,

l(w1) = l(ab11c3d9e) =
⊔

{⊕nB | n ∈ N
>0, B ∈ B and B ⊑n ab11c3d9e}.

248 T. Mihálydeák, Z.E. Csajbók, P. Takács

The computation process of l(w1) can be tracked by Table 1.5 The result is:

l(w1) = ⊕1ac ⊔ ⊕3b
3cd2 ⊔ ⊕3b

3d2 ⊔ ⊕3c

= ac ⊔ b9c3d6 ⊔ b9d6 ⊔ c3

= ab9c3d6

Computation of b(w1) By Definition 9,

b(w1) = b(ab11c3d9) =
⊔

{⊕nB | B ∈ B, B 6⊑ ab11c3d9, B ⊓ ab11c3d9 6= ∅

and B ⊓ ab11c3d9 ⊑n ab11c3d9}.

The computation process of b(w1) can be tracked by Table 2. The result is:

b(w1) = ⊕1a
2b ⊔ ⊕1abcdef ⊔ ⊕3b

3d2f ⊔ ⊕1e
3

= a2b ⊔ abcdef ⊔ b9d6f3 ⊔ e3 = a2b9cd6e3f3

= a2b9cd6e3f3

Computation of u(w1) By Definition 9, u(w1) = l(w1) ⊔ b(w1), and so

u(w1) = u(ab11c3d9) = l(ab11c3d9) ⊔ b(ab11c3d9)

= ab9c3d6 ⊔ a2b9cd6e3f3

= a2b9c3d6e3f3.

Since u(w1) ∈ DB, by Proposition 1(1), u(w1) is decomposable, i.e., u(w1)
can be formed as a set–type unions of base msets. Its computation can be tracked
by Table 3. The result is:

u(w1) = u(ab11c3d9) = a2b9c3d6e3f3

= a2b ⊔ a2b2c2d2e2f2 ⊔ a2c2 ⊔ b9c3d6 ⊔ b9d6 ⊔ b9d6f3 ⊔ e3 ⊔ f2

= ⊕1a
2b ⊔ ⊕2abcdef ⊔ ⊕2ac ⊔ ⊕3b

3cd2 ⊔ ⊕3b
3d2 ⊔ ⊕3b

3d2f ⊔ ⊕3c

⊔ ⊕1 e3 ⊔ ⊕1f
2

4.3 Computing (Inside/Outside) Membrane Boundaries

Computation of bnd(w1) The membrane boundary and the Pawlakian bound-
ary are equal for the skin membrane, i.e., bnd(w1) = b(w1). Therefore,

bnd(w1) = b(w1) = a2b9cd6e3f3.

The Pawlakian boundary b(w1) = a2b9cd6e3f3 was computed by Definition
9 with the help of Table 2. In order to check the equality bnd(w1) = b(w1), let
us compute bnd(w1) by Definition 13, too.

5
All tables are placed after the Section Acknowledgments.

Communication Rules Working in Membrane Boundaries 249

The numbers N(B, 1) (B ∈ B) (see Definition 13) can be determined as
follows:

N(a2b, 1) = 1, because a2b 6⊑ ab11c3d9e, a2b ⊓ ab11c3d9e = ab 6= ∅,

and a2b ⊓ ab11c3d9e = ab ⊑1 ab11c3d9e;

N(abcdef, 1) = 1, because abcdef 6⊑ ab11c3d9e, abcdef ⊓ ab11c3d9e = abcde 6= ∅,

and abcdef ⊓ ab11c3d9e = abcde ⊑1 ab11c3d9e;

N(ac, 1) = 0, because ac ⊑ ab11c3d9e;

N(b3cd2, 1) = 0, because b3cd2 ⊑ ab11c3d9e;

N(b3d2, 1) = 0, because b3d2 ⊑ ab11c3d9e;

N(b3d2f, 1) = 3, because b3d2f ⊓ ab11c3d9e = b3d2 ⊑3 ab11c3d9e;

N(c, 1) = 0, because c ⊑ ab11c3d9e;

N(e3, 1) = 1, because e3 6⊑ ab11c3d9e, e3 ⊓ ab11c3d9e = e 6= ∅,

and e3 ⊓ ab11c3d9e = e ⊑1 ab11c3d9e;

N(f2, 1) = 0, because f2 6⊑ ab11c3d9e, f2 ⊓ ab11c3d9e = ∅;

N(f4, 1) = 0, because f4 6⊑ ab11c3d9e, f4 ⊓ ab11c3d9e = ∅.

Hence, by Definition 13,

bnd(w1) =
⊔

{⊕N(B,1)B | B ∈ {a2b, abcdef, ac, b3cd2, b3d2, b3d2f, c, e3, f2, f4}}

= ⊕1a
2b ⊔ ⊕1abcdef ⊔ ⊕0ac ⊔ ⊕0b

3cd2 ⊔ ⊕0b
3d2 ⊔ ⊕3b

3d2f ⊔ ⊕0c

⊔ ⊕1 e3 ⊔ ⊕0f
2 ⊔ ⊕0f

4

= a2b ⊔ abcdef ⊔ ∅ ⊔ ∅ ⊔ ∅ ⊔ b9d6f3 ⊔ ∅ ⊔ e3 ⊔ ∅ ⊔ ∅

= a2b9cd6e3f3.

Computation of bndout(w1) By Definition 13,

bndout(w1) = bnd(w1) ⊖ w1 = b(w1) ⊖ w1,

= bndout(ab11c3d9e) = a2b9cd6e3f3 ⊖ ab11c3d9e = ae2f3.

Computation of bndin(w1) By Definition 13,

bndin(w1) = bnd(w1) ⊖ bndout(w1) = b(w1) ⊖ bndout(w1),

= bndin(ab11c3d9e) = a2b9cd6e3f3 ⊖ ae2f3 = ab9cd6e.

The computation of inside/outside membrane boundaries can easily be car-
ried out when the msets are represented in Parikh vector form:

1. in Table 4, the rows 2, 3, 5 contain Parikh representations of bnd(w1), w1,
and bndout(w1), respectively;

2. in Table 5, the rows 2, 3, 5 contain Parikh representations of bnd(w1),
bndout(w1), and bndin(w1), respectively.

250 T. Mihálydeák, Z.E. Csajbók, P. Takács

4.4 Executions of Communication Rules without Membrane

Boundary

For the sake of simplicity and in order to show the differences between two types
of computations (without and with membrane boundaries) in the present and
the next subsections the communication rules are executed in sequential (one–
parallel) way. In this subsection, the communication rules are executed in the
region w1 = ab11c3d9e, i.e., without membrane boundary.

Let the execution sequence of the communication rules as follows:

〈ac; out〉, 〈b6d6; out〉, 〈d3e; out〉.

The steps of computation process without membrane boundary are the fol-
lowing:

Step 1. Since ac ⊑ w1 = ab11c3d9e, the rule 〈ac; out〉 is applicable. This rule
indicates that the mset ac exits the membrane w1 and goes to the environ-
ment:

ab11c3d9e
〈ac; out〉

=⇒ b11c2d9e.

Step 2. Since b6d6 ⊑ w1 = b11c2d9e, the rule 〈b6d6; out〉 is applicable. This
rule indicates that the mset b6d6 exits the membrane w1 and goes to the
environment:

b11c2d9e
〈b6d6

; out〉
=⇒ b5c2d3e.

Step 3. Since d3e ⊑ w1 = b5c2d3e, the rule 〈d3e; out〉 is applicable. This rule
indicates that the mset d3e exits the membrane w1 and goes to the environ-
ment:

b5c2d3e
〈d3e; out〉

=⇒ b5c2.

Consequently, in this case, the P system Π halts with the mset b5c2 in the
region w1.

4.5 Executions of Communication Rules with Membrane Boundary

In this subsection, the executions of communication rules are constrained to the
membrane boundary

bnd(w1) = a2b9cd6e3f3 = ⊕1a
2b ⊔ ⊕1abcdef ⊔ ⊕3b

3d2f ⊔ ⊕1e
3.

In other words, the communication rules work in the joint membrane approx-
imation space MAS(Π). A communication rule of the form 〈u; out〉 is applicable
if u ⊑ bndin(w1) = ab9cd6e. If the rule 〈u; out〉 is applicable, the mset u exits the
inside membrane boundary bndin(w1) = ab9cd6e and enters the outside mem-
brane boundary bndout(w1) = ae2f3. These movements work within the base
msets solely which ensures that the joint membrane approximation space will
not change during the executions of communication rules.

Communication Rules Working in Membrane Boundaries 251

As before, let the execution sequence of the communication rules as follows:

〈ab; out〉, 〈b6d6; out〉, 〈d3e; out〉.

Since the inside/outside boundaries are msets but not membranes, the tran-
sition of a communication rule execution is denoted by −→.

The steps of computation process with membrane boundary are the following:

Step 1. Since ac ⊑ bndin(w1) = ab9cd6e, the rule 〈ac; out〉 is applicable. This
rule indicates that the mset ac exits the inside membrane boundary ab9cd6e
and enters outside membrane boundary ae2f3:

(ab9cd6e, ae2f3)
〈ac; out〉
−→ (b9d6e, a2ce2f3).

Step 2. Since b6d6 ⊑ bndin(w1) = b9d6e, the rule 〈b6d6; out〉 is applicable. This
rule indicates that the mset b6d6 exits the inside membrane boundary b9d6e
and enters outside membrane boundary a2ce2f3:

(b9d6e, a2ce2f3)
〈b6d6

; out〉
−→ (b3e, a2b6cd6e2f3).

Step 3. Since d3e 6⊑ bndin(w1) = b3e, the rule 〈d3e; out〉 is not applicable.

In sum, the msets ac, b6d6 exit the w1 = ab11c3d9e, i.e.,

ab11c3d9e
〈ac; out〉,〈b6d6

; out〉
=⇒ b5c2d3e.

Therefore, in this case, the P system Π halts with the mset b5c2d3e in the
region w1, the mset b3e in the inside membrane boundary bndin(w1), and the
mset a2b6cd6e2f3 in the outside membrane boundary bndout(w1).

Acknowledgments

The publication was supported by the TÁMOP–4.2.2.C–11/1/KONV–2012–0001
project. The project has been supported by the European Union, co–financed
by the European Social Fund.

The authors are thankful to György Vaszil and the anonymous referees for
valuable suggestions.

252 T. Mihálydeák, Z.E. Csajbók, P. Takács

Table 1. Computation of l(w1) = l(ab11c3d9e)

B ⊕1B
?

⊑
1 w1 ⊕2B

?

⊑
1 w1 ⊕3B

?

⊑
1 w1 ⊕4B

?

⊑
1 w1

a2b a2b 6⊑
1

- - -

abcdef abcdef 6⊑
1

- - -

ac
�
�

�
�ac ⊑

1 a2c2
6⊑

1
- -

b3cd2 b3cd2
⊑

1 b6c2d4
⊑

1

�
�

�
�b9c3d6
⊑

1 b12c4d8
6⊑

1

b3d2 b3d2
⊑

1 b6d4
⊑

1

�
�

�
�b9d6
⊑

1 b12d8
6⊑

1

b3d2f b3d2f 6⊑
1

- - -

c c ⊑
1 c2

⊑
1

�
�

�
�c3
⊑

1 c4
6⊑

1

e3 e3
6⊑

1
- - -

f2 f2
6⊑

1
- - -

f4 f4
6⊑

1
- - -

Table 2. Computation of b(w1) = b(ab11c3d9e)

Let B′
= B ⊓ w1

B B
?

6⊑ w1 B′

?

6= ∅ ⊕1B
′

?

⊑
1 w1 ⊕2B

′

?

⊑
1 w1 ⊕3B

′

?

⊑
1 w1 ⊕4B

′

?

⊑
1 w1

a2b 6⊑ ab 6= λ
�
�

�
�ab ⊑

1 a2b2
6⊑

1
- -

abcdef 6⊑ abcde 6= λ
�
�

�
�abcde ⊑

1 a2b2c2d2e2
6⊑

1
- -

ac ⊑ - - - - -

b3cd2
⊑ - - - - -

b3d2
⊑ - - - - -

b3d2f 6⊑ b3d2
6= λ b3d2

⊑
1 b6d4

⊑
1

�
�

�
�b9d6

⊑
1 b12d8

6⊑
1

c ⊑ - - - - -

e3
6⊑ e 6= λ

�
�

�
�e ⊑

1 e2
6⊑

1
- -

f2
6⊑ = λ - - - -

f4
6⊑ = λ - - - -

Communication Rules Working in Membrane Boundaries 253

Table 3. Computation of the base mset decomposition of u(w1) = a2b9c3d6e3f3

B ⊕1B
?

⊑
1

u(w1) ⊕2B
?

⊑
1

u(w1) ⊕3B
?

⊑
1

u(w1) ⊕4B
?

⊑
1

u(w1)

a2b
�
�

�
�a2b ⊑

1 a4b2
6⊑

1
- -

abcdef abcdef ⊑
1

�
�

�
�a2b2c2d2e2f2
⊑

1 a3b3c3d3e3f3
6⊑

1
-

ac ac ⊑
1

�
�

�
�a2c2
⊑

1 a4c4
6⊑

1
-

b3cd2 b3cd2
⊑

1 b6c2d4
⊑

1

�
�

�
�b9c3d6
⊑

1 b12c4d8
6⊑

1

b3d2 b3d2
⊑

1 b6d4
⊑

1

�
�

�
�b9d6
⊑

1 b12d8
6⊑

1

b3d2f b3d2f ⊑
1 b6d4f2

⊑
1

�
�

�
�b9d6f3
⊑

1 b12d8f4
6⊑

1

c c ⊑
1 c2

⊑
1

�
�

�
�c3
⊑

1 c3
6⊑

1

e3

�
�

�
�e3
⊑

1 e6
6⊑

1
- -

f2

�
�

�
�f2
⊑

1 f4
6⊑

1
- -

f4 f4
6⊑

1
- - -

Table 4. Computation of bnd
out

(w1)

a b c d e f

bnd(w1) = b(w1) = a2b9cd6e3f3
2 9 1 6 3 3

w1 = ab11c3d9e 1 11 3 9 1 0

row 2 – row 3 1 -2 -2 -3 2 3

bnd
out

(w1) = bnd(w1) ⊖ w1 = ae2f3
1 0 0 0 2 3

Table 5. Computation of bnd
in
(w1)

a b c d e f

bnd(w1) = b(w1) = a2b9cd6e3f3
2 9 1 6 3 3

bnd
out

(w1) = ae2f3
1 0 0 0 2 3

row 2 – row 3 1 9 1 6 1 0

bnd
in
(w1) = bnd(w1) ⊖ bnd

outw1 = ab9cd6e 1 9 1 6 1 0

254 T. Mihálydeák, Z.E. Csajbók, P. Takács

References

1. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P

systems. Natural Computing 10(1), 3–16 (2011)

2. Birkhoff, G.: Lattice theory, Colloquium Publications, vol. 25. American Mathe-

matical Society, Providence, Rhode Island, 3rd edn. (1967)

3. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo,

E., Gomes, L.M. (eds.) CiE. Lecture Notes in Computer Science, vol. 6158, pp. 78–

87. Springer (2010)

4. Csuhaj-Varjú, E., Gheorghe, M., Stannett, M.: P systems controlled by general

topologies. In: Durand-Lose, J., Jonoska, N. (eds.) Unconventional Computation

and Natural Computation - 11th International Conference, UCNC 2012, Orléan,

France, September 3-7, 2012. Proceedings. LNCS, vol. 7445, pp. 70–81. Springer,

Berlin Heidelberg (2012)

5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-

versity Press, Cambridge, second edition edn. (2002)

6. Girish, K.P., John, S.J.: Relations and functions in multiset context. Information

Sciences 179(6), 758–768 (2009)

7. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel und Stuttgart (1978)

8. Grzymala-Busse, J.: Learning from examples based on rough multisets. In: Pro-

ceedings of the Second International Symposium on Methodologies for intelligent

systems. pp. 325–332. North-Holland Publishing Co., Amsterdam, The Nether-

lands, The Netherlands (1987)

9. Kudlek, M., Mart́ın-Vide, C., Păun, G.: Toward a formal macroset theory. In:

Calude, C., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMP. LNCS, vol. 2235,

pp. 123–134. Springer-Verlag, Berlin Heidelberg (2001)

10. Mihálydeák, T., Csajbók, Z.: Membranes with local environments. In: Csuhaj-

Varjú, E., Gheorghe, M., Vaszil, G. (eds.) 13th International Conference on Mem-

brane Computing, CMC13, Budapest, Hungary, August 28 - 31, 2012. Proceedings.

pp. 311–322. MTA SZTAKI, the Computer and Automation Research Institute of

the Hungarian Academy of Sciences, Budapest, Hungary (2012)

11. Mihálydeák, T., Csajbók, Z.E.: Membranes with boundaries. In: Csuhaj-Varjú, E.,

Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane Comput-

ing. 13th International Conference, CMC 2012, Budapest, Hungary, August 28-31,

2012, Revised Selected Papers. LNCS, vol. 7762, pp. 277–294. Springer-Verlag,

Berlin Heidelberg (2013)

12. Mihálydeák, T., Csajbók, Z.E.: Partial approximation of multisets and its appli-

cations in membrane computing. In: Proceedings of the 2013 Joint Rough Set

Symposium (JRS2013). LNCS, Springer-Verlag (in the fall of 2013), Forthcoming

13. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-

ences 11(5), 341–356 (1982)

14. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht (1991)

15. Păun, G.: Computing with membranes. Journal of Computer and System Sciences

61(1), 108–143 (2000)

16. Păun, G.: Membrane Computing. An Introduction. Springer-Verlag, Berlin (2002)

17. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford Handbooks, Oxford University Press, Inc., New York, NY,

USA (2010)

Towards High-level P Systems Programming
using Complex Objects

Radu Nicolescu1, Florentin Ipate2 and Huiling Wu1

1
Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand

r.nicolescu@auckland.ac.nz, hwu065@aucklanduni.ac.nz

2
Department of Computer Science, University of Bucharest,

Bucharest, Romania, and

Department of Computer Science, University of Piteşti,

Piteşti, Romania

florentin.ipate@ifsoft.ro

Abstract. We develop and formalise our earlier complex objects pro-

posal and show that it enables an efficient high-level programming of

P systems.

Keywords: P systems, complex objects, generic rules, data structures,

control flow, parallel composition, function calls, recursion, numerical

P systems, NP-complete, applications.

1 Introduction

A P system is a formal parallel and distributed computational model inspired
by the structure and interactions of living cells, introduced by Păun [16]; for a
recent overview of the domain, see Păun et al.’s recent monograph [18]. Essen-
tially, a P system is specified by its membrane structure, symbols and rules. The
underlying structure is a network such as a digraph, a directed acyclic graph
(dag) or a tree (which seems the most studied case). Each node, here better
known as cell, transforms its content symbols and sends messages to its neigh-
bours using formal rules inspired by rewriting systems. Rules of the same cell
can be applied in parallel (where possible) and all cells work in parallel.

P modules can be asynchronous, in the sense used in distributed algorithms
and in Nicolescu [13], admitting the more traditional synchronous definitions as
a special case. Sometimes we also make a fine distinction between (i) generated
objects that can be thought, as traditionally in P systems, as being messaged
back to the current cell, via a sort of loopback channel, and (ii) generated objects
which become immediately available for the following rules, a matrix grammars
inspired approach, used by ElGindy et al. [6]. However, here we strictly focus on
single cell systems, so all these fine distinctions can be safely ignored.

In P systems, the practically very important modularity can be achieved
by two distinct complementary ways: (i) an external modularity, for recursively

256 R. Nicolescu, F. Ipate, H. Wu

aggregating groups of cells into higher order P modules, as described in Dinneen
et al. [4], an approach which is not further discussed here, and (ii) an internal

modularity, possible inside each cell, where we recursively aggregate objects and
rules to form higher-order components, a more recent approach which is more
systematically discussed and assessed in this paper.

This article presents evidence that complex objects can enable a high-level

programming style, with data structures, control flow, and several useful func-

tional programming elements. We have previously used complex objects to suc-
cessfully model and even improve large practical applications, ranging from com-
puter vision [9, 10, 8] to complex graph theoretical problems [15, 6] and to well-
known critical distributed algorithms [19]. Here we attempt to generalise our
field-proven methods and sketch how to apply similar techniques to other, more
theoretical, domains: numerical P systems and NP-complete problems.

Because of space constraints, for the rest of the paper we assume that the
reader is already familiar with basic definitions used in tissue-like transition
P systems, including state based rules, weak priority, promoters and inhibitors.
Section 2 presents a formal definition for complex objects, slightly beyond what
we have earlier proposed [13, 6]. Section 3 shows how fundamental data struc-
tures, such as stacks, trees and dictionaries, can be built and processed using
our proposals. Section 4 sketches the basic ideas behind an integer arithmetic
package, which can be extended to a rational package. Section 5 covers control
flow techniques which can be used to implement higher level operations such
as branching statements, parallel compositions, sequential functions definitions
and invocations. Section 6 proposes a high-level linguistic support for developing
P system models in a simple functional style. Section 7 illustrates a couple of
more theoretical applications, not attempted in our earlier modelling projects:
numerical P systems and NP-complete problems. Note that the ideas of integer
arithmetic, compositional properties and high-level programming, although in
different settings, recall similar ideas also presented to carry out arithmetic and
register-machine computation, for example, in [2, 11].

2 P systems with complex objects

2.1 Complex objects

We consider the following formal definition for complex objects, which are Prolog-
like ground terms, which can include either lists of complex objects or dot-
separated strings (here interpreted as sequences) of complex objects:

<complex-object> ::= <term-object>

<term-object> ::= <atom> | <functor-object> ’(’ <object-arguments> ’)’

<functor-object> ::= <atom> | <complex-object>

<object-arguments> ::= λ | <object-list> | <object-sequence>

Complex Objects 257

<object-list> ::= <complex-object> (’,’ <complex-object>)*

<object-sequence> ::= <complex-object> (’.’ <complex-object>)*

Atoms (simple objects) are typically denoted by lower case letters, such as
a, b, c, possibly with indices. Example ground complex objects: a, a(), a(b, c),
a(b(c)), a.b().c, a(b.c), a(b(c))(d(e)), a(b(c), d(e)), a(b(c), d.e), a(b(c).d(e)).

We typically reserve sequences to represent natural numbers. For example,
considering that l represents the unary digit, then the following complex objects
can be used to describe the contents of a virtual integer variable a: a() — the
value of a is 0; a(l3) — the value of a is 3.

We are considering to extend our string objects to mean bags (i.e. multisets),
instead of sequences. This could be useful in some scenarios, but we are not
following these ideas here.

2.2 Variables and pattern matching

Variables are used for pattern matching on object arguments and are typically
denoted by uppercase letters, such as X, Y , Z, possibly with overbars, e.g. X,
and with indices, e.g. X1, X2. Variable ’ ’ (underscore) is a wild-card and is
used when pattern matching is required but its value is not further used. Using
variables require the following redefinitions:

<object-list> ::= <var-or-object> (’,’ <var-or-object>)*

<var-or-object> ::= <variable_1> | <complex-object>

<object-sequence> ::= <var-or-object-subsequence>

(’:’ <var-or-object-subsequence>)*

<var-or-object-subsequence> ::= <variable_2>

| λ | <var-or-object> (’.’ <var-or-object>)*

With these definitions, a variable can match either:

1. a complex object in a list of arguments or in a string, or

2. any substring of a complex objects sequence, including λ.

Variables of the type 1 will be denoted by symbols without overbars and
variables of type 2 will have overbars. For example:

– matching a(b(c), d.e.f) = a(X, d.Y) creates the bindings X,Y = b(c), e.f

– matching a.b().c = X.Y creates the binding X, Y = a, b().c

– matching a.b().c = X.Y creates the binding X,Y = a.b(), c

– matching a.b().c = X.Y nondeterministically creates one of the following
bindings X, Y = λ, a.b().c, X,Y = a, b().c, X, Y = a.b(), c, X, Y = a.b().c, λ

258 R. Nicolescu, F. Ipate, H. Wu

With the exception of subsequence matchings, our pattern matching rules
are a simplified version of term unification in Prolog-like languages, so they
can be implemented with reasonable efficiency. As we will later see, arithmetic
operations are based on particular subsequence matchings on unary sequences:
these matchings can also be efficiently implemented. However, general subse-
quence matchings could be expensive, so these should be prudently used, e.g. for
proof-of-concept prototyping.

Type 2 (overbarred) variables and much of the pattern matching complexities
have been mainly introduced to support efficient arithmetic operations (on unary
sequences); the complex objects construction would look much simpler if we
would accept natural numbers as primitives in our P modules.

2.3 Generic rules

By default, rules are applied top-down, in the so-called weak priority order.
As we are here exclusively focusing on single cell systems, we only consider a
simplified generic rule format (with no messaging), of the following type:

current-state objects →α target-state objects
′ | promoters ¬ inhibitors,

where

– left-side objects, right-side objects′, promoters and inhibitors are bags of

complex objects, possibly containing (which makes rules generic) variables,
which are matched (unified) as described in the previous section;

– α ∈ {min.min, min.max, max.min, max.max}, is a combined instantiation and
rewriting mode, as discussed in Nicolescu et al. [13, 6] (discussion further
adapted below).

To explain generics, consider a cell, σ, containing three counter-like complex
objects, c(c(a)), c(c(a)), c(c(c(a))), and all four possible instantiation.rewriting
modes of the following “decrementing” rule:

(ρα) S1 c(c(X)) →α S2 c(X).

where α ∈ {min.min, min.max, max.min, max.max}.

1. If α = min.min, rule ρmin.min nondeterministically generates one of the fol-
lowing rule instances:

(ρ′
1
) S1 c(c(a)) →min S2 c(a) or

(ρ′′
1
) S1 c(c(c(a))) →min S2 c(c(a)).

In the first case, using (ρ′
1
), cell σ ends with counters c(a), c(c(a)), c(c(c(a))).

In the second case, using (ρ′′
1
), cell σ ends with counters c(c(a)), c(c(a)),

c(c(a)).

Complex Objects 259

2. If α = max.min, rule ρmax.min generates both following rule instances:

(ρ′
2
) S1 c(c(a)) →min S2 c(a) and

(ρ′′
2
) S1 c(c(c(a))) →min S2 c(c(a)).

In this case, using (ρ′
2
) and (ρ′′

2
), cell σ ends with counters c(a), c(c(a)),

c(c(a)).

3. If α = min.max, rule ρmin.max nondeterministically generates one of the fol-
lowing rule instances:

(ρ′
3
) S1 c(c(a)) →max S2 c(a) or

(ρ′′
3
) S1 c(c(c(a))) →max S2 c(c(a)).

In the first case, using (ρ′
3
), cell σ ends with counters c(a), c(a), c(c(c(a))).

In the second case, using (ρ′′
3
), cell σ ends with counters c(c(a)), c(c(a)),

c(c(a)).

4. If α = max.max, rule ρmin.max generates both following rule instances:

(ρ′
4
) S1 c(c(a)) →max S2 c(a) and

(ρ′′
4
) S1 c(c(c(a))) →max S2 c(c(a)).

In this case, using (ρ′
4
) and (ρ′′

4
), cell σ ends with counters c(a), c(a), c(c(a)).

The interpretation of min.min, min.max and max.max modes is straightforward.
While other interpretations could be considered, the mode max.min indicates that
the generic rule is instantiated as many times as possible, without superfluous

instances (i.e. without duplicates or instances which are not applicable) and each
one of the instantiated rules is applied once, if possible.

For all modes, the instantiations are conceptually created when rules are
tested for applicability and are also ephemeral, i.e. they disappear at the end of
the step. P system implementations are encouraged to directly apply high-level
generic rules, if this is more efficient (it usually is); they may, but need not, start
by transforming high-level rules into low-level rules, by way of instantiations.

This type of generic rules allow (i) a reasonably fast parsing and processing
of subcomponents, and (ii) algorithm descriptions with fixed size alphabets and
fixed sized rulesets, independent of the size of the problem and number of cells
in the system (sometimes impossible with only atomic symbols).

3 Data structures

3.1 Stacks

A n-size stack s, with contents a1, a2 . . . an−1, an (top), can be represented by a
complex object s(an(an−1(. . . a2(a1()) . . .))). Essentially, this is a simple linked

list where the list head is the stack top. Examples: s() — an empty stack, s;
s(a(b(c()))) — a stack, s, with contents a, b, c.

Fundamental operations on stacks include:

260 R. Nicolescu, F. Ipate, H. Wu

– construct an empty stack

S1 →min.min S2 s()

– replace a by b, if s is empty

S1 a →min.min S2 b | s()

– clear a stack
S1 s(X) →min.min S2 s()

– push a, if a is in the current contents

S1 a s(X) →min.min S2 s(a(X))

– push the content of c, if this exists and is a term (not sequence)

S1 c(T) s(X) →min.min S2 s(T (X))

– conditional pop a, if a is on top

S1 s(a(X)) →min.min S2 a s(X)

– unconditional pop, if s is not empty

S1 s(T (X)) →min.min S2 T s(X)

– conditional peek a, if a is on top

S1 s(a(X)) →min.min S2 a s(a(X))

– unconditional peek, if s is not empty

S1 s(T (X)) →min.min S2 T s(T (X))

– reverse stack s on stack t

S1 s(T (X)) t(Y) →max.min S2 s(X) t(T (Y))

Complexity. Each of the above stack operations can be accomplished in a single
P step, O(1), except the stack reversal, which may take longer (in this case the
number of steps required equals the length of the stack).

Extensions. All preceding stack operations can be formally redefined to work
on strings, instead of nested terms. Queues can also be implemented as strings,
essentially by renaming pop as dequeue, and replacing push by an enqueue op-
eration (adding to the other end):

Complex Objects 261

– unconditional dequeue, if q is not empty

S1 q(T.X) →min.min S2 T q(X)

– enqueue the content of c, if this exists and assuming is a term (not sequence)

S1 c(T) q(X) →min.min S2 q(X.T)

Alternatively, queues can be also be implemented as pairs of stacks, using
stack reversals when needed. This can be reasonably efficient, as reversal costs
will normally amortize in the long run.

3.2 Trees

Trees can be represented as nested terms, in a straightforward manner. For ex-
ample: (1) a leaf node with contents X can be represented as f(X); (2) an
intermediary node, with contents X and two subnodes, can be represented as
n(X,Y, Z), where Y and Z can be leaves or other intermediary nodes. For ex-
ample, the following term describes a binary tree consisting of 2 intermediary
nodes and 3 leaves, all with integer contents:

n(l10, n(l20, f(l30), f(l40)), f(l50))

Most tree operations are either recursive or have rather elaborate descriptions
(needed to simulate recursion). As recursion is discussed later in the article,
here we only show a simple operation which, in P systems, does not really need
recursion: a destructive summation of all values in a binary tree, n, with integer
contents. The first rule creates placeholder for the total sum, s, and stores a
copy of the original tree in a backup store, b:

r1 : S0 n(X,Y, Z) →min.min S1 n(X,Y, Z) s() b(n(X,Y, Z))
r2 : S1 s(T) v(X) →min.min S1 s(T.X)
r3 : S1 v(X) v(Y) →max.min S1 v(X.Y)
r4 : S1 f(X) →max.min S1 v(X)
r5 : S1 n(X, f(Y), f(Z)) →max.min S1 v(X) v(Y) v(Z)
r6 : S1 n(X, f(Y), n(Z,Z1, Z2)) →max.min S1 v(X) v(Y) n(Z,Z1, Z2)
r7 : S1 n(X,n(Y, Y1, Y2), f(Z)) →max.min S1 v(X) n(Y, Y1, Y2) v(Z)
r8 : S1 n(X,n(Y, Y1, Y2), n(Z,Z1, Z2)) →max.min S1 v(X) n(Y, Y1, Y2) n(Z,Z1, Z2)

For the above sample tree, the result is s(l150), as indicated by the following
traces, where b(. . .) represents the backed up tree, b(n(l10, n(l20, f(l30), f(l40)),
f(l50))):

262 R. Nicolescu, F. Ipate, H. Wu

n(l10, n(l20, f(l30), f(l40)), f(l50))
r1=⇒ s() n(l10, n(l20, f(l30), f(l40)), f(l50)) b(. . .)
r7=⇒ s() v(l10) n(l20, f(l30), f(l40)) v(l50) b(. . .)
r2=⇒ s(l10) n(l20, f(l30), f(l40)) v(l50) b(. . .)
r5=⇒ s(l10) v(l20) v(l30) v(l40) v(l50) b(. . .)
r2=⇒ s(l30) v(l30) v(l40) v(l50) b(. . .)
r3=⇒ s(l30) v(l120) b(. . .)
r2=⇒ s(l150) b(. . .)

The complexity of this snippet is O(h) P steps, where h is the height of the
tree.

3.3 Dictionaries

Dictionaries are key/value mappings. Typical dictionaries have unique keys; their
efficient implementations use hash tables or balanced trees (e.g. red-black trees).
A dictionary, d, can be represented by a string of complex objects of the form
m(k, v), where k is the key and v is the value. Examples: d() — an empty
dictionary, d; d(m(a, b).m(c, d)) — a dictionary, d, with two mappings, a → b
and c → d.

Fundamental operations on dictionaries include:

– construct an empty dictionary

S1 →min.min S2 d()

– clear a dictionary
S1 d(X) →min.min S2 d()

– add a → b, if key a is not already present (to preserve key uniqueness)

S1 m(a, b) d(X) →min.min S2 d(m(a, b).X) ¬ d(Y .m(a, V).Z)

– non-destructive query of the mapping for key a, if it exists

S1 a d(X.m(a, V).Y) →min.min S2 m(a, V) d(X.m(a, V).Y)

– reset the mapping for key a to a new value, if a has a mapping (and also
return the old value for this key)

S1 m(a, b) d(X.m(a, V).Y) →min.min S2 m(a, V) d(X.m(a, b).Y)

– remove the mapping for key a, if it exists

S1 a d(X.m(a, V).Y) →min.min S2 d(X.Y)

Complex Objects 263

Complexity. Apparently, each of the above dictionary operations can be ac-
complished in a single P step, O(1). However, these rules use a generalized
string unification which probably is not efficient for practical purposes. Thus,
this dictionary structure should be reserved for theoretical proofs-of-concept or
prototype implementations.

Assuming a natural order on atoms, we can define a more efficient dictionary
implementation based on balanced trees; however, we are not following this idea
here.

4 Arithmetic

Recall that we use complex objects with sequence contents to represent natural
numbers. For example, considering that l represents the unary digit, then the
following complex objects can indicate that: a() — the value of a is 0; a(l3) —
the value of a is 3.

Fundamental arithmetic operations on natural numbers include:

– c := a + b, destructive addition:

S1 a(X) b(Y) →min.min S2 c(X.Y)

– c := a − b, destructive subtraction:

S1 a(X.Y) b(Y) →min.min S2 c(X)

– c := a ∗ b, multiplication, which destroys a:

S1 →min.min S2 c()
S2 a(l.X) b(Y) c(Z) →max.min S2 a(X) b(Y) c(Y .Z)

– c, d := a / b, a% b, division, which destroys a:

S1 →min.min S2 c()
S2 a(X.Y) b(Y) c(Z) →max.min S2 a(X) b(Y) c(l Z)
S2 a(X) →max.min S3 d(X)

Complexity. Additions and subtractions can be performed in single P steps,
O(1), but multiplications and divisions may take longer. For multiplication, the
number of steps equals the value of a plus one, whereas for division this is the
value of the quotient c plus two.

If desired, non destructive operations can be implemented in a straightforward
manner. Alternatively, we can define arithmetic operations using counter stacks,
but this is much slower.

These ideas can be extended to define more complete arithmetic packages for
integer numbers and for rational numbers.

264 R. Nicolescu, F. Ipate, H. Wu

5 Control flow

Composing bigger chunks out of smaller rule snippets can require careful object
relabelling, to ensure continuity and avoid clashes. This is probably best done
automatically, using a well designed composition model. However, we do not
follow this here; we just present a proof of concept where all required relabeling
has been manually done.

5.1 Basic composition

Basic composition includes sequencing and conditional transfers, which can be
further used to define higher-level structured constructs, such as if-then-else
conditionals and while loops (not detailed here).

– BR(S′), branch, unconditional branch to state S′:

S →min.min S′

– BP(S′; p1, p2, . . .), branch on promoters, branch to state S′, given promoters
p1, p2, . . . :

S →min.min S′ | p1 p2 . . .

– BI(S′; i1, i2, . . .), branch on inhibitors, branch to state S′, given inhibitors
i1, i2, . . . :

S →min.min S′ ¬ i1 i2 . . .

– BPI(S′; p1, p2, . . . ; i1, i2, . . .), branch on promoters and inhibitors, branch to
state S′, given promoters p1, p2, . . . and inhibitors i1, i2, . . . :

S →min.min S′ | p1 p2 . . . ¬ i1 i2 . . .

Other branching primitives are described in the sections for function calls.

5.2 Parallel composition

Consider running in parallel two rule fragments, Π1, with M states, and Π2, with
N states. In general, the composed system, Π1 × Π2, will need M · N states,
thus it will need O(M · N) rules.

However, using complex state objects, we can define an equivalent parallel
system, Π2 ‖ Π2, with just O(M +N) rules — essentially the same rules initially
used for describing Π1 and Π2. Additional semantics is required for matching
variables on components of state objects.

We illustrate this on a simple ad-hoc example, not doing any meaningful
work, except that Π1 loops over three states and Π2 loops over two states.

Complex Objects 265

– Π1, a fragment with 3 states and 3 rules:

S1 a →min S2 b
S2 b →min S3 c
S3 c →min S1 a

– Π2, a fragment with 2 states and 2 rules:

S1 d →min S2 e
S2 e →min S1 d

– Π1 × Π2, has 6 (= 3 · 2) states and 18 (= 3 · 2 · 3) rules:

S11 a d →min S22 b e
S11 a →min S21 b
S11 d →min S12 e
S12 a e →min S21 b d
S12 a →min S22 b
S12 e →min S11 d
S21 b d →min S32 c e
S21 b →min S31 c
S21 d →min S22 e

S22 b e →min S31 c d
S22 b →min S32 c
S22 e →min S21 d
S31 c d →min S12 a e
S31 c →min S11 a
S31 d →min S32 e
S32 c e →min S11 a d
S32 c →min S12 a
S32 e →min S31 d

– Π1 ‖ Π2, also has 6 (= 3 · 2) states, but only 5 (= 3 + 2) rules:

Θ(S1, Y) a →min Θ(S2, Y) b
Θ(S2, Y) b →min Θ(S3, Y) c
Θ(S3, Y) c →min Θ(S1, Y) a
Θ(X,S1) d →min Θ(X,S2) e
Θ(X,S2) e →min Θ(X,S1) d

Note that, although Π1 ‖ Π2 has, in general, an order of magnitude fewer
user-written rules than Π1 ×Π2, as O(M +N) ≪ O(M ·N), their state sets are

isomorphic. Figure 1 shows state charts for Π1, Π2 and Π1 ×Π2

states
≃ Π1 ‖ Π2.

5.3 Parameterless sequential functions

We need states and a global stack for return states, let it be ρ(). Consider that:
Sf is the entry state of function f ’s ruleset, Sc is the current state and Sr is the
return state (to be entered after function f completes). We define the following
high-level boiler-plate P macros:

– BAL(Sf , Sr), branch and link to state Sf , i.e. to function f , and request
return to state Sr:

Sc ρ(X) →min.min Sf ρ(Sr(X))

– RET, return from function f (assuming that its last state is Sg):

Sg ρ(Z(X)) →min.min Z ρ(X)

266 R. Nicolescu, F. Ipate, H. Wu

S1

S3 S2

(a) Π1.

S12

S11

S31 S21

S32 S22

(b) Π1 × Π2

states
≃ Π1 ‖ Π2.

S1 S2

(c) Π2.

Fig. 1: State charts of Π1, Π2 and Π1 × Π2

states
≃ Π1 ‖ Π2.

5.4 Sequential functions with parameters

We need one more stack for each parameter. Alternatively, we can combine all
parameters in a single complex object, so just one additional stack would suffice.
We can even combine this with the return stack, to mimic a typical runtime
stack frame.

Here we consider a single global stack for all parameters, π, and a global
placeholder for function results, φ. If needed, but not shown here, global stack
π could also be used to create slots for local variables. Additional high-level
boiler-plate P macros:

– PUSHP(p1, p2, . . .), push parameters, push contents of objects with functors
p1, p1, . . . on π, and create an empty φ(), as a placeholder for the expected
results (we assume that this does not yet exist):

Sc p1(X1) p2(X2) . . . π(X) →min.min Sc π(p(X1, X2, . . .)(X)) φ()

– PEEKP(p1, p2, . . .), peek parameters, peek top of π into contents of objects
with functors p1, p1, . . . :

Sc →min.min Sc p1(X1) p2(X2) . . . | π(p(X1, X2, . . .)(X))

– POPP(), pop parameters, pop top of π:

Sc π(T (X)) →min.min Sc π(X)

– POPP(p1, p2, . . .), pop parameters, pop top of π into contents of objects with
functors p1, p1, . . . :

Sc π(p(X1, X2, . . .)(X)) →min.min Sc p1(X1) p2(X2) . . . π(X)

Complex Objects 267

– RESULT(r1, r2, . . .), set result, set φ using contents of objects with functors
r1, r2, . . . :

Sc r1(X1) r2(X2) . . . φ() →min.min Sc φ(X1, X2, . . .)

– POPR(q1, q2, . . .), pop results, extract φ’s contents into objects with functors
q1, q2, . . . :

Sc φ(X1, X2, . . .) →min.min Sc q1(X1) q2(X2) . . .

For convenience, the following P macro combinations are also defined:

– CALL(Sf ; p1, p2, . . . ;Sr; q) = PUSHP(p1, p2, . . .); BAL(Sf , Sr); POPR(q)

– FUNC(p1, p2, . . .) = PEEKP(p1, p2, . . .)

– RETURN(r1, r2, . . .) = RESULT(r1, r2, . . .); POPP; RET

5.5 A first example

Consider a snippet calling an arithmetic multiply function, to compute z = x∗y.

– Pseudo P code, using our high-level P macros (its essential two lines are
exactly as given in Section 4):

% calling program % inputs: x(X) y(Y)
Sc CALL(Sm;x, y;Sr; z) % PUSHP(x, y); BAL(Sm, Sr); POPR(z)
Sr... % output: z(Z)

% function mult Sm

Sm FUNC(a, b) % creates: a(X) b(Y)
Sm →min.min Sn c()
Sn a(l.X) b(Y) c(Z) →max.min Sn a(X) b(Y) c(Y .Z)
Sn a() b() →min.min So

So RETURN(c) % RESULT(c); POPP; RET

– Direct translation to P rules:

% calling program: x(X) y(Y)
Sc x(X) y(Y) π(P) →min.min Sm π(p(X, Y)(P) φ()
Sc ρ(R) →min.min Sm ρ(Sr(R))
Sr φ(Z) →min.min Sr z(Z)
. . .
% function mult Sm

Sm →min.min Sn a(X) b(Y) | π(p(X, Y)(P))
Sm →min.min Sn c()
Sn a(l.X) b(Y) c(Z) →max.min Sn a(X) b(Y) c(Y .Z)
Sn a() b() →min.min So

So c(Z) φ() →min.min So φ(Z)
So π(T (P)) →min.min So π(P)
So ρ(Z(R)) →min.min Z ρ(R)

268 R. Nicolescu, F. Ipate, H. Wu

5.6 A recursive example

As a more elaborated example, consider the classical naive definition of factorial:

fact n = if n = 0 then 1 else (fact (n-1)) * n

The following versions show the call y = fact x.

– Pseudo P code, using our high-level P macros:

% calling program — % input: x(X)
Sc CALL(Sf ;x;Sr; y) % PUSHP(x); BAL(Sf , Sr); POPR(y)
Sr ... — % output: y(Y)

% function fact Sf — defined with macros

Sf FUNC(n) % creates: n(N)
Sf n() →min.min Sh f(l)
Sf n(l.N) →min.min Sf n(N)
Sf CALL(Sf ;n;Sg; f) % creates: f()
Sg PEEKP(n) % recreates: n(N)
Sg CALL(Sm; f, n;Sh; f) % call mult

Sh RETURN(f) % RESULT(f); POPP; RET

– The above function definition can be more efficiently (but less readably)
implemented by the following rules, which peek parameter values directly
from the stack, inline the mult call and use two temporary objects, σ and τ ,
to evaluate the product.

% calling program — % input: x(X)
Sc x(X) π(Y) ρ(R) →min.min Sf φ() π(n(X)(Y)) ρ(Sr(R))
Sr ... — % output: φ(Y)
. . .
% function fact Sf — manually optimised code

Sf φ() π(n()(Y)) ρ(Z(X)) →min.min Z φ(l) π(Y) ρ(X)
Sf φ() π(n(l.N)(Y)) ρ(Z(X)) →min.min Sf φ() π(n(N)(n(l.N)(Y)))

ρ(Sf (Z(X)))
Sf φ(F) π(n(N)(Y)) ρ(Z(X)) →min.min Sg φ() σ(N) τ(F) π(Y) ρ(Z(X))
Sg φ(P) σ(l.N) τ(F) →max.min Sg φ(F .P) σ(N) τ(F)
Sg σ() τ(F) ρ(Z(X)) →min.min Z ρ(X)

– In the particular case x = 5: X = l5, Y = l120, y = 120.

6 Linguistic support

With proper linguistic support, the factorial sample can be rewritten at a more
user-friendly high level, where the user needs only develop application’s specific

Complex Objects 269

1 function main =

2 state Sc =

3 →min.min x(l3)
4 set y = fa c t x continue Sr

5 state Sr =

6 . . .

7

8 function f a c t n =

9 state Sf =

10 n() →min.min Sh f(l) % explicit target, Sh

11 →min.min n1(N) | n(l.N) % implicit target, Sf

12 set f1 = fa c t n1 continue Sg

13 state Sg =

14 set f = mult f1 n continue Sh

15 state Sh =

16 return f
17

18 function mult a b =

19 state Sm =

20 →min.min c()
21 state Sn =

22 a(l.X) b(Y) c(Z) →max.min a(X) b(Y) c(Y .Z)

23 return c

Fig. 2: High-level factorial sample. There are only 5 user defined “business” spe-
cific P rules (lines 3, 10, 11, 20, 22); the other P rules are automatically generated.

“business” P rules and the system completes the required boiler-plate templates
required by function invocations.

As shown in Figure 2, our proposed high-level language includes the following
elements:

– Except hidden system objects, such as a parameter stack and a return stack,
no global objects should be used (but the system does not enforce this rec-
ommendation).

– States, parameters and variables are local (not visible outside the enclosing
function).

– Statement function introduces a function, followed by an optional (space
separated) list of parameters.

– A function invocation consists of (i) the keyword set, (ii) a parameter or
variable name (which will receive the result), (iii) the function name, (iv) a
(space separated) list of arguments, (v) the keyword continue, and (vi) the
state to which the function must return.

– Each function argument is either (a) the name of a parameter or variable,
or (b) the functor of a complex object.

270 R. Nicolescu, F. Ipate, H. Wu

– Each parameter or variable is implemented by a complex object with the
same functor name, which contains its value.

– Complex objects which implement parameters and variables are automati-
cally managed, but are also fully accessible within P system rules.

– We propose that function invocations use call-by-reference evaluations, fol-
lowed by a copy-on-write, for parameters that are subsequently changed.

– Statement state starts a group of rules sharing the same start state (which
is now omitted in individual rules). By default, if not explicit, the target
state of each rule remains the current state.

– Inside a group, statements and rules are executed top-down, using a weak
priority order.

– There is no implicit fall-through from one state to the textually following
state.

The traces shown in Table 1 highlight critical steps which occur in the invo-
cation of (fact 3).

We are still considering a default convention for the implicit return-to state
after a function invocation, and, more important, extensions for parallel function
invocations (which need parallel stacks). However, we are not further developing
these ideas here.

7 Applications

7.1 Numerical P systems

Consider first the numerical P system sample Π1, given in Păun [17], which
sequentially generates numbers in {n2|n ≥ 0}. Π1 is equivalent to a P module,
Π ′

1
, with one single cell and a single generic rule involving three complex objects,

a, b, c:

S1 a(X) b(Y) c(Z) →min.min S1 a(XY Y l) b(Zl) c(Zl)

Assuming that initially all three objects are empty, a() b() c(), after n steps,

a contains a(ln
2

), which represents the number n2.
Considering the arithmetic operations that can be efficiently modelled in

P modules, we emit the following conjecture:

Conjecture 1. All numerical P systems with arithmetic functions on integers and
rational numbers can be simulated in real-time by single cell P modules with
complex objects.

Note that, if we are not interested in a faithful simulation, the above system
can be straightforwardly implemented by the following single rule, which directly
maps the algebraic rule (n + 1)2 = n2 + 2n + 1:

S1 a(X) b(Y) →min.min S1 a(XY Y l) b(Y l)

Complex Objects 271

Table 1: Traces for fact of 3. This table asserts the contents of (i) global hidden
stacks and (ii) local parameters and variables, before a line starts. The small
intervals between lines 14–16 indicate calls to mult, which are not detailed here.

Frame Line ρ() π() n() n1() f1() f()

fact 3

” 10 Sr p(l3) l3

” 11 Sr p(l3) l3

” 12 Sr p(l3) l3 l2

fact 2

” 10 Sg(Sr) p(l2)(p(l3)) l2

” 11 Sg(Sr) p(l2)(p(l3)) l2

” 12 Sg(Sr) p(l2)(p(l3)) l2 l

fact 1

” 10 Sg(Sg(Sr)) p(l)(p(l2)(p(l3))) l

” 11 Sg(Sg(Sr)) p(l)(p(l2)(p(l3))) l

” 12 Sg(Sg(Sr)) p(l)(p(l2)(p(l3))) l λ

fact 0

” 10 Sg(Sg(Sg(Sr))) p(λ)(p(l)(p(l2)(p(l3)))) λ

” 16 Sg(Sg(Sg(Sr))) p(λ)(p(l)(p(l2)(p(l3)))) λ l

fact 1

” 14 Sg(Sg(Sr))) p(l)(p(l2)(p(l3))) l l

” 16 Sg(Sg(Sr))) p(l)(p(l2)(p(l3))) l l

fact 2

” 14 Sg(Sr) p(l2)(p(l3)) l2 l

” 16 Sg(Sr) p(l2)(p(l3)) l2 l2

fact 3

” 14 Sr p(l3) l3 l2

” 16 Sr p(l3) l3 l6

7.2 NP-complete problems

With complex objects, we can solve NP-complete problems using a single cell, a
fixed-sized alphabet and a fixed-sized set of generic rules.

Consider, for example, the SAT problem; see Nagy [12] for a comprehensive
overview of this problem and current state-of-art P solutions.

We start with an example. Consider the following formula, with n = 3
boolean variables:

f = (x1 ∨ x̄2) ∧ (x1 ∨ x̄3).

This formula can be expressed as a complex object, in fact a list of disjunc-
tions, where each item is a list of conjunctions:

f = ∧(∨(x1(¬(x2)))(∨(x1(¬x3)))).

As such formulas can quickly become unwieldy, we use a simplified notation
for list structures, inspired from list structures in System F based functional

272 R. Nicolescu, F. Ipate, H. Wu

programming languages:

a(d)(b(e)(c(f))) = [a(d); b(e); c(f)] = [a(d) : [b(e); c(f)]] = [a(d) : [b(e) : [c(f)]]]

With this notations, our formula f can be represented as:

f = ∧[∨[x1;¬(x2)];∨[x1;¬(x3)]].

To map our formula to a fixed vocabulary, we represent xn by the complex
object x(ln). Finally, our formula f can be represented as:

f = ∧[∨[x(l);¬(x(ll))];∨[x(l);¬(x(lll))]].

To check its satisfiability, we use a naive brute force approach: we create
2n = 23 = 8 dictionary complex objects, all named v, corresponding to all
possible truth (0/1) assignments of our n = 3 variables:

v(m(x(l), 0).m(x(ll), 0).m(x(lll), 0))
v(m(x(l), 0).m(x(ll), 0).m(x(lll), 1))
v(m(x(l), 0).m(x(ll), 1).m(x(lll), 0))
v(m(x(l), 0).m(x(ll), 1).m(x(lll), 1))
v(m(x(l), 1).m(x(ll), 0).m(x(lll), 0))
v(m(x(l), 1).m(x(ll), 0).m(x(lll), 1))
v(m(x(l), 1).m(x(ll), 1).m(x(lll), 0))
v(m(x(l), 1).m(x(ll), 1).m(x(lll), 1))

All these dictionaries can be built in parallel by the following rules, starting
from an empty dictionary, v(), and a variable n(N), which indicates the number
of boolean variables; if this number is not given, it can be easily computed by
scanning the given formula (this step is not detailed here):

S1 n(lN) v(M) →max.min S1 n(N) v(m(x(lN), 0).M) v(m(x(lN), 1).M)
S1 n() v(M) →max.min S2 w(t(1), s(0), v(M))

Next, we evaluate the given formula, f , in parallel over all existing dictionar-
ies, v, which are now enclosed in larger complex objects, w. The partial results
are stored in variables s, for the current disjunction, initially s(0), and t, for the
whole formula (a conjunction), initially t(1). These variables start with default
values for their corresponding boolean operations and are updated while the
formula is evaluated left-to-right. The evaluation looks at the top variable in the
top conjunction and picks its value from the associated dictionary. When the
top conjunction becomes empty, the value of s is and-ed to the value of t, and
then variable s is reset to 0, s(0), to start the next disjunction. When there is no
other disjunction, the evaluation has ended and t contains the correct evaluation
value according to the current dictionary.

For clarity, we use the convenience abbreviations (abbreviations are not ob-
jects) vijk = v(m(x(l), i).m(x(ll), j).m(x(lll), k), i.e. x1 = i, x2 = j, x3 = k. The

Complex Objects 273

following two derivations illustrate the step-by-step evaluation of our formula,
f , using the dictionaries v000 and v001:

∧[∨[x(l);¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v000) ⇒
∧[∨[¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v000) ⇒

∧[∨[];∨[x(l);¬(x(lll))]] w(t(1), s(1), v000) ⇒
∧[∨[x(l);¬(x(lll))]] w(t(1), s(0), v000) ⇒

∧[∨[¬(x(lll))]] w(t(1), s(0), v000) ⇒
∧[∨[]] w(t(1), s(1), v000) ⇒

∧[] w(t(1), s(0), v000) ⇒
t(1)

and

∧[∨[x(l);¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v001) ⇒
∧[∨[¬(x(ll))];∨[x(l);¬(x(lll))]] w(t(1), s(0), v001) ⇒

∧[∨[];∨[x(l);¬(x(lll))]] w(t(1), s(1), v001) ⇒
∧[∨[x(l);¬(x(lll))]] w(t(1), s(0), v001) ⇒

∧[∨[¬(x(lll))]] w(t(1), s(0), v001) ⇒
∧[∨[]] w(t(1), s(0), v001) ⇒

∧[] w(t(0), s(0), v001) ⇒
t(0)

Without using usual boolean shortcuts, these evaluations can be completed
by following rules (using the simplified list notation, for clarity):

S2 ∧ [∨[¬(x(X)) : D] : C] w(t(T), s(S), v(P .m(x(X), V).Q))
→max.min S2 ∧ [∨[D] : C] w(t(T), s(Z), v(P .m(x(X), V).Q)) | e(S, V, Z)

S2 ∧ [∨[x(X) : D] : C] w(t(T), s(S), v(P .m(x(X), V).Q))
→max.min S2 ∧ [∨[D] : C] w(t(T), s(Z), v(P .m(x(X), V).Q)) | d(S, V, Z)

S2 ∧ [∨[] : C] w(t(T), s(S), v(M))
→max.min S2 ∧ [C] w(t(Z), s(0), v(M)) | c(T, S, Z)

S2 ∧ [] w(t(T), s(S), v(M))
→max.min S3 t(T)

where c(), d() and e are “read-only” internal tables for required boolean opera-
tions, given as complex objects (intuitively, these represent tables for x∧y, x∨y,
x ∨ ȳ, respectively):

c(0, 0, 0) c(0, 1, 0) c(1, 0, 0) c(1, 1, 1)
d(0, 0, 0) d(0, 1, 1) d(1, 0, 1) d(1, 1, 1)
e(0, 0, 1) e(0, 1, 0) e(1, 0, 1) e(1, 1, 1)

The final rules collect and reduce the individual results, t(). In our case, the
formula f is satisfiable, for example for x1 = 0, x2 = 0, x3 = 0.

We have used a single cell, a fixed alphabet, {0, 1, x, l, ∨, ∧, ¬, c, d, e, v,
m, w, s, t}, and essentially just 6 generic rules and 3 states. In this example,

274 R. Nicolescu, F. Ipate, H. Wu

we used only the most basic brute force approach; however, better variants are
possible.

A similar approach seems to work well for other NP-complete problems, for
example, the graph colouring problem; see Gheorghe et al. [7] for state-of-art
P solutions of this problem. We emit the following conjecture:

Conjecture 2. Any NP-complete problems can be solved by a single cell P mod-
ule with a fixed sized atomic alphabet and a fixed sized set of generic rules.

8 Conclusions

Despite their exceptional theoretical and modelling power, P systems seem to
remain difficult to use for large practical applications, apparently requiring large
varying size unstructured rulesets that can be difficult to verify. We want to show
that this need not be the case, that there are ways to increase their usability.

This paper presents evidence that complex objects can enable a high-level
programming style, with fixed sized alphabets and rulesets, adequate data struc-
tures and useful functional programming elements. We have previously used
complex objects to successfully model and even improve large practical applica-
tions, ranging from computer vision to complex graph theoretical problems and
to well-known critical distributed algorithms. Here we attempt to generalise our
field-proven methods and sketch how to apply similar techniques to other, more
theoretical, domains: numerical P systems and NP-complete problems.

The presented evidence suggests that complex objects could enable a more
advanced high-level functional programming style, including: local functions
(functions inside functions), closures, memoizations (i.e. top-down dynamic pro-
gramming), combinators (e.g. the Y combinator), monads and meta-program-
ming. A follow-up paper will address these topics.

Many of our extensions can be directly mapped on modern computing plat-
forms, bypassing a possible translation to traditional simpler objects and rules,
which opens the way towards more efficient general purpose simulators.

Acknowledgments. The work of RN and FI was partially supported by
a grant of the Romanian National Authority for Scientific Research, CNCS–
UEFISCDI, project number PN-II-ID-PCE-2011-3-0688. We are indebted to the
anonymous reviewers for their valuable comments and suggestions.

References

1. Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In: Gheorghe, M.,

Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing,

Lecture Notes in Computer Science, vol. 6501, pp. 81–94. Springer Berlin Heidel-

berg (2011)

2. Artiom Alhazov, Cosmin Bonchis, G.C., Izbasa, G.: Encodings and arithmetic

operations in P systems. In: Gutierrez-Naranjo, M., Păun, G., Riscos-Nunez,

A., Romero-Campero, F.J. (eds.) Brainstorming Week on Membrane Computing.

vol. 2, pp. 1–28. Universidad de Sevilla (2006)

Complex Objects 275

3. Bălănescu, T., Nicolescu, R., Wu, H.: Asynchronous P systems. International Jour-

nal of Natural Computing Research 2(2), 1–18 (2011)

4. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: A faster P solution for the Byzantine

agreement problem. In: Gheorghe, M., Hinze, T., Păun, G. (eds.) Conference on

Membrane Computing. Lecture Notes in Computer Science, vol. 6501, pp. 175–197.

Springer-Verlag, Berlin Heidelberg (2010)

5. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzantine agreement.

Journal of Logic and Algebraic Programming 79(6), 334–349 (2010)

6. ElGindy, H., Nicolescu, R., Wu, H.: Fast distributed DFS solutions for edge-disjoint

paths in digraphs. In: Csuhaj-Varj, E., Gheorghe, M., Rozenberg, G., Salomaa, A.,

Vaszil, G. (eds.) Membrane Computing, Lecture Notes in Computer Science, vol.

7762, pp. 173–194. Springer Berlin Heidelberg (2013)

7. Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M., Turcanu, A., Valen-

cia Cabrera, L., Garccia-Quismondo, M., Mierla, L.: 3-col problem modelling using

simple kernel P systems. Int. J. Comput. Math. 90(4), 816–830 (Apr 2013)

8. Gimel’farb, G., Gong, R., Nicolescu, R., Delmas, P.: Concurrent propagation for

solving ill-posed problems of global discrete optimisation. In: Pattern Recognition

(ICPR), 2012 21st International Conference on. pp. 1864–1867 (2012)

9. Gimelfarb, G., Nicolescu, R., Ragavan, S.: P systems in stereo matching. In: Real,

P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) Computer

Analysis of Images and Patterns, Lecture Notes in Computer Science, vol. 6855,

pp. 285–292. Springer Berlin Heidelberg (2011)

10. Gimelfarb, G., Nicolescu, R., Ragavan, S.: P system implementation of dynamic

programming stereo. Journal of Mathematical Imaging and Vision pp. 1–14 (2012)

11. Manca, V., Lombardo, R.: Computing with multi-membranes. In: Gheorghe, M.,

Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) Membrane Computing,

Lecture Notes in Computer Science, vol. 7184, pp. 282–299. Springer Berlin Hei-

delberg (2012)

12. Nagy, B.: On efficient algorithms for SAT. In: Csuhaj-Varj, E., Gheorghe, M.,

Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane Computing, Lecture Notes

in Computer Science, vol. 7762, pp. 295–310. Springer Berlin Heidelberg (2013)

13. Nicolescu, R.: Parallel and distributed algorithms in P systems. In: Gheorghe, M.,

Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) Membrane Computing,

CMC 2011, Revised Selected Papers. Lecture Notes in Computer Science, vol.

7184, pp. 35–50. Springer Berlin / Heidelberg (2012)

14. Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. In: Calude,

C., Kari, J., Petre, I., Rozenberg, G. (eds.) Unconventional Computation, Lecture

Notes in Computer Science, vol. 6714, pp. 164–176. Springer Berlin Heidelberg

(2011)

15. Nicolescu, R., Wu, H.: New solutions for disjoint paths in P systems. Natural

Computing 11, 637–651 (2012)

16. Păun, G.: Computing with membranes. Journal of Computer and System Sciences

61(1), 108–143 (2000)

17. Păun, G., Păun, R.: Membrane computing and economics: Numerical P systems.

Fundam. Inf. 73(1,2), 213–227 (Jul 2006)

18. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press, Inc., New York, NY, USA (2010)

19. Wu, H.: Minimum spanning tree in P systems. In: Proceedings of the Asian Con-

ference on Membrane Computing (ACMC2012), Wuhan, China, October 15-18,

2012. pp. 88–104 (2012)

In Search of a Structure of Fractals

by using Membranes as Hyperedges

Adam Obtułowicz

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, P.O.B. 21, 00-956 Warsaw, Poland

e-mail: A.Obtulowicz@impan.pl

Abstract. The internal structure of the iterations of Koch curve and
Sierpiński gasket—the known fractals [4]—is described in terms of multi-
hypergraphical membrane systems related to membrane structures [13]
and whose membranes are hyperedges of multi-hypergraphs used to de-
fine gluing patterns for the components of the iterations of the considered
fractals.

1 Introduction

One finds in [10] a more or less explicit conclusion that the birth of functional
analysis was accompanied by the emergence of various mathematical structures
(from vector space, abstract metric spaces and topological spaces to Hilbert
spaces, including spaces of functions) which were an antidotum against ‘capri-
cious’ intuitiveness of symbolic ‘calculations’ of early calculus.

This conclusion inspired the author of the present paper to search for struc-
tures of fractals and self-similarity against their intuitive explanations1 proposed
e.g. in [9]:

‘Local’ statements of self-similarity say something like ‘almost any small pat-
tern observed in one part of the object can be observed throughout the object,
at all scales’. Global statements say something like ‘the whole object consists of
several smaller copies of itself glued together’; more generally, there may be a
whole family of objects, each of which can be described as several objects in the
family glued together.

Viewed from another angle, a theory of global self-similarity is a theory of
recursive decomposition.

One should point out here that in a large extent the concepts of fractals and
self-similarity have been already described precisely in terms of iterated function
systems with their attractors constructed by using the tools of functional anal-
ysis (Hahn–Banach fix point theorem) [4] and domain theory (Tarski fix point
theorem) [3]. But a translation from the language of the above intuitive expla-
nation to the language of some derived concepts from the precise description of

1 the explanations suggested by the visual presentations of the iterations of some
fractals seen in the books and many articles about fractals.

278 Adam Obtułowicz

fractals and self-similarity (e.g. the trees induced by iterated function systems,
cf. [3]) is not effortless and not yet ready.

Thus searching for structure of fractals and self-similarity is approached by
various mathematicians, cf. [7], [9], not necessarily motivated explicitly by a need
of the above translation.

The goal of the paper is to propose an approach to searching for structure
of fractals which could provide the above translation. We describe in Section 3
the internal structure of the iterations of Koch curve and Sierpiński gasket—the
known fractals [4]—in terms of multi-hypergraphical membrane systems related
to membrane structures [13] and whose membranes are hyperedges of multi-
hypergraphs used to define gluing patterns for the components of the iterations
of the considered fractals.

2 Multi-hypergraphical membrane systems

We introduce the following new concepts.
By a directed multi-hypergraph we mean a structure G given by its set E(G)

of hyperedges, its set V (G) of vertices and the source and target mappings

s
G

: E(G) → P(V (G)), t
G

: E(G) → P(V (G))

such that V (G) together with
{

(V1,V2) | sG(e) = V1 and t
G
(e) = V2 for some e ∈ E(G)

}

form a directed hypergraph as in [5], where P(X) denotes the set of all subsets
of a set X.

We say that two directed multi-hypergraphs G,G′ are isomorphic if there
exist two bijections h : V (G) → V (G′), h′ : E(G) → E(G′) such that

s
G

′(h′(e)) = {h(v) | v ∈ s
G
(e)} and t

G
′(h′(e)) = {h(v) | v ∈ t

G
(e)}

for all e ∈ E(G).
Membrane structures in [13] are simply finite trees with nodes labelled by

multisets, where the finite trees have a natural visual presentation by Venn
diagrams and the tree nodes are called membranes.

We introduce (directed) multi-hypergraphical membrane systems to be finite
trees with nodes labelled by (directed) multi-hypergraphs.

We consider directed multi-hypergraphical membrane systems of a special
feature described formally in the following way.

A multi-hyperedge membrane system S is given by:

– the underlying tree T
S

of S which is a finite graph given by its set V (T
S
)

of vertices, its set E(T
S
) ⊆ V (T

S
) × V (T

S
) of edges, and its root r which

is a distinguished vertex such that for every vertex v different from r there
exists a unique path from v into r in T

S
, where for every vertex v we define

rel(v) = {v′ | (v′, v) ∈ E(T
S
)} and in trivial case V (T

S
) = {r} we assume

E(T
S
) = ∅;

In Search of a Structure of Fractals by using Membranes as Hyperedges 279

– a family (Gv | v ∈ V (T
S
)) of finite directed multi-hypergraphs for Gv given

by its set V (Gv) of vertices, its set E(Gv) of edges, its source function sv :
E(Gv) → P(V (Gv)), and its target function tv : E(Gv) → P(V (Gv)) such
that the following conditions hold:
1) E(Gv) = rel(v),
2) V (Gv) is empty for every elementary vertex v, i.e. such that rel(v) is

empty.

The above multi-hypergraphical membrane systems can be drawn by using
Venn diagrams with discs or boxes dv corresponding to vertices v of T

S
.

One can expect the applications of multi-hypergraphical membrane systems
for modelling various hierarchically organized systems of nested modules (hy-
peredges) interconnected by many input and output lines (vertices), where the
module interactions are described by source and target functions. These systems
of modules appear in computer science, where the modules are complex actions,
instructions, transitions (e.g. of structured Petri nets [2]), etc., from state charts
[6], models of systemC components [17], the systems discussed in [1], to the
semantics of some extensions of formal systems in [12], [17], and hierarchical
specifications [15].

3 Koch curve and Sierpiński gasket

We describe in this section the iterations of Koch curve and Sierpiński gasket
[8], [4], [14] in terms of multi-hypergraphical membrane systems.

For natural numbers n > 0 and i ∈ {Koch,Sierp} we define multi-hyperedge
membrane systems Si

n in the following way:

– the underlying tree T
i
n of Si

n is such that
• the set V (Ti

n) of vertices is the set of all strings (sequences) of length
not greater than n of digits in DSierp = {1, 2, 3} for i = Sierp, and in
DKoch = {1, 2, 3, 4} for i = Koch,

• the set E(Ti
n) of edges of T

i
n is such that E(Ti

n) = {(Γj, Γ) | {Γj, Γ} ⊂

V (Ti
n) and j ∈ Di} with source and target functions being the projec-

tions on the first and the second component, respectively, where Γj is
the string obtained by juxtaposition a new digit j on the right end of Γ ,

– the family
(

Gi
Γ |Γ ∈ V (Ti

n)
)

of directed multi-hypergraphs of Si
n is such

that for every non-elementary vertex Γ ∈ V (Ti
n), i.e. with rel(Γ) 6= ∅, Gi

Γ

is determined in the following way:
• for i = Koch if Γ is the empty string, then the directed multi-hypergraph

Gi
Γ is such that V (Gi

Γ) is a five element set {v0, . . . , v4}, E(Gi
Γ) =

{Γj | j ∈ Di}, and the source and target functions of Gi
Γ are given by

sGi
Γ
(Γj) = {vj−1}, tGi

Γ
(Γj) = {vj} for all j ∈ {1, . . . , 4},

where

v0 = (0, 0), v1 = (1

3
, 0), v2 = (1

2
, 2

2
√

3
), v3 = (2

3
, 0), v4 = (1, 0),

280 Adam Obtułowicz

• for i = Sierp if Γ is the empty string, then the directed multi-hypergraph
Gi

Γ is such that V (Gi
Γ) is a six element set {v0, . . . , v5}, E(Gi

Γ) =
{Γj | j ∈ Di}, and the source and target functions of Gi

Γ are given by

sGi
Γ
(Γ3) = {v1, v2}, tGi

Γ
(Γ3) = {v0},

sGi
Γ
(Γj) = {vj+2, vj+3}, tGi

Γ
(Γj) = {vj} for j ∈ {1, 2},

where

v0 = (1

2
,
√

3

2
),

v1 = (1

4
,
√

3

4
), v2 = (3

4
,
√

3

4
),

v3 = (0, 0), v4 = (1

2
, 0), v5 = (1, 0),

• if a non-elementary vertex Γ of T
i
n is of the form2 kΩ for k ∈ Di and a

string Ω of digits in Di, then

V (Gi
Γ) =

{

f i
k(v) | v ∈ V (Gi

Ω)
}

, E(Gi
Γ) = {Γj | j ∈ Di},

and

δGi
Γ
(Γj) =

{

f i
k(v) | v ∈ δGi

Ω
(Ωj)

}

for all j ∈ Di and δ ∈ {s, t}

where f i
k is the k-th function of the iterated function system given in

[14] for Koch curve in the case i = Koch and for Sierpiński gasket in the
case i = Sierp, respectively.

Lemma. For all natural numbers n > 0 and i ∈ {Koch,Sierp} the multi-
hyperedge membrane system Si

n is such that for every non-elementary vertex
Γ of T

i
n the directed multi-hypergraph Gi

Γ is isomorphic to Gi
Λ for empty string

Λ—the root of T
i
n.

Proof. We prove the lemma by induction on n and by using the property of the
functions of the iterated function systems for Koch curve and Sierpiński gasket
that they are injections.

For all natural numbers n > 0 and i ∈ {Koch,Sierp} we define a geometrical
realization of Si

n, denoted by space(Si
n), to be a subset of R

2 (R2 is a Cartesian
product of two copies of the set R of real numbers) which is the n-th iteration of
Koch curve for i = Koch and the n-th iteration of Sierpiński gasket for i = Sierp,
i.e.

space(SKoch

1
) =

⋃

j∈DKoch

fKoch

j (interval),

space(SSierp

1
) =

⋃

j∈DSierp

fSierp

j (equitriang),

space(Si
n+1

) =
⋃

j∈Di

f i
j(space(Si

n)) for i ∈ {Koch,Sierp}

2 the form kΩ of Γ is understood that the first element of Γ is k followed by the
string Ω.

In Search of a Structure of Fractals by using Membranes as Hyperedges 281

where f i
j(X) is the image of a set X for f i

j , interval = {(t, 0) | t ∈ R, 0 ≤ t ≤ 1},
and equitriang is the union of the interior and the frontier of the equilateral

triangle in R
2 whose vertices are (0, 0), (1

2
,
√

3

2
), (1, 0).

Theorem. For all natural numbers n > 0 and i ∈ {Koch,Sierp} the set space
(Si

n) is not an amorphous set of points of R
2 but it is a structured set by its

hierarchically organized decomposition into subsets according to the underlying
tree T

i
n of Si

n, where the components of the decomposition form a family Ci,n
Γ

(Γ ∈ V (Ti
n), Γ is non-empty and is not an elementary vertex of T

i
n) such that :

– if Γ is of the form jΩ for j ∈ Di and a string Ω of digits in Di, then
• for the empty string Ω the component Ci,n

jΩ is f i
j(space(Si

n−1
)),

• for a non-empty string Ω the component Ci,n
jΩ is f i

j(C
i,n−1

Ω) for the Ω-th

component Ci,n−1

Ω of space(Si
n−1

),

– for mi = max Di the mi components Ci,n
Γ1

, . . . , Ci,n
Γmi

are glued according to

the pattern given by Gi
Γ understood that

δ(Γj′) ∩ γ(Γj′′) = Ci,n
Γj′ ∩ Ci,n

Γj′′

for all δ, γ, j′, j′′ with {δ, γ} ⊆ {si
Gi

Γ

, ti
Gi

Γ

}, {j′, j′′} ⊆ Di, and j′ 6= j′′.

Proof. The theorem is an immediate consequence of the adopted definitions.

The above multi-hypergraphical membrane systems can be drawn by using
Venn diagrams with discs or boxes dΓ corresponding to vertices Γ of T

i
n such

that dΓj
is an immediate subset of dΓ .

Conclusion

The above lemma and theorem provide the translation claimed in the intro-
duction of the paper for iterations of fractals in the cases of Koch curve and
Sierpiński gasket. In this translation the main feature of self-similarity described
in its ‘local’ statement corresponds to the isomorphisms of hypergraphs ‘giving’
the gluing patterns (see the above theorem) for every level of hierarchical or-
ganization of the decomposition, where the levels of hierarchical organization
coincide with scale layers.

The iterations of jD-Cantor set (j ∈ {1, 2, 3}) require another approach
which is proposed in [11], where multigraphical membrane systems are used
with vertices as membranes. Thus one may say that the approach proposed in
the present paper is a ‘hyperedges as membranes’ approach.

References

1. Bruni, R., Gadduci, F., Lluch Lafuente, A., An algebra of hierarchical graphs, in:
Trustworthly Global Computing, Lecture Notes in Comput. Sci. 6084, Springer,
Berlin, 2010, pp. 205–211.

282 Adam Obtułowicz

2. Cherkasova, L. A., Kotov, V. E., Structured nets, in: Mathematical Foundations
of Computer Science, Lecture Notes in Comput. Sci. 118, Springer, Berlin, 1981,
pp. 242–251.

3. Edalat, A., Domains for computation in mathematics, physics and exact real arith-

metic, The Bulletin of Symbolic Logic 3 (1997), pp. 401–452.
4. Falconer, K., Fractal Geometry. Mathematical Foundations and Applications, Wi-

ley, Hoboken, NJ, 2003.
5. Gallo, G., Longo, G., Pallottino, S., Nguyen, S., Directed hypergraphs and applica-

tions, Discrete Appl. Math. 42 (1993), pp. 177–201.
6. Harel, D., On Visual Formalisms, Comm. ACM 31 (1988), pp. 514–530.
7. Hasuo, I., Jacobs, B., Niqui, M., Coalgebraic representation theory of fractals, Elec-

tron. Notes Theor. Comput. Sci. 265 (2010), pp. 351–368.
8. Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981),

pp. 713–747.
9. Leinster, T., A general theory of self-similarity, Adv. Math. 226 (2011), pp. 2935–

3017.
10. Narici, L., Beckenstein, E., The Hahn–Banach theorem: the life and times, Topology

Appl. 77 (1997), pp. 193–211.
11. Obtułowicz, A., Multigraphical membrane systems revisited , in: Membrane Com-

puting, Lecture Notes in Comput. Sci. 7762, Springer, Berlin, 2013, pp. 311–322.
12. Orlarey, Y., Fober, D., Letz, S., Bilton, M., Lambda calculus and music calculi,

International Computer Music Conference ICMA 1994.
13. Păun, Gh., Membrane Computing. An Introduction, Springer-Verlag, Berlin 2002.
14. Riddle, L., Classic iterated function systems, Koch curve, Sierpiński gasket,

http://ecademy.agnesscott.edu/˜lriddle/ifs/kcurve/kcurve.htm

http://ecademy.agnesscott.edu/˜lriddle/ifs/siertri/siertri.htm

15. Rozenkrantz, D. J., Hunt III, H. B., The complexity of processing hierarchical spec-

ifications, SIAM J. Comput. 22 (1993), pp. 627–649.
16. Stefanescu, Gh., The algebra of flownomials, Report, Technical University Munich,

1994.
17. Vallée, N., Monsuez, B., A formal model of system components using fractal hyper-

graphs, in: Proc. of the Int. Multiconference of Engineers and Computer Scientists
2010, Vol. II, IMECS 2010, Hong Kong.

The Relevance of the Environment on the
Efficiency of Tissue P Systems

M.J. Pérez-Jiménez1, A. Riscos-Núñez1, M. Rius-Font2, L. Valencia-Cabrera1

1
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence

University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: { marper, ariscosn, lvalencia } @us.es
2

Department of Applied Mathematics IV

Universitat Politécnica de Catalunya, Spain

E-mail: mrius@ma4.upc.edu

Abstract. The efficiency of computational devices is usually expressed

in terms of their capability to solve computationally hard problems in

polynomial time. This paper focuses on tissue P systems, whose effi-

ciency has been shown for several scenarios where the number of cells

in the system can grow exponentially, e.g. by using cell division rules or

cell separation rules. Moreover, in the first case it suffices to consider

very short communication rules with length bounded by two, and in the

second one it is enough to consider communication rules with length at

most three. This kind of systems have an environment with the property

that objects initially located in it appear in an arbitrarily large number

of copies, which is a somewhat unfair condition from a computational

complexity point of view. In this context, we study the role played by

the environment and its ability to handle infinitely many objects, in

particular we consider tissue P systems whose environment is initially

empty.

1 Introduction

Several different models of cell-like P systems have been successfully used to
efficiently solve computationally hard problems by trading space for time. An
exponential workspace is created in polynomial time by using some kind of rules,
and then massive parallelism is used to simultaneously check all the candidate so-
lutions. Inspired by living cells, several ways for obtaining exponential workspace
in polynomial time were proposed: membrane division (mitosis) [12], membrane
creation (autopoiesis) [5], and membrane separation (membrane fission) [8]3.
These three ways have given rise to the following models: P systems with active

membranes, P systems with membrane creation, and P systems with membrane

separation, respectively.

3
The name separation rule appeared earlier in [1], but with a slightly different defi-

nition.

284 M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera

A new type of P systems, the so-called tissue P systems, was introduced in
[7]. The hierarchical membrane structure that was commonly used in the first
models, inspired on the way vesicles and compartments are arranged within a
cell, is discarded. Instead, an arbitrary graph of connections among elementary
membranes (now called cells) is considered. That is, the inspiration comes now
not from a single cell but from a collection of cooperating cells within a multi-
cellular organism, e.g. in a tissue. Moreover, the functioning of tissue P systems
heavily relies on the intercellular communication, since objects can move under
symport/antiport rules, but cannot be rewritten.

This paper addresses two models of tissue P systems which are of a great
interest from a computational complexity point of view. The first one was pre-
sented in [14], where the definition of tissue P systems is combined with aspects
of the definition of P systems with active membranes, yielding tissue P systems

with cell division. In these models, cells may replicate, that is, the two new cells
generated by a division rule have exactly the same objects except for at most
one differing pair of objects. The second model that will be considered is tissue

P systems with cell separation [9]. In this case, an alternative method for gener-
ating an exponential number of cells in linear time is used. When a cell divides,
its contents are not replicated, but distributed, according to a fixed partition of
the alphabet.

The paper is organized as follows. First, we recall the basic mathematical
and theoretical background underlying the definitions of the two tissue P sys-
tems models mentioned above, together with the definition of complexity class
in the membrane computing framework. Then, Section 3 compares the computa-
tional power achieved by cell division and by cell separation, evaluating in both
cases the role of the environment. Some concluding remarks summarizing the
borderlines of efficiency discussed in the paper are given in Section 4.

2 Tissue P Systems

Let us recall that an alphabet Γ is a non–empty set whose elements are called
symbols. A multiset m over an alphabet Γ is a pair m = (Γ, f) where f : Γ → IN
is a mapping. If m = (Γ, f) is a multiset then its support is defined as
supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite
set. Let supp(m) = {a1, . . . , ak} be the support of a finite multiset, m, then we

will denote m = a
f(a1)

1
. . . a

f(ak)

k (here the order is irrelevant), and we say that
f(a1) + . . . + f(ak) is the cardinal of m, denoted by |m|. The empty multiset is
denoted by λ. We also denote by Mf (Γ) the set of all finite multisets over Γ .

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ . The union of m1

and m2, denoted by m1 + m2 is the multiset (Γ, g), where g = f1 + f2, that
is, g(x) = f1(x) + f2(x) for each x ∈ Γ . The relative complement of m2 in
m1, denoted by m1 \ m2 is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if
f1(x) ≥ f2(x) and g(x) = 0 otherwise.

The Relevance of the Environment on the Efficiency of Tissue P Systems 285

Definition 1. A basic tissue P system of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. Γ is a finite alphabet and E is a subset of Γ .

2. Σ is an (input) alphabet strictly contained in Γ such that E ∩ Σ = ∅.

3. M1, . . . ,Mq are finite multisets over Γ \ Σ.

4. R is a finite set of communication rules of the form (i, u/v, j),
for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Mf (Γ), and |u + v| 6= 0;

5. iin ∈ {1, 2, . . . , q}, and iout ∈ {0, 1, . . . , q}.

A basic tissue P system Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout) of degree q ≥ 1
can be viewed as a set of q cells, labelled by 1, . . . , q, with an environment
labelled by 0 such that: (a) M1, . . . ,Mq are finite multisets over Γ representing
the objects (elements in Γ) initially placed in the q cells of the system; (b) Σ is
the input alphabet and E is the set of objects located initially in the environment
of the system, all of them appearing in an arbitrary number of copies; and (c)
iin represents the input cell, and iout ∈ {0, 1, . . . , q} indicates the region that
stores the output of the system (which can be either a distinguished cell when
iout ∈ {1, . . . , q}, or the environment when iout = 0). If E = ∅ then we say that
the tissue P system is without environment.

A communication rule (i, u/v, j) is applicable to regions i, j if the multiset u
is contained in region i and multiset v is contained in region j. When applying
a communication rule (i, u/v, j), the objects of multiset u are sent from region i
to region j and, simultaneously, the objects of multiset v are sent from region j
to region i. The length of communication rule (i, u/v, j) is defined as |u| + |v|.

The rules are used in a non-deterministic maximally parallel manner as cus-
tomary in membrane computing. At each step, we apply a multiset of rules which
is maximal : no further applicable rule can be added.

A configuration at any instant of a basic tissue P system is described by all
multisets of objects over Γ associated with all the cells present in the system,
and the multiset of objects over Γ \ E associated with the environment at that
moment. Recall that there are infinitely many copies of objects from E in the
environment, and hence this set is not properly changed along the computation.
For each multiset m over the input alphabet Σ, the initial configuration with
input m is C0 = (M1, · · · ,Miin

+ m, · · · ,Mq; ∅). Therefore, we have an initial
configuration associated with each input multiset m (over the input alphabet
Σ) in this kind of systems. We will use the notation (Π + m) to refer to a P
system Π such that its initial configuration is the one associated with m. A
configuration is a halting configuration if no rule of the system is applicable to
it. We say that configuration C1 yields configuration C2 in one transition step,
denoted by C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from
R following the previous remarks.

A computation of Π is a (finite or infinite) sequence of configurations such
that: (a) the first term of the sequence is the initial configuration C0 of the system
associated with a given input; (b) for each n ≥ 2 the n–th configuration of the
sequence is obtained from the previous configuration by applying a maximal

286 M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera

multiset of rules of the system as described above; and (c) if the sequence is
finite (called halting computation) then the last term of the sequence must be a
halting configuration. Only halting computations give a result, which is encoded
by the objects present in the output region iout in the halting configuration. The
result of a computation can be defined in various ways, just like in the cell-like
case. Obviously, when the output is collected in the environment, symbols from
E must be ignored.

If C = {Ct}0≤t≤r of Π (r ∈ IN) is a halting computation, then the length of

C, denoted by |C|, is r.

2.1 Cell division and cell separation

Reproduction is doubtlessly one of the fundamental mechanisms on every living
being. Thus, there is a clear motivation to try to get inspiration from the var-
ious processes that generate new cells (or new membranes, in general) and to
adapt them into the tissue P systems framework. Moreover, as mentioned in the
Introduction, division rules (mitosis), and separation rules (membrane fission)
have been already introduced for cell-like P systems [12, 8].

Definition 2. A tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. Π = (Γ,Σ, E ,M1, . . . ,Mq,Rc, iin, iout) is a basic tissue P system, where Rc

is the set of communication rules in R.

2. R may also contain cell division rules of the form [a]i → [b]i[c]i, where

i ∈ {1, 2, . . . , q}, i 6= iout and a, b, c ∈ Γ .

Definition 3. A tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ1, Γ2, Σ, E ,M1, . . . ,Mq,R, iout), where:

1. Π = (Γ,Σ, E ,M1, . . . ,Mq,Rc, iin, iout) is a basic tissue P system, where Rc

is the set of communication rules in R.

2. {Γ1, Γ2} is a partition of Γ , that is, Γ = Γ1 ∪ Γ2, Γ1, Γ2 6= ∅, Γ1 ∩ Γ2 = ∅.

3. R may also contain cell separation rules of the form [a]i → [Γ1]i[Γ2]i, where

i ∈ {1, . . . , q}, a ∈ Γ and i 6= iout.

A tissue P system with cell division is a basic tissue P system that allows cell
division rules. When applying a division rule [a]i → [b]i[c]i, under the influence
of object a, the cell with label i is divided into two cells with the same label;
in the first copy, object a is replaced by object b, in the second one, object a is
replaced by object c; all the other objects are replicated and copies of them are
placed in the two new cells.

A tissue P system with cell separation is a basic tissue P system that allows
cell separation rules. When applying a separation rule [a]i → [Γ1]i[Γ2]i, in reac-
tion with an object a, the cell i is separated into two cells with the same label;
at the same time, object a is consumed; all the other objects in the cell are dis-
tributed (not replicated): those from Γ1 are placed in the first cell, while those

The Relevance of the Environment on the Efficiency of Tissue P Systems 287

from Γ2 are placed in the second cell. The output cell iout cannot be divided nor
separated.

The label of a cell precisely identifies the rules which can be applied to it. Note
that in the previous definitions {1, . . . , q} is used as the set of labels, but without
loss of generality any finite set can be considered instead. The rules are used in
a non-deterministic maximally parallel manner with the following restriction:
when a cell is divided (or separated), the objects inside that cell do not get
involved in any communication rule during this step. The two new resulting
cells could participate in the interaction with other cells or the environment by
means of communication rules at the next step – provided that they are not
divided (or separated) again.

2.2 Recognizer Tissue P Systems

A decision problem is a pair (IX , θX) where IX is a language over a finite alphabet
(whose elements are called instances) and θX is a total Boolean function over IX .
There are many different ways to describe instances of a decision problem, but
we assume that each problem has associated with it a fixed reasonable encoding

scheme (in the sense of [3], page 10) which provides a string associated with
each problem instance. The size of an instance u ∈ IX is the length of the string
associated with it by means of a reasonable encoding scheme.

A correspondence between decision problems and languages over a finite al-
phabet, can be established as follows. Given a decision problem X = (IX , θX),
its associated language is LX = {w ∈ IX : θX(w) = 1}. Conversely, given a lan-
guage L over an alphabet Σ, its associated decision problem is XL = (IXL

, θXL
),

where IXL
= Σ∗, and θXL

= {(x, 1) | x ∈ L}∪{(x, 0) | x /∈ L}. The solvability of
decision problems is defined through the recognition of the languages associated
with them by means of languages recognizer devices.

Definition 4. A tissue P system of degree q ≥ 1 is a recognizer system if:

1. The working alphabet Γ has two distinguished objects yes and no being, at

least, one copy of them present in some initial multisets, but none of them

are present in the alphabet of the environment.

2. All computations halt.

3. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of

the computation.

Note that, because of the first condition, the presence or absence of objects
yes and no in the environment can be accounted for in any configuration. Note
also that all computations are finite as a consequence of the second condition,
and thus it is possible to refer to their “last step”.

Given a recognizer tissue P system Π and a computation C of Π, we say
that C is an accepting computation (respectively, rejecting computation) if object
yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C. Note that, since Π is a recognizer

288 M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera

system, neither object yes nor no appears in the environment associated with
any non–halting configuration of C.

For each natural number k ≥ 1, we denote by TDC(k) (respectively, TSC(k))
the class of recognizer tissue P systems with cell division (respectively, with
cell separation) and communication rules with length at most k. We denote by
̂TDC(k) (respectively, ̂TSC(k)) the class of recognizer tissue P systems with

cell division (respectively, with cell separation), with communication rules with
length at most k, and without environment.

Now, we define what it means to solve a decision problem in the framework
of tissue P systems efficiently and in a uniform way. Since we define each tissue
P system to work on a finite number of inputs, to solve a decision problem we
define a numerable family of tissue P systems.

Definition 5. We say that a decision problem X = (IX , θX) is solvable in a

uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recognizer

P systems if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there

exists a deterministic Turing machine working in polynomial time which

constructs the system Π(n) from n ∈ IN.

2. There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:

(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));

(b) for each n ∈ IN, s−1(n) is a finite set;

(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every

computation of Π(s(u)) with input cod(u) is halting and it performs at

most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,

if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

(e) the family Π is complete with regard to (X, cod, s), that is, for each

u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input

cod(u) is an accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer P systems. We denote by PMCR the set
of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [16].

The Relevance of the Environment on the Efficiency of Tissue P Systems 289

3 Computational Efficiency of Tissue P Systems without
environment

It is well known that tissue P systems with cell division and tissue P systems
with cell separation are able to solve computationally hard problems efficiently.
Specifically, NP–complete problems have been solved in polynomial time in [19]
by using families of tissue P systems with cell division and communication rules
of length at most 2, and by using families of tissue P systems with cell separation
and communication rules of length at most 3. Thus,

NP ∪ co − NP ⊆ PMCTDC(2) ∩ PMCTSC(3)

In [4, 9, 10] it has been proved that only tractable problems can be efficiently
solved by using families of tissue P systems with cell division and communication
rules of length 1 (or with cell separation and communication rules of length
bounded by 2). That is, P = PMCTDC(1) = PMCTSC(1) = PMCTSC(2).
Therefore, in the framework of tissue P systems with cell division (respectively,
cell separation), passing the maximum length of communication rules of the
systems from 1 to 2 (respectively, from 2 to 3) amounts to passing from non–
efficiency to efficiency, assuming that P 6= NP. That is, the cooperation of 2
objects (respectively, 3 objects) in the communication rules is a key feature that
allows efficient solutions of NP–complete problems.

3.1 Efficiency of tissue P systems with cell division and without

environment

In this section, we give a family of tissue P systems with cell division, com-
munication rules of length at most 2, and without environment which solves
the HAM-CYCLE problem, a well known NP–complete problem [3], in polynomial
time, according to Definition 5.

Let us recall that the HAM-CYCLE problem is the following: given a directed

graph, to determine whether or not there exists a Hamiltonian cycle in the graph.
The idea is the following: starting from the family Π = {Π(n) | n ∈ IN} of

tissue P systems from TDC(2) provided in [19], we construct a family

Π′ = {Π ′(n) | n ∈ IN} of tissue P systems from ̂TDC(2) such that Π ′(n)
processes all instances G of HAM-CYCLE with n nodes. The construction is im-
plemented according to Definition 6.2 in [15], in such a way that each Π ′(n)
simulates its counterpart Π(n) in an efficient way. We refer to [15] for details,
but informally speaking, each computation from Π ′(n) matches (or “simulates”)
an equivalent one from Π(n), except for a polynomial amount of additional aux-
iliary steps.

Let us recall that for each n ∈ IN, Π(n) is the following tissue P system:

Π(n) = (Γ,Σ, E ,Min,Mh,My,Myes,Mno,Mout,
Mei,j,k

(1 ≤ i, j, k ≤ n),Mci
(1 ≤ i ≤ n),R, iin, iout)

• The input alphabet is Σ = {(i, j)k | 1 ≤ i, j, k ≤ n}.

290 M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera

• The working alphabet is

Γ = {(i, j)k, (i, j)′k, (i, j)′′k | 1 ≤ i, j, k ≤ n} ∪

{(i, j)k,r, (i, j)
′

k,r, (i, j)
′′

k,r | 1 ≤ i, j, k ≤ n ∧ 1 ≤ r ≤ n3} ∪

{wi | 1 ≤ i ≤ n3 + 6} ∪ {cr, hr, yr | 1 ≤ r ≤ n3} ∪

{w, c, c′, c′′, h, h′, h′′, h′′′, y, y′, y′′, y′′′, y′′′′, x, yes, no,#}

• The alphabet of the environment is

E = {wi | 1 ≤ i ≤ n3 + 5} ∪ {w, c′′, y′′, h′′, y′′′, h′′′, y′′′′}

• The initial multisets are














































Min = cn y h
Mei,j,k

= (i, j)′′k,n3 , 1 ≤ i, j, k ≤ n

Mci
= cn3 , 1 ≤ i ≤ n

Mh = hn3

My = yn3

Myes = yes
Mno = wn3+6 no
Mout = x

• The set R consists of the following rules:

(1) (no , wr /wr−1 , 0), for 2 ≤ r ≤ n3 + 6.
(2) (no , w1 /w , 0).
(3) [(i, j)k]in → [(i, j)′k]in [#]in, for 1 ≤ i, j, k ≤ n.
(4) [(i, j)′′k,r]ei,j,k

→ [(i, j)′′k,r−1
]ei,j,k

[(i, j)′′k,r−1
]ei,j,k

,

for 1 ≤ i, j, k ≤ n and 2 ≤ r ≤ n3.
(5) [(i, j)′′k,1]ei,j,k

→ [(i, j)′′k]ei,j,k
[(i, j)′′k]ei,j,k

, for 1 ≤ i, j, k ≤ n.

(6) [cr]ci
→ [cr−1]ci

[cr−1]ci
, for 1 ≤ i ≤ n ∧ 1 ≤ r ≤ n3.

(7) [yr]y → [yr−1]y [yr−1]y, for 1 ≤ r ≤ n3.
(8) [hr]h → [hr−1]h [ar−1]h, for 1 ≤ r ≤ n3.
(9) (in , (i, j)′k / (i, j)′′k , ei,j,k), for 1 ≤ i, j, k ≤ n.
(10) (in , c / c′ , ci), for 1 ≤ i ≤ n.
(11) (in , y / y′, y).
(12) (in , h / h′, h).
(13) (in, (i, j)′′k (i, j′)′′k′ / λ, 0), for 1 ≤ i, j, j′, k, k′ ≤ n.
(14) (in, (i, j)′′k (i′, j)′′k′ / λ, 0), for 1 ≤ i, i′, j, k, k′ ≤ n.
(15) (in, (i, j)′′k (i′, j′)′′k+1

/ λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n, and j 6= i′.
(16) (in, (i, j)′′k (i′, j′)′′k / λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n.
(17) (in , c′ / c′′ , 0).
(18) (in , y′ / y′′ , 0).
(19) (in , h′ / h′′ , 0).
(20) (in , (i, j)′′k c′′ / λ , 0) for 1 ≤ i, j, k ≤ n.
(21) (in , y′′ / y′′′ , 0).
(22) (in , h′′ / h′′′ , 0).

The Relevance of the Environment on the Efficiency of Tissue P Systems 291

(23) (in , c′′ h′′′ / λ , 0).
(24) (in , y′′′ / y′′′′ , 0).
(25) (in , h′′′ y′′′′ / λ , yes).
(26) (yes , y′′′′ yes / λ , out).
(27) (out , x yes / λ , 0).
(28) (no , w no / λ , out).
(29) (out , x no / λ , 0).

• The input cell is iin = in.
• The output region is the environment, iout = 0.

Let us notice that |Γ | = 3n4 + 7n3 + 23, |E| = n3 + 12 and the degree of Π(n) is
q = n3 + n + 6. Let Labn denote the set of labels of cells in Π(n). Besides, the
execution-time is n3 +7 if the answer is affirmative and it is n3 +8 if the answer
is negative. We thus consider p(n) = n3 + 8 as the polynomial bound on the
number of steps needed for the construction, according to Definition 6.2 in [15].

Now, for each n ∈ IN, let us construct, using Π(n) as a starting point, a tissue

P system from ̂TDC(2) of degree q1 = 1 + (n3 + n + 6) · (n3 + 10) + (n3 + 12),

Π ′(n) = (Γ ′, Σ′, E ′,M′

0
,M′

1
, . . . ,M′

q1−1
,R′, i′in, i′out)

defined as follows:

• Γ ′ = Γ ∪ {αj | 0 ≤ j ≤ n3 + 7}.
• Σ′ = Σ and E ′ = ∅.
• Each one of the q cells of Π(n) provides a cell of Π ′(n) with the same label.

In addition, Π ′(n) has:
− For each one of the q cells of Π(n), n3 + 9 new cells,

labelled by (i, 0), . . . , (i, n3 +8), respectively, where i stands for the orig-
inal label of the cell in Π(n).

− A distinguished cell labelled by 0.
− A new cell, labelled by lb, for each b ∈ E .

• M′

lb
= {α0}, for each b ∈ E , M′

(i,0) = Mi, for each i ∈ Labn, and every

other multiset of Π ′(n) is initially empty.
• R′ = R ∪ {[αj]lb → [αj+1]lb [αj+1]lb | b ∈ E ∧ 0 ≤ j ≤ n3 + 6}

∪ {[αn3+7]lb → [b]lb [b]lb | b ∈ E}

∪ {(lb, b/λ , 0) | b ∈ E}

∪ {
(

(i, j), a/λ , (i, j + 1)
)

| a ∈ Γ ∧ i ∈ Labn ∧ 0 ≤ j ≤ n3 + 7}
∪ {

(

(i, n3 + 8), a/λ , i
)

| a ∈ Γ ∧ i ∈ Labn}

• i′in = (iin, 0), and i′out = 0.

Let us notice that Π ′(n) can be considered as an extension of Π(n) without

environment, in the following sense:

⋆ Γ ⊆ Γ ′, Σ ⊆ Σ′ and E ′ = ∅.
⋆ Each cell in Π is also a cell in Π ′(n).

292 M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera

⋆ There is a distinguished cell in Π ′(n) labelled by 0 which plays the role of
environment of Π(n).

⋆ R ⊆ R′, and now 0 is the label of a “normal cell” in Π ′(n).

Note also that this construction does not affect the maximum length of the
communication rules, since the communication rules in R′\R are of type symport
and length 1.

An Overview of the Computations

Let G = (V,E), with V = {1, . . . , n} and E = {(u1, v1), . . . , (up, vp)}, be an
arbitrary instance of the HAM-CYCLE problem.

The size mapping on the set of instances is defined as s(G) = n, and the
encoding of the instance is the multiset

cod(G) = {(ui, vi)k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}

Each object (ui, vi)k can be interpreted as considering arc (ui, vi) being “placed”
in the “k-th position” in a sequence of n arcs that could be a Hamiltonian cycle.

This way of encoding arcs by means of objects is one of the keys to understand
the design of the solution. A brute force approach is followed, generating all
possible combinations by division and subsequently checking for each subset of
n objects from cod(G) whether it represents a Hamiltonian cycle or not.

Let us now informally describe how system Π ′(s(G)) with input multiset
cod(G), denoted by Π ′(s(G)) + cod(G), works, in order to process the instance
G of the HAM-CYCLE problem.

At the initial configuration of Π ′(s(G)) + cod(G) we have the following:

– Cell labelled by 0 is empty.
– For each i ∈ Labn, the contents of cell i is empty and the contents of cell

(i, 0) is Mi (except for the case i = iin, where M′

(in,0) = Min + cod(G)).

– For each i, j (i ∈ Labn and 1 ≤ j ≤ n3 + 8), the contents of cell (i, j) is
empty.

– For each b ∈ E , cell labelled by lb contains only object α0.

It is easy to check that the rules of a system Π(n) of the family are recursively
defined from n and the amount of resources needed to build an element of the
family is of a polynomial order in n. Therefore, there exists a deterministic
Turing machine that builds the system Π(n) in time polynomial with respect to
n.

At the first n3 + 9 steps of any computation C′ of Π ′(n), only the following
rules can be applied:

– {[αj]lb → [αj+1]lb [αj+1]lb | b ∈ E ∧ 0 ≤ j ≤ n3 + 6}
– {[αn3+7]lb → [b]lb [b]lb | b ∈ E}

– {(lb, b/λ , 0) | b ∈ E}

– {
(

(i, j), a/λ , (i, j + 1)
)

| a ∈ Γ ∧ i ∈ Labn ∧ 0 ≤ j ≤ n3 + 7}

The Relevance of the Environment on the Efficiency of Tissue P Systems 293

– {
(

(i, n3 + 8), a/λ , i
)

| a ∈ Γ ∧ i ∈ Labn}

Besides, they are applied in a deterministic manner. Then, the configuration
C′

n3+9
of any computation C′ of Π ′(s(G)) + cod(G) is characterized by the fol-

lowing:

(1) The contents of cell 0 is b2
n3+8

1
. . . b2

n3+8

α , where E = {b1, . . . , bα}.
(2) For each i ∈ Labn, the contents of cell i is Mi (except for the case i = iin,
that contains Min + cod(G)).
(3) For i, j (i ∈ Labn and 0 ≤ j ≤ n3 + 8) the contents of cell (i, j) is empty.

(4) For each b ∈ E , there exist 2n3
+8 cells labelled by lb whose content is

empty.

Basically, this is the “initial” configuration of the system Π(s(G)) + cod(G),
together with a large number of empty cells. Therefore, from step n3 + 9 any
computation of Π ′(s(G)) + cod(G) “reproduces” a computation of the system
Π(s(G)) + cod(G) with a delay.

Bearing in mind that the family Π = {Π(n) | n ∈ IN} solves HAM-CYCLE

problem in polynomial time, we deduce that the system Π′ = {Π ′(n) | n ∈ IN}

also solves HAM-CYCLE problem in polynomial time. Hence, we have the following
result:

Theorem 1. HAM-CYCLE ∈ PMC
̂TDC(2)

.

That is, a uniform solution working in polynomial time has been found for
an NP–complete problem using an empty environment alphabet. Hence, the
environment does not play a relevant role in recognizer tissue P systems with
cell division with respect to the efficiency of these models.

3.2 Non-efficiency of tissue P systems with cell separation and

without environment

In [6] it has been proved that only tractable problems can be efficiently solved
by using tissue P systems with cell separation where there is not an environment
having infinitely many copies of some objects. Thus, tissue P systems with cell
separation and without environment are non-efficient in the sense that they are
not capable to solve NP–complete problems in polynomial time, according to
Definition 5, assuming that P 6= NP.

Theorem 2. For each k ∈ IN, k ≥ 1 we have P = PMC
̂TSC(k)

.

Hence, the environment plays a relevant role in recognizer tissue P systems
with cell separation with respect the efficiency of these models. That is, by using
environment, NP–complete problems can be solved in polynomial time, but this
is not possible when the initial environment is empty.

Another interesting consequence of the previous result is the following. In
the framework of recognizer tissue P systems without environment, the kind of
rules provides a frontier of the efficiency, that is, passing from division rules to
separation rules amounts to passing from efficiency to non-efficiency, assuming
that P 6= NP.

294 M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera

4 Conclusions

In this paper we have discussed how allowing an infinite supply of objects in the
environment determines (or not) that the model of tissue P systems considered
will be efficient or not.

More precisely, we have highlighted the key role that environment plays in
the case of tissue P systems with cell separation. It does actually constitute
a borderline between efficiency and non-efficiency for the classes TSC(k) and
̂TSC(k), for every k ≥ 3. However, it is important to note that cooperation (of at

least 3 objects) in the communication rules is another important ingredient, since
we cannot get efficient solutions with tissue P systems with cell separation and
communication rules of length bounded by 2, irrespectively of using environment
or not [10].

On the other hand, the environment has been shown to be an irrelevant
ingredient in the case of tissue P systems with cell division. Indeed, a uniform
polynomial solution has been described for HAM-CYCLE using a family of tissue

P systems with cell division and without environment from ̂TDC(2). Note that
the borderline of efficiency concerning the length of communication rules remains
the same as what was already known when environment is allowed: symport of
length 1 versus cooperation of 2 objects.

Acknowledgements

The work was supported by TIN2012-37434 Project of the Ministerio de Ciencia e
Innovación of Spain and Project of Excellence with Investigador de Reconocida

Vaĺıa, from Junta de Andalućıa, grant P08 – TIC 04200, both cofinanced by
FEDER funds.

References

1. A. Alhazov, T.O. Ishdorj. Membrane operations in P systems with active mem-

branes. In Gh. Păun et al. (eds.) Proceedings of the Second Brainstorming Week

on Membrane Computing, Seville, Spain, February 2-7, 2004, Technical Report

01/2004, University of Seville, pp. 37-44.

2. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez,

F.J. Romero–Campero. Computational efficiency of cellular division in tissue-like

P systems. Romanian Journal of Information Science and Technology 11, 3, (2008),

229–241.

3. M.R. Garey, D.S. Johnson. Computers and Intractability A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, (1979).

4. R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font. Characterizing

tractability by tissue-like P systems. Lecture Notes in Computer Science 5957,

(2010), 289–300.

5. M. Ito, C. Mart́ın Vide, Gh. Păun. A characterization of Parikh sets of ET0L

laguages in terms of P systems. In M. Ito, Gh. Păun, S. Yu (eds.) Words, Semi-

groups and Transducers, World Scientific, Singapore, 2001, 239-254.

The Relevance of the Environment on the Efficiency of Tissue P Systems 295

6. L.F. Maćıas-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font. The ef-

ficiency of tissue P systems with cell separation relies on the environment. E.

Csuhaj-Varjú, M. Gheorghe, G. Vaszil (eds.) Proceedings of the 13th International

Conference on Membrane Computing, Budapest, Hungary, August 28-31, 2012, pp.

277-290.

7. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón. A New Class of Symbolic

Abstract Neural Nets: Tissue P Systems. Lecture Notes in Computer Science 2387,

(2002), 290–299.

8. L. Pan, T.-O. Ishdorj. P systems with active membranes and separation rules.

Journal of Universal Computer Science, 10, 5, (2004), 630–649.

9. L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue–like P systems.

Journal of Complexity, 26, 3 (2010), 296–315.

10. L. Pan, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font. New frontiers of the

efficiency in tissue P systems. In L. Pan, Gh. Păun, T. Song (eds.) Pre-proceedings

of Asian Conference on Membrane Computing, Huazhong University of Science

and Technology, Wuhan, China, October 15-18, 2012, pp. 61-73.

11. A. Păun, Gh. Păun. The power of communication: P systems with sym-

port/antiport. New Generation Computing, 20, 3, (2002), 295–305.

12. Gh. Păun. Attacking NP-complete problems. In Unconventional Models of Com-

putation, UMC’2K (I. Antoniou, C. Calude, M. J. Dinneen, eds.), Springer-Verlag,

2000, pp. 94-115.

13. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin,

(2002).

14. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez. Tissue P systems with cell divi-

sion. Int. J. of Computers, Communications and Control, 3, 3, (2008), 295–303.

15. M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, F.J. Romero-Campero. The

role of the environment in tissue P systems with cell division. In M. Garćıa-

Quismondo et al. (eds.) Proceedings of the Tenth Brainstorming Week on Mem-

brane Computing, Volume II, Seville, Spain, January 30- February 3, 2012, Report

RGNC 02/2012, Fénix Editora, 2012, pp. 89-104.

16. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. Complexity classes

in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),

265–285.

17. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. A polynomial com-

plexity class in P systems using membrane division. Journal of Automata, Lan-

guages and Combinatorics, 11, 4, (2006), 423-434.

18. M.J. Pérez-Jiménez, P. Sośık. Improving the efficiency of tissue P systems with

cell separation. In M. Garćıa-Quismondo et al. (eds.) Proceedings of the Tenth

Brainstorming Week on Membrane Computing, Volume II, Seville, Spain, January

30- February 3, 2012, Report RGNC 02/2012, Fénix Editora, 2012, pp. 105-140.

19. A.E. Porreca, N. Murphy, and M.J. Pérez-Jiménez. An optimal frontier of the

efficiency of tissue P systems with cell division. In M. Garćıa-Quismondo et al.

(eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing,

Volume II, Seville, Spain, January 30- February 3, 2012, Report RGNC 02/2012,

Fénix Editora, 2012, pp. 141-166.

Short Papers

297

Expressing Active Membranes by using
Priorities, Catalysts and Cooperation

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science

Blvd. King Carol I no.8, 700505 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. We simulate a P system with active membranes by a tran-

sitional P system involving priorities, catalysts and cooperation. The

difference in the number of applied rules depends on the fact that in a

P system with active membranes a change of configuration is done by a

single rule application (one step), while in the corresponding transitional

P system involving priorities, catalysts and cooperation this is achieved

through several steps.

1 Introduction

The family of membrane systems (also called P systems) is presented in the
handbook [2], while several applications of membrane computing are presented
in [1]. Membrane systems are distributed, parallel and non-deterministic com-
puting models inspired by biological entities.

A P system with active membranes [2] is a construct
Π = (V, T,H, µ,w1, . . . , wn, α1, . . . , αn, R), where:

1. n ≥ 1 represents the number of membranes;
2. V is an alphabet (the total alphabet of the system);
3. T ⊆ V (the terminal alphabet);
4. H is a finite set of labels for membranes;
5. µ is a membrane structure, consisting of n membranes, labelled in a one-to-

one manner with elements of H;
6. w1, . . . , wn are strings over V , describing the multisets of objects placed in

the n regions of µ;
7. α1, . . . , αn, with αi ∈ {+,−, 0} for i ∈ {1, . . . , n}, are the initial polarisations

of the membranes;
8. R is a finite set of developmental rules, of the following forms:

(a) [a → v]αh , for h ∈ H, α ∈ {+,−, 0}, a ∈ V , v ∈ V ∗ object evolution
An object a placed inside a membrane evolves into a multiset of ob-
jects v, depending on the label h and the charge α of the membrane.
The membrane does not take part in the application of the rule and is
not modified by it.

300 Bogdan Aman and Gabriel Ciobanu

(b) a[]α1

h →[b]α2

h , for h ∈ H, α1, α2∈{+,−, 0}, a, b ∈ V communication
An object a is introduced in the membrane labelled h and with charge
α1. Furthermore, the object a may be modified to b and the polarisation
may be changed from α1 to α2 during the operation. The label of the
membrane remains unchanged.

(c) [a]α1

h →[]α2

h b, for h ∈ H, α1, α2∈{+,−, 0}, a, b ∈ V communication
An object a is removed from the membrane labelled h and with charge
α1. Furthermore, the object a may be modified to b and the polarisation
may be changed from α1 to α2 during the operation. The label of the
membrane remains unchanged.

(d) [a]αh → b, for h ∈ H, α∈{+,−, 0}, a, b ∈ V dissolving
An object a dissolves the surrounding membrane labelled h and with
charge α. Furthermore, the object a may be modified to b during the
operation.

(e) [a]α1

h →[b]α2

h [c]α3

h , for h∈H, α1,α2,α3∈{+,−, 0}, a, b, c∈V

division of elementary membranes

In reaction with an object a, a membrane labelled h and with charge α is
divided into two membranes with the same label, of potentially different
polarisations. Furthermore, the object a may be replaced in the two new
membranes by possibly new objects.

The above rules are applied in the usual non-deterministic maximally parallel
manner (every rule that is applicable inside a region has to be applied in that
region), subject to the following constraints: (i) any object can be subject of only
one rule of any type and any membrane can be subject of only one rule of type
(b)-(e); (ii) rules of type (a) are not counted as applied to membranes, but only
to objects; (iii) if a membrane is dissolved, then all the objects and membranes
in its region are incorporated in the surrounding region; (iv) the rules are applied
in a bottom-up manner; (v) the skin membrane cannot be dissolved or divided,
but it can be the subject of in/out operations.

2 Expressing P Systems with Active Membranes

In a P system the evolution rules can be applied according to a priority relation,
given in the form of a partial order relation: the rule with the highest priority
among the applicable rules is always the one actually applied. If there are rules
that specify the evolution of several objects at the same time, then the system is
cooperative. An intermediate case is that where there are certain objects, called
catalysts, that do not evolve alone, but appear together with other objects in
evolution rules and they are not modified by the use of the rules. (e.g., cu → cv,
u ∈ V +, v ∈ V ∗).

Proposition 1. Given a P system Π with active membranes, its operations can

be expressed by a P system Πp involving priorities, catalysts and cooperative

rules.

Expressing Active Membranes by Priorities, Catalysts and Cooperation 301

Proof. Starting from the P system Π, we construct the P system
Πp = (V p, T p, [], wp, (Rp, ρp)), where:

1. V p = {ah | a ∈ V, h ∈ H∪HN}∪ {αh, αdi
h , αm

h | α ∈ {+,−, 0}, h, i ∈ H∪HN}

∪ {pij , p
′

ij | i, j ∈ H ∪ HN}

• ah - models an object a from membrane h;
• αh - models the polarisation α of membrane h;
• pij - represents the fact that membrane i is included in membrane j; this

object is used to model the membrane structure of the initial system;
• HN ⊆ {hi | h ∈ H, i ∈ N} is used to uniquely track the copies of the

membranes from H created by division;

2. T p = {ah | a ∈ T, h ∈ H ∪ HN} the terminal alphabet considers all combi-
nations of terminal objects and locations from the initial system;

3. wp = {ah, a′

h | a ∈ wh, h ∈ H}

∪ {αh | h ∈ H} ∪ {pij | membrane i is included in membrane j in µ}

• ah - models an object a from the initial multiset wh;
• αh - models the initial polarisation α of membrane h;

• Rp is a finite set of evolution rules:

(a) a rule [a → v]αh is simulated by the rule:

i. αhah → αhv′

h; v′

h denotes the fact that a label h is added to all ob-
jects from the multiset v, and that the newly created objects cannot
be used by any other rule in the current evolution step;

(b) a rule a[]α1

h →[b]α2

h is simulated by the rule:

i. phiaiα1h → phib
′

hα2h;

(c) a rule [a]α1

h →[]α2

h b is simulated by the rule:

i. phiahα1h → phib
′

iα2h;

(d) a rule [a]αh → b is simulated by the rules:

i. phiahαh → p′hiα
di
h b′i; αdi

h represents a special object that models the
fact that the membrane labelled h in the initial membrane structure
is marked to be dissolved (d - symbolises dissolution, i - the parent
membrane of dissolved membrane h). When a membrane is marked
for dissolution, some objects pij need to be modified in order to keep
track with the modification of the initial structure. To do this, the
object phi is replaced with the object p′hi in order to announce the
children of membrane h (if any) to change their parent to i.

ii. p′hipjh → p′hipji; any membrane contained in the dissolved mem-
brane h, if any, changes its parent from h to i.

iii. p′hi → ε; if there are no more membranes with parent h, the inter-
mediate object p′hi is removed.

iv. αdi
h ah → αdi

h a′

i; any object from membrane h moves to membrane i.
v. αdi

h → ε; if there are no more objects in the dissolving membrane h,
then intermediate object αdi

h is removed.

The rules are applied according to the following sequence of priorities:
(d).i > (d).ii > (d).iii > (d).iv > (d).v

(e) a rule [a]α1

h →[b]α2

h [c]α3

h is simulated by the rules:

302 Bogdan Aman and Gabriel Ciobanu

i. phiahα1h → ph1ib
′

h1
ph2ic

′

h2
αm

h ; αm
h represents a special object that

models the fact that the membrane labelled h in the initial membrane
structure is multiplied (m - symbolises multiplication). In order to
keep track which objects belong to which membrane in the initial
system, we consider that the new copies of the membrane and its
inner objects have labels that uniquely identify them, namely h1 and
h2. To be able to apply similar rules as for the initial membrane h also
to the newly created membranes labelled by h1 and h2 we duplicate
the rules from h in the newly created membranes by replacing the
objects ah by the objects ah1

or ah2
, respectively.

ii. αm
h ah → αm

h a′

h1
a′

h2
; in the presence of the object αm

h any object
from the initial membrane h is duplicated in the two new copies of
membrane h: the object ah is replaced by the objects a′

h1
and a′

h2
.

iii. αm
h → αh1

αh2
; after all objects of membrane h are replicated into

the new copies of membrane h, namely h1 and h2, the object αm
h is

replaced with the objects αh1
and αh2

, representing the polarisations
of the newly created membranes.

The rules are applied according to the following sequence of priorities:
(e).i > (e).ii > (e).iii

(f) a′

h → ah; in order to move to the next step of the evolution, the primed
objects (e.g., a′

h) are transformed into simple objects (e.g., ah).

The rules are simulated using the application constraints of P systems with active
membranes, except for rule (f) which has the lowest priority among all rules and
is applied last in order to prepare the system for a new evolution step. ⊓⊔

Remark 1. We end by emphasising the size of the P system Πp with respect to
that of Π. Consider that the largest configuration has m membranes. Thus, the
cardinality of the alphabet V p is,

card(V p) = m × (card(V) + 10 × m)
while the cardinality of the rule set Rp is,:

card(Rp) = m × (card(R(a)) + card(R(a)) + card(R(c))+
+5 × card(R(d)) + 3 × card(R(e)) + card(V p)),

where R(a) denotes the number of (a) rules from the set of rules R.

References

1. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez. Applications of Membrane Computing,

Springer, Natural Computing Series, 2006.

2. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.) The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.

Causal Sequences and Indexed Multisets

Gabriel Ciobanu1, Dragoş Sburlan2

1
Romanian Academy, Institute of Computer Science

Blvd. Carol I no. 8, 700505 Iasi, gabriel@info.uaic.ro
2

Ovidius University of Constanta, Romania

Faculty of Mathematics and Informatics, dsburlan@univ-ovidius.ro

Abstract. We explore the principle of causality in the parallel multiset

rewriting systems.

1 Introduction

This paper explores the concept of causality in membrane and multiset rewriting
systems. Its goal is to capture the causal dependencies existing among executions
of rules, while abstracting away from other aspects. In the membrane computing
literature there are several attempts to formalize causal semantics (e.g., [1], [2]
and [3]), most of them proposing a notion of causality based on the temporal
order of single rule applications. Our new approach introduces regular expres-
sions to define the causal relation between executions of rules; the time between
the moments when these rules compete for objects can be also specified in the
definition of regular expressions. We define causal sequences as a method for
modelling different possible evolutions in metabolic networks, and their causal
relationships.

We also use indexed multisets in the context of multiset rewriting systems.
The indexes are used to keep track of causal relations. An indexed rewriting
system has rules of the form (r, i) which correspond to a rule r applied at step
i. Indexing allows to identify the rules which can be applied “early” without
changing the result of the evolution. In this situation the “early” applied rule r
is causally independent from the rules which can be postponed to be applied after
r, which leads to a specific notion of causality. When a rule is applied as early
as possible, the rules preceding it represent its cause. This approach naturally
extends to multisets of rules. Indexing is suitable for the causal analysis of the
evolution strategy used in membrane systems (maximally parallel application)
as well as for the one used in Petri nets (unconditional application).

1.1 Preliminaries

A multiset rewriting system is a tuple (O,R, w0) consisting of an alphabet of
objects O, a set of rules R and an initial multiset of objects w0. Each rule
r ∈ R has two associated non-empty multisets over O, denoted by lhs(r) and
rhs(r); the notation used for a rule is r : lhs(r) → rhs(r). The set of labels

304 Gabriel Ciobanu, Dragoş Sburlan

of the rules from R (uniquely identifiable) is denoted by L.When considering a
multiset F of rules we extend the notations for left hand side and right hand
side to the entire multiset: lhs(F) =

∑

r∈R

F (r) · lhs(r) and similarly rhs(F) =
∑

r∈R

F (r) · rhs(r).
A multiset rewriting system (O,R, w0) evolves by applying a multiset of rules

to the initial multiset (configuration), then applying yet another multiset of rules
to the multiset obtained from the first application and so on, possibly imposing
certain restrictions on the applied multisets of rules.

We call step sequence a sequence of multisets F1 . . . Fn of rules such that

there exists a sequence of transitions of the form w0

F1
−→ w1 . . . wn−1

Fn

−−→ wn.
A maximally parallel step sequence is a step sequence given by a transition

sequence w0

F1
−→ w1 . . . wn−1

Fn

−−→ wn such that every multiset of rules Fi applied
throughout is maximal with respect to application to wi−1.

2 Causal Sequence System

A Causal Sequence System (CSS, for short) is a multiset rewriting system
Π = (O,C,R, w0, E), where C ⊆ O (the catalysts); the set E is a finite set
of regular expressions over L ∪ {d} (where d is a special symbol (the “delay”
symbol), d 6∈ L); moreover, if e ∈ E then L(e) ⊆ (L ∪ {d})∗L(L ∪ {d})∗. Here
we consider non-cooperative rules l : a → v or catalytic rules l : ca → cv, where
l ∈ L, a ∈ O \ C, v ∈ (O \ C)∗, and c ∈ C;

The evolution of Π is determined by the followings. Let E = {e1, . . . , es}; in
addition, let L1, . . . , Ls be the corresponding regular languages. A word l0 . . . lt ∈
Li, 1 ≤ i ≤ s is called a causal sequence and illustrates the fact that the cor-
responding rules (if there exist such corresponding rules; recall that d is not
associated with any rule) are applied (if possible) in the implicit order of sym-
bols. Given a multiset of objects w, a causal sequence l0 . . . lt is applicable to w
if the rule having the label l0 is applicable to w or l0 = d; similarly, a causal
sequence is started if the rule labelled with l0 is applied to w or l0 = d. A com-
putation of Π is determined by a maximally parallel step sequence such that at
each step the multiset of rules to be applied is selected as follows. For a causal
sequence l0 . . . lt that is started in configuration k, the rule labelled li, 1 ≤ i ≤ t,
li 6= d, compete for objects in configuration k + i iff the rules labelled li−j ,
1 ≤ j ≤ i, li−j 6= d were applied in the corresponding configurations k + i− j. A
started causal sequence is said to be entirely applied if the rules corresponding
to all labels were applied in the given order, in consecutive configurations; in
case there exists a rule labelled li, 1 ≤ i ≤ t, li 6= d, that lost the competition
on objects, or if the rule cannot be applied, then the started causal sequence is
said to be interrupted ; the executions of the remaining rules in the subsequent
configurations are dropped. In any configuration, new causal sequences from
each Li, 1 ≤ i ≤ s, are nondeterministically selected for applications. Given
such a causal sequence and a configuration wk, if the first label of rule appears
in the causal sequence on position l ≥ 0 (the first symbols all being d), then
the corresponding rule competes for objects with other rules (from the causal

Causal Sequences and Indexed Multisets 305

sequences in progress) after l computational steps. For configuration wk, there
might exist new causal sequences, causal sequences in progress, and interrupted
causal sequences, which determine the rules to be applied in order to obtain the
next configuration wk+1.

A computation of Π is a halting one if no rule can be applied (all the started
causal sequences are interrupted and no matter how a new causal sequence is
selected for application it becomes interrupted at the first symbol corresponding
to a rule) in the halting configuration; the result is the number of objects from
a set Σ ⊆ O in the halting configuration. Non-halting computation yields no
result. By collecting the results of all possible halting computations of Π, one
gets N(Π) – the set of all natural numbers generated by Π.

The family of all sets of numbers computed by CSS systems and with a list
of features f is denoted by NOCSS(f). The features considered in this paper
are ncoo (systems using only non-cooperative rules) and catk (systems using
non-cooperative rules and catalytic rules with at most k catalysts).

Theorem 1. NOCSS(cat1) = NRE.

A particular case is when all possible causal sequences used by a CSS system
Π are of type dl1w1d

l2w2d
l3 . . . dlkwkdlk+1 , where wi ∈ L+

i , li ∈ IN , 1 ≤ i ≤ k+1.
We consider that the regular expressions from E are of type

d∗α1d
∗α2d

∗ . . . d∗αkd∗,

where each αj , 1 ≤ j ≤ k, are regular expressions over Li which use only grouping
and Boolean OR operations in their definitions

For a causal sequence x = dl1w1d
l2w2d

l3 . . . dlkwkdlk+1 ∈ Li, 1 ≤ i ≤ s, we
define deg(x) = max

1≤i≤k
{|wi|}. For a given CSS system Π we define the degree of

synchronization as deg(Π) = max{deg(x) | x ∈ Li, 1 ≤ i ≤ s}.
The family of all sets of numbers computed by CSS systems with the fea-

ture f ∈ {ncoo, cat} and of synchronization degree at most n is denoted by
NOCSSdn(f).

Example 1. The set {2n | n ≥ 1} is generated by Π1 = (O,R, w0, E) where

O = {a, b}; R = {r1 : b → b, r2 : a → aa, r3 : b → λ};

w0 = ab; E = {d∗r1d
∗r2d

∗r3d
∗}.

Theorem 2. For any n ≥ 2 and k ≥ 1, we have

NOCSS(f) ⊇ NOCSSdn(f) ⊇ NOCSSdn−1(f), f ∈ {ncoo, catk}.

The following results reveal various relations between the family of all the
sets of numbers computed by CSS some families from formal languages [4].

Proposition 1. NOCSSd1(ncoo) ⊃ NCF = NREG.

Theorem 3. NOCSSd2(ncoo) ⊇ NET0L.

Theorem 4. NOCSSd3(cat1) = NRE.

306 Gabriel Ciobanu, Dragoş Sburlan

3 Indexed Multisets

A multiset α over X × N is called an indexed multiset over X. Given a multiset
w over a set X we let (w, n) denote the indexed multiset over X defined by
(w, n)(a, i) = 0, if i 6= n and (w, n)(a, i) = w(a) if i = n.

The index i of a pair (a, i) is used to specify that an object a is a part of a
multiset produced by the i-th transition, if a denotes an object, or that a rule a
is applied in the i-th transition, if a denotes a rule. Consider an indexed multiset
α over X. We let αn denote the multiset over X defined by αn(a) = α(a, n).

Given a multiset rewriting system Π = (O,R, w0) we associate to it another
multiset rewriting system Πind = (Oind,Rind, wind

0
), with Oind = O×N, wind

0
=

(w0, 0) and Rind defined as follows. Let Rτ be the set R ∪ {τa| a ∈ O}, where
τa : a → a. Then Rind is the set Rτ × {1, 2, . . .}, namely each element of Rind

is a pair (s, i) given by a rule, of the form s = r ∈ R or s = τa, and a non-zero
index. The rules of Πind are of form (s, i) : (lhs(s), i − 1) → (rhs(s), i). Here, s
can be either a rule r of the initial multiset rewriting system Π or a special rule
τa. For the first situation, an application of the indexed rule σ = (r, i) is meant
to correspond to an application of rule r during transition i in Π: it consumes
the multiset lhs(r) (which was produced during transition i − 1) and produces
the multiset rhs(r). An application of a rule σ = (τa, i) in a step sequence of
Πind is meant to correspond to an object a not being consumed by any rule
during a transition i in a step sequence in Π; hence the effect on a is manifested
only in the increment of index i − 1 by 1.

Consider a step sequence F = F1 . . . Fn in Π, w0

F 1

−−→ w1 . . . wn−1

F n

−−→ wn

We associate a sequence F̃ = F̃1 . . . F̃n of multisets over Rτ to F as follows: each
F̃i is obtained by adding a rule τa to the multiset Fi for each object a which is

not consumed in the i-th transition wi−1

Fi

−→ wi. Let SF denote the set of step
sequences S in Πind for which sum(S) = (F̃1, 1) + . . . + (F̃n, n).

Theorem 5. For any step sequence F in Π, every step sequence S ∈ SF is

complete. For any complete step sequence S in Πind there exists a unique step

sequence F in Π such that S ∈ SF.

Theorem 6. For any maximally parallel step sequence F in Π, every step se-

quence S ∈ SF is safe and complete. For any safe and complete step sequence S

in Πind there exists a unique maximally parallel step sequence F in Π such that

S ∈ SF.

Definition 1. For a sequence of multisets of rules S = S1 . . . Sn in Πind we

denote by ρ(S) the sequence (S1, 1) . . . (Sk, k) where S = sum(S) and k + 1 =
deg(S).

Definition 2. Consider two step sequences S = S1 . . . Sn and T in Πind. Let ∼

be the relation on step sequences given by T ∼ S whenever one of the following

takes place:

– T = S1 . . . Si−1(Si + Si+1)Si+2 . . . Sn for some i;

Causal Sequences and Indexed Multisets 307

– T = S1 . . . Si−1(Si − X)(Si+1 + X)Si+2 . . . Sn for some i and X < Si.

Theorem 7. Let ≡ be the equivalence relation generated by ∼.

If S is a step sequence in Πind, then S ≡ ρ(S).

Theorem 8. If S and T are two step sequences in Πind, then

S ≡ T ⇔ sum(S) = sum(T).

Conclusion: Inspired by biological phenomena, we have defined and studied
causal sequence in membrane and multiset rewriting systems. Regular expres-
sions are used to express the causal dependence relations existing between var-
ious executions of rules. Indexed multisets provide information concerning the
timing of events such as rule application and objects being produced. Indexing
represents here the idea of tracking the moments in which resources or rules
become active.

References

1. Agrigoroaiei, O. and Ciobanu, G. (2012) Quantitative Causality in Membrane Sys-

tems. LNCS, vol. 7184, pp. 62–72.

2. Ciobanu, G. and Lucanu, D. (2007) Events, Causality, and Concurrency in Mem-

brane Systems, LNCS, vol. 4860, pp. 209–227.

3. Sburlan, D. (2012), P Systems with Chained Rules, LNCS vol.7184, pp. 359–370.

4. Rozenberg, G., Salomaa, A. (Eds.): Handbook of Formal Languages, Springer, 2004.

Undecidability and Computational Completeness
for P Systems with One- and Two-dimensional

Array Insertion and Deletion Rules

Henning Fernau1, Rudolf Freund2, Sergiu Ivanov3,
Marion Oswald2, Markus L.Schmid1, and K.G. Subramanian4

1
Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier

D-54296 Trier, Germany

Email: {fernau,MSchmid}@uni-trier.de
2

Technische Universität Wien, Institut für Computersprachen

Favoritenstr. 9, A-1040 Wien, Austria

Email: rudi@emcc.at
3

Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est

Créteil Val de Marne, 61, Av. Gén. de Gaulle, 94010 Créteil, France

Email: sergiu.ivanov@u-pec.fr
4

School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Email: kgsmani1948@yahoo.com

In the string case, the insertion operation was first considered in [7, 8] and
after that related insertion and deletion operations were investigated, e.g., in [9,
15]. In [10] contextual grammars were introduced, for an overview see [11].

Array insertion grammars have already been considered as contextual array

grammars in [5], whereas the inverse interpretation of a contextual array rule
as a deletion rule has newly been introduced in [2] and [3], which continued the
research on P systems with left and right insertion and deletion of strings, see
[6]. The results described in this note were elaborated in [3] for one-dimensional
arrays and in [2] for two-dimensional arrays.

Sequential Grammars
A (sequential) grammar G (see [4]) is a construct (O,OT , w, P,=⇒G) where

O is a set of objects, OT ⊆ O is a set of terminal objects, w ∈ O is the axiom

(start object), P is a finite set of rules, and =⇒G⊆ O × O is the derivation

relation of G induced by the rules in P . We consider grammars of type X, e.g.,
string grammars with regular, etc. rules or with insertion and deletion rules,
and array grammars with regular, etc. array rules as well as with array insertion
and deletion rules. In [6], left and right insertions and deletions of strings were
considered; the corresponding types of grammars using rules inserting strings of
length at most k and deleting strings of length at most m at either side of a
string are denoted by DmIk.

L
∗
(G) =

{

v ∈ OT | w
∗

=⇒G v
}

is the language generated by G (in the ∗-

mode); Lt (G) =
{

v ∈ OT |
(

w
∗

=⇒G v
)

∧ ∄z (v =⇒G z)
}

is the language gener-

ated by G in the t-mode, i.e., the set of all terminal objects derivable from the
axiom in a halting computation. The family of languages generated by grammars
of type X in the derivation mode δ, δ ∈ {∗, t}, is denoted by Lδ (X).

310 H. Fernau, R. Freund, S. Ivanov, M. Oswald, M. Schmid, K.G. Subramanian

If for every G of type X, G = (O,OT , w, P,=⇒G), we have OT = O, then X
is called a pure type, otherwise it is called extended.

The family of recursively enumerable string languages and of d-dimensional
array languages is denoted by L

∗
(ARB) and L

∗
(d-ARBA), respectively.

Arrays and array grammars
Let d ∈ N; then a d-dimensional array A over an alphabet V is a function

A : Z
d → V ∪ {#}, where shape (A) =

{

v ∈ Z
d | A (v) 6= #

}

is finite and
/∈ V is called the background or blank symbol. The set of all d-dimensional
arrays over V is denoted by V ∗d. For v ∈ Z

d, v = (v1, . . . , vd), the norm of
v is ‖v‖ = max {|vi| | 1 ≤ i ≤ d}. The translation τv : Z

d → Z
d is defined by

τv (w) = w + v for all w ∈ Z
d. For any array A ∈ V ∗d, τv (A), the corresponding

d-dimensional array translated by v, is defined by (τv (A)) (w) = A (w − v) for
all w ∈ Z

d. For a (non-empty) finite set W ⊂ Zd the norm of W is defined as
‖W‖ = max { ‖v − w‖ | v, w ∈ W }.

[A] =
{

B ∈ V ∗d | B = τv (A) for some v ∈ Z
d
}

is the equivalence class of ar-
rays with respect to linear translations containing A. The set of all equivalence
classes of d-dimensional arrays over V with respect to linear translations is de-
noted by

[

V ∗d
]

etc.

GA =
(

(N ∪ T)
∗d

, T ∗d,A0, P,=⇒GA

)

is called a d-dimensional array gram-

mar, where N is the alphabet of non-terminal symbols, T is the alphabet of ter-

minal symbols, N∩T = ∅, A0 ∈ (N ∪ T)
∗d

is the start array, P is a finite set of d-

dimensional array rules over V , V := N∪T , and =⇒GA
⊆ (N ∪ T)

∗d
×(N ∪ T)

∗d

is the derivation relation induced by the array rules in P .
A d-dimensional contextual array rule (see [5]) over the alphabet V is a

pair of finite d-dimensional arrays (A1,A2) with dom (A1) ∩ dom (A2) = ∅ and
shape (A1) ∪ shape (A2) 6= ∅; we also call it an array insertion rule, as its effect
is that in the context of A1 we insert A2; hence, we write I (A1,A2). The pair
(A1,A2) can also be interpreted as having the effect that in the context of
A1 we delete A2; in this case, we speak of an array deletion rule and write
D (A1,A2). For any (contextual, insertion, deletion) array rule we define its
norm by ‖dom (A1) ∪ dom (A2)‖.

The types of d-dimensional array grammars using array insertion rules of
norm ≤ k and array deletion rules of norm ≤ m are denoted by d-DmIkA; if
only array insertion (i.e., contextual) rules are used, we have the case of pure
grammars, and the type is denoted by d-CA.

(Sequential) P Systems
For the the area of P systems, we refer the reader to [12] and the P page [14].
A (sequential) P system of type X with tree height n is a construct Π =

(G,µ,R, i0) where G = (O,OT , A, P,=⇒G) is a sequential grammar of type X;
µ is the membrane (tree) structure of the system with the height of the tree
being n, the membranes are uniquely labelled by labels from a set Lab; R is a
set of rules of the form (h, r, tar) where h ∈ Lab, r ∈ P , and tar, called the
target indicator, is taken from the set {here, in, out} ∪ {inh | h ∈ Lab}; i0 is the
initial membrane containing the axiom A.

P Systems with Array Insertion and Deletion Rules 311

A configuration of Π is a pair (w, h) where w is the current object (e.g., string
or array) and h is the label of the membrane currently containing the object w.
A sequence of transitions between configurations of Π, starting from the initial
configuration (A, i0), is called a computation of Π. A halting computation is a
computation ending with a configuration (w, h) such that no rule from Rh can
be applied to w anymore; w is called the result of this halting computation if
w ∈ OT . The language generated by Π, Lt (Π), consists of all terminal objects
from OT being results of a halting computation in Π.

By Lt (X-LP) (Lt

(

X-LP 〈n〉
)

) we denote the family of languages generated
by P systems (of tree height at most n) using grammars of type X. If only the
targets here, in, and out are used, then the P system is called simple, and the cor-
responding families of languages are denoted by Lt (X-LsP) (Lt

(

X-LsP 〈n〉
)

).

Undecidability
An instance of the Post Correspondence Problem (PCP) is a pair of sequences

of non-empty strings (u1, . . . , un) and (v1, . . . , vn) over an alphabet T . A solution
of this instance is a sequence of indices i1, . . . , ik such that ui1 . . . uik

= vi1 . . . vik
;

we call ui1 . . . uik
the result of this solution. Let L ((u1, . . . , un) , (v1, . . . , vn))

denote the set of results of all solutions of the instance ((u1, . . . , un) , (v1, . . . , vn))
of the PCP, and let the homomorphism hΣ be defined by hΣ : Σ → Σ+ with
hΣ (a) = aa′ for all a ∈ Σ.

Lemma 1. Let I = ((u1, . . . , un) , (v1, . . . , vn)) be an instance of the PCP over

T . Then we can effectively construct a one-dimensional array insertion P system

Π such that [L (Π)] = {LL′hT (w) RR′ | w ∈ L ((u1, . . . , un) , (v1, . . . , vn))} .

As is well known (see [13]), the Post Correspondence Problem is undecidable,
hence, the emptiness problem for Lt

(

1-DIA-LP 〈k〉
)

is undecidable:

Corollary 1. For any k ≥ 1, the emptiness problem for Lt

(

1-DIA-LP 〈k〉
)

is

undecidable.

For d ≥ 2, even the emptiness problem for Lt (d-CA) is undecidable, as in [1]
it was shown that every recursively enumerable one-dimensional array language
can be characterized as the projection of an array language generated by a two-
dimensional contextual array grammar using rules of norm one only.

Computational Completeness
In [6] it was shown that in the string case, for insertion and deletion rules

applied on either side of strings, we have Lt

(

D1I1-LsP 〈8〉
)

= L
∗
(ARB). As

one-dimensional arrays can also be interpreted as strings, we immediately infer
the corresponding result for one-dimensional arrays, Lt

(

1-D1I1A-LsP 〈8〉
)

=
L
∗
(1-ARBA). With respect to the tree height of the simple P systems, this

result was improved considerably in [3]:

Theorem 1. Lt

(

1-D1I1A-LsP 〈2〉
)

= L
∗
(1-ARBA).

Allowing norm two, we even do not need the regulating mechanism of mem-
branes:

312 H. Fernau, R. Freund, S. Ivanov, M. Oswald, M. Schmid, K.G. Subramanian

Theorem 2. Lt

(

1-D2I2A
)

= L
∗
(1-ARBA).

It remains as an interesting question for future research whether this result
for array grammars only using array insertion and deletion rules with norm at
most two can also be achieved in higher dimensions, but at least for dimension
two, as in [2], the corresponding computational completeness result has been
shown for 2-dimensional array insertion and deletion P systems using rules with
norm at most two.

Theorem 3. Lt

(

2-D2I2A-LsP 〈2〉
)

= L
∗
(2-ARBA).

References

1. H. Fernau, R. Freund, and M. Holzer, Representations of recursively enumerable ar-

ray languages by contextual array grammars, Fundamenta Informaticae 64 (2005),

pp. 159–170.

2. H. Fernau, R. Freund, S. Ivanov, M. L. Schmid, and K. G. Subramanian, Array

insertion and deletion P systems, in G. Mauri, A. Dennunzio, L. Manzoni, and A.E.

Porreca, Eds., UCNC 2013, Milan, Italy, July 1–5, 2013, LNCS 7956, Springer

2013, pp. 67–78.

3. R. Freund, S. Ivanov, M. Oswald, and K.G. Subramanian, One-dimensional array

grammars and P systems with array insertion and deletion rules, accepted for MCU

2013.
4. R. Freund, M. Kogler, and M. Oswald, A general framework for regulated rewrit-

ing based on the applicability of rules, in J. Kelemen and A. Kelemenová, Eds.,

Computation, Cooperation, and Life - Essays Dedicated to Gheorghe Păun on the

Occasion of His 60th Birthday, LNCS 6610, Springer, 2011, pp. 35-53.

5. R. Freund, Gh. Păun, and G. Rozenberg, Contextual array grammars, in K.G.

Subramanian, K. Rangarajan, and M. Mukund, Eds., Formal Models, Languages

and Applications, Series in Machine Perception and Artificial Intelligence 66, World

Scientific, 2007, pp. 112–136.

6. R. Freund, Yu. Rogozhin, and S. Verlan, P systems with minimal left and right in-

sertion and deletion, in J. Durand-Lose and N. Jonoska, Eds., UCNC 2012, Orléans,

France, September 3–7, 2012, LNCS 7445, Springer, 2012, pp. 82–93.

7. B. Galiukschov: Semicontextual grammars. Logica i Matem. Lingvistika, 38–50.

Tallin University (in Russian) (1981).

8. D. Haussler, Insertion and Iterated Insertion as Operations on Formal Languages.

PhD thesis, Univ. of Colorado at Boulder, 1982.

9. L. Kari, On Insertion and Deletion in Formal Languages, PhD thesis, University

of Turku, 1991.

10. S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appl. 14 (1969), pp.

1525–1534.

11. Gh. Păun, Marcus Contextual Grammars, Kluwer, Dordrecht, 1997.

12. Gh. Păun, G. Rozenberg, A. Salomaa, Eds., The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.

13. E. L. Post, A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc.

52 (1946), pp. 264–268.

14. The P systems Web page, http://ppage.psystems.eu/.
15. S. Verlan, Study of Language-theoretic Computational Paradigms Inspired by Biol-

ogy, Habilitation thesis, University of Paris Est, 2010.

Chemical Programming and Membrane Systems⋆

Miklós Fésüs, György Vaszil

Faculty of Informatics, University of Debrecen

P.O. Box 12, 4010 Debrecen, Hungary

{fesus.miklos, vaszil.gyorgy}@inf.unideb.hu

In the following we would like to argue that chemical programs and membrane
systems are closely related. Both models are highly parallel, non-deterministic,
and distributed. A membrane system is structured set of regions working with
multisets of objects which can travel between the regions. Each region have
associated evolution rules that define how objects are produced. Chemical pro-
grams use the notion of a chemical solution which consists of molecules and
reaction rules. Data can be seen as molecules and operations as chemical reac-
tions. If some molecules satisfy a reaction condition, they are replaced by the
result of the reaction. If no reaction is possible, the solution becomes inert, and
the program terminates. Similarly to membrane computing, chemical solutions
are represented by multisets. The chemical programming metaphor has been
employed in different areas, see [3] for programming self-organizing systems, [4]
for service orchestration, or [1] for a more general overview.

The Higher-Order Chemical Language (HOCL) is a higher-order extension
of the Gamma-calculus, see [1]. A HOCL program consists of molecules, reaction
rules, and sub-solutions. Reaction rules can be written as

replace P by M if C

where P is a pattern which matches the required atoms, C is the reaction con-
dition, and M is the result of the reaction. For example, the solution

{(replace x, y by x if x < y), 2, 7, 4, 3, 6, 8}

will result in a solution containing the minimum value of the molecules.
Reactions can be tagged using the syntax: let name = replace . . . where

we can also use a pattern ω which matches any molecule, even the empty one.
With this pattern we can extract elements from the solution. Molecules inside
a solution cannot react with molecules inside a sub-solution, or outside the so-
lution. For example, to find the least common multiple of 4 and 6, we need a
nested sub-solution inside the main solution.

let multiplier = replace x, ω by ω if not(4 div x and 6 div x)
let min = replace x, y by x if x < y

{min, {multiplier, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24 . . . } }

The { } border between sub-solutions adds sequentiality to this parallel model.

⋆
Supported in part by the Hungarian Scientific Research Fund, “OTKA”,

grant no. K75952, and by the European Union through the TÁMOP-4.2.2.C-

11/1/KONV-2012-0001 project which is co-financed by the European Social Fund.

314 Miklós Fésüs, György Vaszil

From chemical solutions to membrane systems

The border between sub-solutions can be seen as some kind of membrane, so our
goal of this section is to show how to rewrite a chemical program to a membrane
system. For this purpose, we use an example from [1].

Mail system - Basic membrane system The mail system (see Figure 1) is
described by a solution. Clients send messages by adding them to the pool of
messages of their domain. They receive messages from the pool of their domain
and store them in their mailbox. The solution named NETWORK represents
the global network interconnecting domains. Message stores are represented by
sub-solutions, messages are represented by basic molecules. Solutions named
ToSenddi

and Mboxdi
contain the messages to be sent and received by the client

i of domain d, respectively, solutions named Poold contain the messages that the
server of domain d must take care of. A client i in domain d is represented by
two active molecules senddi

and recvdi
, a server of a domain d is represented by

two active molecules putd and getd.

Fig. 1. Mail system

The movement of messages are performed by reaction rules of the form

replace A : {msg, ωA}, B : {ωB} by A : {ωA}, B, : {msg, ωB} if Cond.

The send molecule sends the messages from the client to the pool, recv gets
the messages from the pool and places them inside the message box of the client,
put forwards messages to the network, get receives messages from the network.

senddi
= replace ToSenddi

: {msg, ωt}, Poold : {ωp}

by ToSenddi
: {ωt}, Poold, : {msg, ωp}

recvdi
= replace Poold : {msg, ωp},MBoxdi

: {ωb}

by Poold : {ωp},MBoxdi
: {msg, ωb} if recipient(msg) = i

putd = replace Poold : {msg, ωp, }, Network : {ωn}

by Poold : {ωp}, Network : {msg, ωn} if recipientDomain(msg) 6= d

getd = replace Network : {msg, ωn}, Poold : {ωp}

by Network : {ωn}, Poold : {msg, ωp} if recipientDomain(msg) = d

Chemical Programming and Membrane Systems 315

MailSystem:{ sendA1
, recvA1

, T oSendA1
: {. . .},MBoxA1

: {. . .},
sendA2

, recvA2
, T oSendA2

: {. . .},MBoxA2
: {. . .},

sendA3
, recvA3

, T oSendA3
: {. . .},MBoxA3

: {. . .},
putA, getA, PoolA, Network, putB , getB , PoolB ,
sendB1

, recvB1
, T oSendB1

: {. . .},MBoxB1
: {. . .},

sendB2
, recvB2

, T oSendB2
: {. . .},MBoxB2

: {. . .} }

This chemical solution can be represented by a membrane system (See Fig-
ure 2). In the corresponding membrane system message stores can be represented
by membranes. The active molecules are represented by the following evolution
rules:

Fig. 2. Membrane mail system

– ToSenddi
: msgdi

→ (msgdi
, out),

– Poold: msgd′

i
→ (msgdi

, out), msgdi
→ (msgdi

, inMBoxi
),

– Network: msgdi
→ (inPoold).

Self healing - Basic extensions We can extend the mail system to handle
server breakdowns on its own (see Figure 3). byintroducing backup servers for
every original server in the system. A backup server automatically comes online,
if the original server is down.

The molecule failured represents an error in the poold. If it is present, the
system initiates a server repair with the repairserverd rule. The DownOutd
and DownInd rules exchange the messages between the original and the backup
server. Upd runs after the original server is repaired: It transfers all the remaining
messages from Poold′ to Poold.

crashserverd = replace putd, getd, Upd

by putd′ , getd′ , DownInd, DownOutd if failure(d)

repairserverd = replace putd′ , getd′ , DownInd, DownOutd
by putd, getd, Updif recover(d)

DownOutd = replace Poold : {msg, ωp, }, Poold′ : {ωp}

by Poold : {ωp, }, Poold′ : {msg, ωp} if domain(msg) 6= d

316 Miklós Fésüs, György Vaszil

Fig. 3. Self-repairing mail system

DownInd = replace Poold : {ωp, }, Poold′ : {msg, ωp}

by Poold : {msg, ωp, }, Poold′ : {ωp} if domain(msg) = d

Upd = replace Poold′ : {msg, ωp, }, Poold : {ωp}

by Poold′ : {ωp, }, Poold : {msg, ωp}

MailSystem:{ . . . , UpA, UpB , Pool′A, Pool′B , crashserverA,
repairserverA, crashserverB , repairserverB }

In the corresponding membrane system, the backup server comes online by
dividing the Poold membrane. When the original server comes back online we
simply destroy the Poold′ membrane.

The evolution rules are the following:

– Poold: failured → [Poold], [Pool′d],
– Poold′ : msgd′′

i
→ (msgdi

, out), msgd′

i
→ (msgdi

, inMBoxi
), Upd → δ,

– Network: failured,msgdi
→ (inPool

d′
).

References

1. J.P. Banâtre, P. Fradet, and Y. Radenac, Higher-order chemical programming

style. In: [2], 84–95.

2. J.P. Banâtre, P. Fradet, J.L. Giavitto, and O. Michel, editors, Unconventional

Programming Paradigms. Volume 3566 of Lecture Notes in Computer Science,

Springer, Berlin Heidelberg, 2005.

3. J.P. Banâtre, P. Fradet, and Y. Radenac. Programming self-organizing systems

with the higher-order chemical language. International Journal of Unconventional

Computing 3(3):161–177 (2007)

4. J.P. Banâtre, T. Priol, and Y. Radenac, Service orchestration using the chemical

metaphor. In: U. Brinkschulte, T. Givargis, S. Russo, editors, Software Technologies

for Embedded and Ubiquitous Systems. Volume 5287 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2008, 79–89.

5. Gh. Păun, Membrane Computing - An Introduction. Springer-Verlag, Berlin, 2002.

6. G. Păun, G. Rozenberg and A. Salomaa. Eds.: The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.

Catalytic and Purely Catalytic
P Systems and P Automata:

Control Mechnisms for Obtaining
Computational Completeness

Rudolf Freund1, Marion Oswald1, and Gheorghe Păun2

1
Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9, 1040 Vienna, Austria

Email: {rudi,marion}@emcc.at

2
Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania, and

Dep. of Computer Science and Artificial Intelligence, University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

gpaun@us.es, ghpaun@gmail.com

Already in the first papers introducing membrane systems (P systems), cat-
alytic rules were considered, see [10]. Since then the question how many catalysts
are needed for obtaining computational completeness in (purely) catalytic P sys-
tems, both in the generating as well as in the accepting case, has remained an
interesting research topic. In [4], two (three) catalysts were shown to be sufficient
for getting computational completeness with (purely) catalytic P systems in the
generating case, whereas d + 2 (d + 3) are needed in the accepting case, with d
being the dimension of the vectors of non-negative integers to be accepted. In
all cases, just one membrane is enough.

It is still one of the most challenging open problems in the area of P sys-
tems, whether or not one (two) catalyst(s) might already be enough to obtain
computational completeness with (purely) catalytic P systems. Using additional
control mechanisms as, for example, priorities or promoters/inhibitors, P sys-
tems with only one catalyst can be shown to be computationally complete, e.g.,
see Chapter 4 of [11].

The idea of P automata was first published in [2] and considered at the same
time under the notion of analysing P systems in [5]. For some more variants we
refer to [9] and to Chapter 6 in [11]. We here consider both P automata, where
the input is taken from the environment, using an additional target indication
come as, for example, used in a special variant of communication P systems
introduced by Petr Sośık (e.g., see [12]), and accepting (analysing) P systems

where the input is given in an input membrane.

(Purely) Catalytic P Systems
For the the area of P systems, we refer the reader to [11] and the P page [13].
A catalytic P system is a construct Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, f)

where O is the alphabet of objects, C ⊂ O is the set of catalysts, µ is the
membrane structure (with m membranes), w1, . . . , wm are multisets of objects

318 Rudolf Freund, Marion Oswald, and Gheorghe Păun

present in the m regions of µ at the beginning of a computation, R1, . . . , Rm are
finite sets of evolution rules, associated with the regions of µ, and f is the label of
the membrane region from which the outputs are taken (in the generative case)
or where the inputs are put at the beginning of a computation (in the accepting
case); f = 0 indicates that the output/input is taken from the environment.
The rules in the Ri either are non-cooperative rules of the form u → v, where
u ∈ O and v = (b1, tar1) . . . (bk, tark) with bi ∈ O and tari ∈ {here, out, in} or
tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k, or catalytic rules of the form
ca → cv, where c is a catalyst. In a purely catalytic P system we only allow
catalytic rules. The evolution rules are used in the non-deterministic maximally

parallel way. The objects present in the membrane regions of a system at a
given time form a configuration; starting from a given initial configuration; a
sequence of transitions using the rules in the maximally parallel way forms a
computation. A computation is halting if it reaches a configuration where no
rule can be applied.

In the generative case, with a halting computation we associate a result, in
the form of the number of objects present in region f in the halting configuration
(in the following, we assume f = 0). In the accepting case, for f 6= 0, we accept
all (vectors of) non-negative integers whose input given in membrane f , leads to
a halting computation; the set of non-negative integers and the set of (Parikh)
vectors of non-negative integers generated/accepted by halting computations in
Π are denoted by Ngen (Π)/Nacc (Π) and Psgen (Π)/Psacc (Π), respectively.
For the input being taken from the environment, i.e., for f = 0, the multiset of
all objects taken from the environment during a halting computation of Π is the
multiset accepted by the so-called P automaton; the set of non-negative integers
and the set of (Parikh) vectors of non-negative integers accepted by halting
computations ofthe P automaton Π are denoted by Naut (Π) and Psaut (Π),
respectively.

Let RE and REG denote the families of recursively enumerable and regular
string languages. For a family of languages FL, by PsFL we denote the family
of Parikh images of languages in FL, and by NdFL the family of Parikh images
of languages over an alphabet of d letters in FL; for N1FL we write NFL.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
(purely) catalytic P systems with at most m membranes and at most k catalysts
is denoted by YδOPm (catk) (YδOPm (pcatk)). The following characterizations
are known from the results proved in [4]:

1. YδOP1 (catk) = YδOP1 (pcatk+1) = Y RE for any k ≥ 2, Y ∈ {N,Ps},
δ ∈ {gen, aut};

2. PsaccOP1 (catd+2) = PsaccOP1 (pcatd+3) = NdRE for any d ≥ 1.

P Systems with Label Selection
A P system with label selection is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm,H,W, f)

(Purely) Catalytic P Systems: One (Two) Catalyst(s) Can Be Sufficient 319

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above,
H is a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any
transition step in Π we first select a set of labels U ∈ W and then apply a
non-empty multiset R of rules such that all the labels of these rules in R are in
U and the set R cannot be extended by any further rule with a label from U
so that the obtained multiset of rules would still be applicable to the existing
objects in the membrane regions 1, . . . ,m. The family of sets N (Π) and Ps (Π)
computed by P systems with label selection with at most m membranes and
rules of type X is denoted by NOPm (X, ls) and PsOPm (X, ls), respectively.

It is somehow surprising that with purely catalytic accepting P systems with
only one catalyst, even with label selection, we obtain less than with purely cat-
alytic P automata with only one catalyst; the following results were established
in [6]:

Lemma 1. For any m ≥ 1 and any Y ∈ {N,Ps}, Y REG = YautOPm (pcat1).

Lemma 2. Any set in PsaccOP1 (pcat1) is the Parikh set of a regular language

of the form {a1}
∗

. . . {an}
∗

.

Theorem 1. For any m ≥ 1 and any Y ∈ {N,Ps},

YaccOPm (pcat1) = YaccOPm (pcat1, ls)

⊂ Y REG = YautOPm (pcat1) = YautOPm (pcat1, ls) .

Controlled P Systems and Time-Varying P Systems
Another method to control the application of the labeled rules is to use

control languages (see [8] and [1]). A controlled P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm,H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above,
H is a set of labels for the rules in the sets R1, . . . , Rm, and W is a string
language over 2H from a family FL. Every successful computation in Π has to
follow a control word U1 . . . Un ∈ W : in transition step i, only rules with labels
in Ui are allowed to be applied, and after the n-th transition, the computation
halts; we may relax this end condition, and then we speak of weakly controlled

P systems. If W = (U1 . . . Up)
∗

, Π is called a (weakly) time-varying P system: in
the computation step pn+ i, n ≥ 0, rules from the set Ui have to be applied; p is
called the period. The family of sets Y (Π), Y ∈ {N,Ps}, computed by (weakly)
controlled P systems and (weakly) time-varying P systems with period p, with
at most m membranes and rules of type X as well as control languages in FL
is denoted by Y OPm (X,C (FL)) (Y OPm (X,wC (FL))) and Y OPm (X,TVp)
(Y OPm (X,wTVp)), respectively.

Computational Completeness Results
The computational completeness results for catalytic P systems were shown

in [7], the results for purely catalytic P systems in [3], and the results for P
automata and accepting P systems were established in [6].

320 Rudolf Freund, Marion Oswald, and Gheorghe Păun

Theorem 2. For Y ∈ {N,Ps}, δ ∈ {acc, aut, gen},

YδOP1 (pcat2, ls) = YδOP1 (cat1, ls) = Y RE.

Theorem 3. For any Y ∈ {N,Ps} and α ∈ {λ,w}, δ ∈ {aut, gen},

YδOP1 (cat1, αTV6) = YδOP1 (pcat2, αTV6) = Y RE.

For time-varying accepting P systems, the number of catalysts depends on
the dimension d of the input vectors as already observed for the case without
any control mechanism in [4]:

Theorem 4. For any d ≥ 1 and any α ∈ {λ,w},

PsaccOP1

(

cat1, αTV3(d+2)

)

= PsaccOP1

(

pcat2, αTV3(d+2)

)

= NdRE.

References

1. A. Alhazov, R. Freund, H. Heikenwälder, M. Oswald, Yu. Rogozhin, S. Verlan,

Sequential P systems with regular control. In: E. Csuhaj-Varjú, M. Gheorghe, G.

Rozenberg, A. Salomaa, G. Vaszil (Eds.): Membrane Computing - 13th Interna-

tional Conference, CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised

Selected Papers, LNCS 7762, Springer, 2013, 112–127.

2. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P

systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane

Computing, International Workshop, WMC-CdsA 2002, Curteă de Argeş, Roma-

nia, August 2002, LNCS 2597, Springer, 2003, 219–233.

3. R. Freund: Purely catalytic P systems: two catalysts can be sufficient for compu-

tational completeness, in Proc. CMC14.

4. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems

without priorities: two catalysts are sufficient. Theor. Comp. Sci. 330, 2005, 251–

266.

5. R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS

78 (October 2002), 231–236.

6. R. Freund, M. Oswald: Catalytic and purely catalytic P Automata: Control mech-

anisms for obtaining computational completeness, to appear in Proc. NCMA 2013.

7. R. Freund, Gh. Păun: How to obtain universality in P systems with one catalyst,

to appear in Proc. MCU 2013.

8. K. Krithivasan, Gh. Păun, A. Ramanujan: On controlled P systems. Fundamenta

Informaticae, to appear.

9. M. Oswald: P Automata. PhD dissertation. Vienna University of Technology, 2003.

10. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci. 61 (2000), 108–143

(see also TUCS Report 208, November 1998, www.tucs.fi).

11. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.

12. P. Sośık, J. Matyšek: Membrane computing: when communication is enough. In:

C.S. Calude, M.J. Dinneen, F. Peper (Eds.): Unconventional Models of Computa-

tion 2002, LNCS 2509, Springer, 2002, 264–275.

13. The P Systems Website: http://ppage.psystems.eu.

Computational Completeness with
Generating and Accepting P Systems

Using Minimal Left and Right
Insertion and Deletion

Rudolf Freund1, Yurii Rogozhin2, and Sergey Verlan3

1
Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9, 1040 Vienna, Austria

Email: rudi@emcc.at

2
Institute of Mathematics and Computer Science

Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD-2028, Moldova

Email: rogozhin@math.md

3
LACL, Département Informatique, Université Paris Est

61, av. Général de Gaulle, 94010 Créteil, France

Email: verlan@univ-paris12.fr

The insertion operation was first considered in [4, 5] and after that related
insertion and deletion operations were investigated, e.g., in [6, 11]. If the length
of the contexts and/or of the inserted and deleted strings are big enough, then
the insertion-deletion closure of a finite language leads to computational com-
pleteness, e.g., see [11] for an overview of this area. For specific references of
using biologically motivated point mutations – insertions, deletions, and substi-
tutions – in the area of molecular computing we refer to [2] and [3]; the results
described in this note were established in these papers.

Grammars, Post Rewriting Rules, Point Mutations
A (string rewriting) grammar G of type X is a construct (V, T,A, P) where

V is a (finite) set of symbols, T ⊆ V is a set of terminal symbols, A ∈ V ∗ is the
axiom, and P is a finite set of rules of type X.

L (G) =
{

v ∈ T ∗ | A
∗

=⇒G v
}

is the language generated by G, and La (G) =
{

v ∈ T ∗ | v
∗

=⇒G A
}

is the language accepted by G. The family of languages

generated (accepted) by grammars of type X is denoted by L (X) (La (X)). If
instead of a single axiom A we allow a finite set of axioms, we put an A in front of
the type X for this variant of grammars, thus obtaining the family of languages
generated (accepted) by grammars of type X denoted by L (A-X) (La (A-X)).

We here consider string rewriting rules only working at the ends of a string
(they can be seen as restricted variants of Post rewriting rules as already intro-
duced by Emil Post in [9]):

Simple Post rewriting rule P [ux/yv] with u, x, y, v ∈ V ∗:
P [ux/yv] (uwx) = ywv for w ∈ V ∗.

322 Rudolf Freund, Yurii Rogozhin, and Sergey Verlan

Normal Post rewriting rule P [x/y] with x, y ∈ V ∗: P [x/y] (wx) = yw for
w ∈ V ∗.

Left substitution SL [u/y] with u, y ∈ V ∗: SL [u/y] (uw) = yw for w ∈ V ∗.
Right substitution SR [x/v] with x, v ∈ V ∗: SR [x/v] (wx) = wv for w ∈ V ∗.

For a type of grammars using only substitution rules SL [x/y] with |x| ≤ k

and |y| ≤ m, we write Sk,m
L ; in the same way, we define the types Sk,m

R , Im
L , Im

R ,

Dk
L, and Dk

R. The type DkImSk′m′

allows for the deletion of strings with length
≤ k, for the insertion of strings with length ≤ m, and for the substitution of
strings of length ≤ k′ by strings of length ≤ m′ on either side of a string.

Example 1. Let G = (V, T,A, P) be a regular grammar, i.e., the rules in P are of
the form A → bC and A → λ with A,C ∈ V \ T and b ∈ T . Then the grammar
G′ = (V, T,A, {SR [A/y] | A → y ∈ P}) with substitution rules generates the
same language as G, i.e., L (G′) = L (G). Hence, with REG denoting the family

of regular languages, we obviously have got REG ⊆ L
(

S1,2
R

)

.

Theorem 1. Every language L ⊆ T ∗ in L
(

D1I1S1,1
)

can be written in the

form T ∗

l ST ∗

r where Tl, Tr ⊆ T and S is a finite subset of T ∗.

Corollary 1. L
(

A-D1I1S1,1
)

= L
(

A-I1
)

= La

(

A-D1I1S1,1
)

= La

(

A-D1
)

⊂ REG.

Post Systems
A Post system (V, T,A, P) is a grammar of type SPS (NPS) using only

simple (normal) Post rewriting rules; it is said to be in normal form (of type

PSNF) if and only if the Post rewriting rules P [x/y] in P are only of the forms
P [ab/c], P [a/bc], P [a/b], and P [a/λ], with a, b, c ∈ V , and to be in Z-normal

form (of type PSZNF) if and only if it is in normal form, A ∈ V \ T , and,
moreover, there exists a special symbol Z ∈ V \ T such that

– Z appears only once in the string x of a Post rewriting rule P [x/y], and this
rule is P [Z/λ];

– if the rule P [Z/λ] is applied, the derivation in the Post system stops yielding
a terminal string;

– a terminal string can only be obtained by applying the rule P [Z/λ].

The results established in [2] and [3] and presented in this note are based on
results for Post systems being folklore since many years, e.g., see [7] and [1]:

Theorem 2. For every recursively enumerable language L ⊆ T ∗ there exists

– a Post rewriting system G in Z-normal form generating L, i.e., L (SPS) =
L (PSNF) = L (PSZNF) = RE;

– a Post rewriting system G′ in normal form accepting L {Z}, Z /∈ T .

P Systems with Minimal Left and Right Insertion and Deletion 323

(Sequential) P Systems
For the the area of P systems, we refer the reader to [8] and the P page [10].
A (sequential) P system of type X with tree height n is a construct Π =

(G,µ,R, i0) where G is a sequential string grammar of type X; µ is the membrane
(tree) structure of the system with the height of the tree being n, the membranes
are uniquely labelled by labels from a set Lab; R is a set of rules of the form
(h, r, tar) where h ∈ Lab, r ∈ P , and tar, called the target indicator, is taken from
the set {here, in, out} ∪ {inh | h ∈ Lab}; i0 is the initial membrane containing
the axiom A.

A configuration of Π is a pair (w, h) where w is the current object (e.g., string
or array) and h is the label of the membrane currently containing the object w.
A sequence of transitions between configurations of Π, starting from the initial
configuration (A, i0), is called a computation of Π. A halting computation is a
computation ending with a configuration (w, h) such that no rule from Rh can
be applied to w anymore; w is called the result of this halting computation if
w ∈ OT . The language generated by Π, Lt (Π), consists of all terminal objects
from OT being results of a halting computation in Π.

By L (X-LP) (L
(

X-LP 〈n〉
)

) we denote the family of languages generated by
P systems (of tree height at most n) using rules of type X. If only the targets
here, in, out are used, then the P system is called simple, and the families of
languages are denoted by L (X-LsP) (L

(

X-LsP 〈n〉
)

). If even only the targets
in and out are used, then the P system is called a channel type P system, as any
change taking place in such a P system can be interpreted as only happening
when an object (a string) passes through a membrane; the corresponding families
of languages are denoted by L (X-LcP) (L

(

X-LcP 〈n〉
)

).
For the accepting case, i0 is the initial membrane where the axiom A together

with the input w ∈ T ∗ is put as wA at the beginning of a computation, and
the input w is accepted if and only if there exists a halting computation from
the initial configuration (wA, i0). By La (X-LP), La (X-LsP), and La (X-LcP)
(La

(

X-LP 〈n〉
)

, La

(

X-LsP 〈n〉
)

, and La

(

X-LcP 〈n〉
)

) we then denote the fami-
lies of languages accepted by P systems, simple P systems, and channel type P
systems (of tree height at most n) using rules of type X.

Example 2. Let Π = (G, [
1
[
2

]
2
[
3

]
3
]

1
, R, 1) be a P system of type I1

RI1

L with

G = ({a, b} , {a, b} , a, {IR [b] , IL [a]}) ,
R = {(1, IR [b] , in) , (2, IL [a] , out)}

Then Π generates the non-regular language
{

an+1bn+1 | n ≥ 0
}

, which is
also accepted by the P system Π ′ = (G, [

1
[
2

]
2
[
3
[
4
[
5

]
5
]

4
]

3
]

1
, R, 2) of type

D1

RD1

LI1

R with

G = ({a, b} , {a, b} , λ, {DL [a] , DR [b] , IR [#]}) ,
R = {(2, DL [a] , out) , (1, DR [b] , in) , (3, DR [a] , in) , (3, DR [b] , in)}

∪ {(1, IR [#] , in) , (2, IR [#] , out) , (3, DR [#] , in)}
∪ {(4, IR [#] , in) , (5, DR [#] , out)} .

324 Rudolf Freund, Yurii Rogozhin, and Sergey Verlan

Computational Completeness of P Systems with
Minimal Insertion, Deletion, and Substitution Rules

The results RE = L
(

D1

RI1

LS1,1
R -LP 〈1〉

)

= L
(

D1I1-LsP 〈8〉
)

were already

established in [2], the remaining results were obtained in [3].

Theorem 3. RE = L
(

D1

RI1

LS1,1
R -LP 〈1〉

)

= La

(

D1

RI1

LS1,1
R -LP 〈1〉

)

.

If we want to restrict ourselves to the simple targets here, in, out or even to
the targets in and out as well to use only minimal insertions and deletions, then
we need P systems with larger tree height (and also much more difficult proof
techniques):

Theorem 4. L
(

D1I1-LsP 〈8〉
)

= La

(

D1I1-LsP 〈8〉
)

= RE.

Theorem 5. L
(

D1I1-LcP 〈8〉
)

= La

(

D1I1-LcP 〈8〉
)

= RE.

The P systems constructed in the proofs for the theorems stated above have
rather large tree height; it remains an open question to reduce this complexity
parameter.

References

1. R. Freund, M. Oswald, A. Păun: Gemmating P systems are computationally com-

plete with four membranes. In: L. Ilie, D. Wotschke (eds.): Pre-proceedings DCFS

2004. The University of Western Ontario, Rep. No. 619, 191–203 (2004).

2. R. Freund, Yu. Rogozhin, S. Verlan: P systems with minimal left and right insertion

and deletion. In: J. Durand-Lose, N. Jonoska (eds.): Unconventional Computation

and Natural Computation, 11th International Conference, UCNC 2012. Orleans,

France, September 3–7, 2012. Lecture Notes in Computer Science 7445, 82–93,

Springer (2012).

3. R. Freund, Yu. Rogozhin, S. Verlan: Generating and accepting P systems with

minimal left and right insertion and deletion. To appear in Natural Computing.

4. B. Galiukschov: Semicontextual grammars. Logica i Matem. Lingvistika, 38–50.

Tallin University (in Russian) (1981).

5. D. Haussler: Insertion and Iterated Insertion as Operations on Formal Languages.

PhD thesis, Univ. of Colorado at Boulder, 1982.

6. L. Kari: On Insertion and Deletion in Formal Languages. PhD thesis, University

of Turku, 1991.

7. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle-

wood Cliffs, New Jersey, USA, 1967.

8. Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Membrane Com-

puting. Oxford University Press, 2010.

9. E. L. Post: Formal Reductions of the General Combinatorial Decision Problem.

American Journal of Mathematics 65 (2), 197–215 (1943).

10. The P systems Web page: http://ppage.psystems.eu/

11. S. Verlan: Study of Language-Theoretic Computational Paradigms Inspired by Bi-

ology. Habilitation thesis, University of Paris Est, 2010.

A Quantum Inspired UREM P System for
Solving a Linguistic Problem

Alberto Leporati1 and Lyudmila Burtseva2

1
Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano-Bicocca

Viale Sarca 336/14, 20126 Milano, Italy

alberto.leporati@unimib.it

2
Institute of Mathematics and Computer Science

5, Academiei street, Chisinau, Republic of Moldova, MD 2028

luburtseva@gmail.com

Abstract. We illustrate a quantum-inspired solution to the following

dictionary search problem: given as input a word from a predefined nat-

ural language (for example, English), produce its translation to another

predefined natural language (in our example, Romanian). In our solution,

words are represented as vectors in an appropriate finite-dimensional

Hilbert space. Such a simple representation opens up the possibility to

solve several classes of problems from computational linguistics by quan-

tum computations.

Keywords: unconventional computation, quantum computation, computa-
tional linguistics, quantum-inspired UREM P system, quantum linguistic string.

1 Introduction

Problems of Natural Language Processing (NLP) are known to consume many
resources. Search for solutions of such classes of problems usually inspire the em-
ployment of new techniques, methods and even computational devices. Hence,
during the last decade, NLP problems have become widespread practical ap-
plications for unconventional computation. In the late 2000s, our groups of re-
searchers, dealing with quantum and bio-inspired (more specifically, with P sys-

tems) computational models, joined their efforts. After proposing to use a hy-
brid bio-quantum model for NLP [1], we now concentrate on selecting problems
whose solutions look promising for the new formalism. In particular, narrowing
the domain of NLP to computational linguistics, we chose the problem of dictio-
nary search, which simply consists of producing a string which is the translation
(to a predefined human language) of the string given as input.

The solution to this problem by P systems was proposed in [2], and works
as follows. The P system operates on strings of symbols, where each symbol is a
lowercase letter from the English alphabet. The P system consists of a skin, con-
taining 26 subsystems — one for each letter of the alphabet. The string given as

326 Alberto Leporati and Lyudmila Burtseva

input is put into the region enclosed by the skin membrane. The system removes
the first character of the string and, based on its value, sends the remaining
substring to the subsystem labeled by the corresponding character. The same
process then occurs into such subsystem, which has the same structure as the
skin membrane: the second character of the string is removed and the remaining
substring is sent into one of the subsystems at the next level down the hierarchy.
In the last step, when the last character of the string has been analyzed, the sys-
tem produces a new string — which is the translation of the word represented
by the string given as input — and sends it to the environment as output.

In this extended abstract we propose a quantum version of this process, based
on quantum-inspired UREM P systems [3]. Despite the fact that quantum com-
putations have a wide range of features suitable for solving NLP tasks, the ap-
plication of such features are still under consideration by researchers. The main
stumbling block is the problem of giving a quantum representation of linguistics
elements, especially the main one — orthographic strings. Several approaches
to this problem have been proposed since 2009, but even more recent solutions
assume strong restrictions on the processed subsets of the natural language. In
this work we propose to represent linguistic strings as vectors of an appropri-
ate finite-dimensional Hilbert space. Such a simple representation opens up the
possibility to solve several problems of computational linguistics by quantum
computations.

2 The proposed approach

Our quantum version of the dictionary search process is based on quantum-
inspired UREM P systems, which have been introduced in [3]. Due to the lack
of space, we refer the reader to [3] for their precise definition as well as the
details on how they work. Here we just recall that each symbol is a quantum
system which assumes its states in a finite-dimensional Hilbert space, whereas
each membrane has a truncated harmonic oscillator associated to it, representing
its status. Interactions between objects and membranes occur by means of linear
(in general, non-unitary) operators, realizing projectors between quantum base
states. Transformations between superpositions of base states occur by linearity.

Let Σ = {a, b, c, . . . , z, sp} be the alphabet containing the 26 lowercase latin

letters plus the symbol sp, indicating a space. Let Ld =
{

0, 1

d−1
, 2

d−1
, . . . , d−2

d−1
, 1

}

be the set of base states of the Hilbert space C
d. We can represent each letter

of a string by a quantum system that is able to assume one of the 27 values
contained in the basis B27 = {|x〉 | x ∈ L27} of the Hilbert space C

27; so, for
example, letter e is represented as

∣

∣

4

26

〉

, also written as |e〉 in the following. If we
denote by n the maximum length of the strings we are dealing with, then each
string that the system will process can be represented as a vector |c1, . . . , cn〉,
where each ci, with 1 ≤ i ≤ n, is a quantum system representing a character.
Such a vector is an element of the Hilbert space ⊗n

C
27, whose basis is the set

Bn
27

= {|x1, . . . , xn〉 | xi ∈ L27 for all 1 ≤ i ≤ n}. If the given string has a length

A Quantum Inspired UREM P System for Solving a Linguistic Problem 327

less than n, we pad it with spaces; so, for example, the string hello will be
represented as the vector |h, e, l, l, o, sp, . . . , sp〉 of length n.

Now we can use projection operators to transform letters to letters. Precisely,
the operator Ex,y = |y〉 〈x|, where x, y ∈ L27, works as follows: Ex,y |x〉 = |y〉,
whereas Ex,y |z〉 = 0 for all z ∈ L27 \ {x}. It is known that linear (and non-
unitary) operators Ex,y, for any choice of x, y ∈ L27 can be realized as a
composition of creation and annihilation operators working on harmonic os-
cillators, as described in [3]. If we apply Ex,y to an argument |z〉 which is a
superposition of vectors from the basis B27 then the result is obtained by lin-
earity. For example, let |z〉 = α |x〉 + β |t〉, with x 6= t and x, t ∈ L27; then
Ex,y |z〉 = Ex,y(α |x〉 + β |t〉) = αEx,y |x〉 + βEx,y |t〉 = α |y〉 + β0 = α |y〉.

Working on tensor products of the Hilbert space C
27, we can also transform

strings into strings. So, given two vectors |v〉 , |w〉 ∈ Bn
27

representing two words
as described above, we can build the projection operator Ev,w = |w〉 〈v| that
transforms |v〉 into |w〉 as follows. Let |v〉 = |v1, . . . , vn〉 and |w〉 = |w1, . . . , wn〉.
The operator Ev,w can be decomposed as Ev,w = Ev1,w1

⊗ · · · ⊗Evn,wn
, so that

given any |z〉 = |z1, . . . , zn〉 = |z1〉 ⊗ · · · ⊗ |zn〉 ∈ Bn
27

we have:

Ev,w |z〉 = (Ev1,w1
⊗ · · · ⊗ Evn,wn

)(|z1〉 ⊗ · · · ⊗ |zn〉)

= Ev1,w1
|z1〉 ⊗ · · · ⊗ Evn,wn

|zn〉 (1)

From this decomposition it is clear that vector |z〉 is transformed to vector |w〉 if
and only if |z〉 coincides with |v〉, character by character: zi = vi for all 1 ≤ i ≤ n.
In fact, let zi 6= vi for some 1 ≤ i ≤ n. Then, applying the operator Evi,wi

on |zi〉

produces the null vector of C
27, and hence the null vector of ⊗n

C
27 is obtained

as a result in (1). We can thus conclude that Ev,w operates as follows on the
vectors of Bn

27
: Ev,w |v〉 = |w〉, whereas Ev,w |z〉 = 0 for all |z〉 ∈ Bn

27
\ {v}.

Once again, Ev,w operates by linearity on vectors |z〉 which are superpositions
of base vectors from Bn

27
. Each operator Ev,w, for any |v〉 , |w〉 ∈ Bn

27
, can be

realized as an appropriate composition of creation, annihilation operators and
tensor products, as described in [3].

A dictionary can be implemented by summing appropriate operators Ev,w.
For example, assume that we want to translate the word bat to liliac and
the word milk to lapte. Moreover, for simplicity assume that n = 8. Then, the
operator D corresponding to our dictionary is:

D = Ebat,liliac + Emilk,lapte

= |l, i, l, i, a, c, sp, sp〉 〈b, a, t, sp, sp, sp, sp, sp|+

|l, a, p, t, e, sp, sp, sp〉 〈m, i, l, k, sp, sp, sp, sp|

Once again, this operator can be realized using only creation and annihilation
operators, together with tensor products and sums, as discussed in [3].

3 Discussion

Although being theoretically perfect, the idea of using the tensor product to rep-
resent words brings with it the so-called “curse of dimensionality”. In particular,

328 Alberto Leporati and Lyudmila Burtseva

considering the approach closest to our one [4], that implements linguistics re-
trieval through quantum vector spaces and projectors, we found orderly quantum
schemes supplied by simplified examples.

In our case, the problem lies with the size of the linear matrix describing the
operator D. Assuming n = 100 for a given natural language, and an alphabet of
27 symbols, the order of the square linear matrix describing D would be 27100,
a huge number that makes impractical the physical realization of D.

At the moment, we see two possibilities to escape from this situation. The
first possibility uses a pure quantum approach and consists of identifying each
word of the language we want to translate by a natural number, and encoding the
translation as a mapping between natural numbers. So doing, given for example
the word bat, we should first calculate the natural number associated to it,
then apply the linear operator describing the mapping, and finally find the word
(liliac) that corresponds to the resulting number. This, of course, seems to be
more complicated than the original translation problem; anyway, in this case, the
order of the linear matrix implementing the mapping between natural numbers
would be equal to the number of words contained in our languages (usually no
more than 500 thousands).

Another possibility lies in attempts to decompose the linear matrix as a
tensor product of several smaller matrices. This can be done if and only if the
action of D can be decomposed as two or more independent actions on different
(and separated) parts of the vectors given as input. Albeit we prefer this second
solution, since the preparation and separation of inputs can be implemented
both by pure quantum and hybrid bio-quantum approaches, we recognize that
looking for the possibility of separating the action of D into independent parts is
in general a difficult task, requiring an impressive amount of pre-computation.

References

1. A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov, L. Malahov, Yu. Rogozhin:

Joining bio-inspired and quantum approaches in computer algebra and computer

linguistics. In M. Gheorghe et al. (Eds.), Pre-proceedings of the Twelfth Conference

On Membrane Computing, CMC 12, Fontainebleau, August 19-27, 2011, pp. 471-

478. Available at http://cmc12.lacl.ft/cmc12proceedings.pdf

2. A. Alhazov, S. Cojocaru, L. Malahova, Y. Rogozhin: Dictionary Search and Update

by P Systems with String-Objects and Active Membranes. International Journal

of Computers Communications & Control 4(3):206–213, 2009.

3. A. Leporati, G. Mauri, C. Zandron: Quantum Sequential P Systems with Unit

Rules and Energy Assigned to Membranes. In R. Freund et al. (Eds.), Membrane

Computing: 6
th International Workshop, WMC 2005, Revised Selected and Invited

Papers, LNCS 3850, Springer, 2006, pp. 310–325.

4. P. Wittek, S. Darányi: Introducing scalable quantum approaches in language rep-

resentation. In D. Song et al. (Eds.), Quantum Interaction: 5
th International Sym-

posium, QI ’11, Revised Selected Papers, LNCS 7052, Springer, 2011, pp. 2–12.

A Catalytic P System with Two Catalysts
Generating a Non-Semilinear Set

Petr Sośık1,2

1
Departamento de Inteligencia Artificial, Facultad de Informática,

Universidad Politécnica de Madrid, Campus de Montegancedo s/n,

Boadilla del Monte, 28660 Madrid, Spain,
2

Research Institute of the IT4Innovations Centre of Excellence,

Faculty of Philosophy and Science, Silesian University in Opava

74601 Opava, Czech Republic, petr.sosik@fpf.slu.cz

Abstract. Although it has been proven already in 2005 [1] that catalytic

P systems with two catalysts are computationally universal, no simple

example of such a P system generating a non-semilinear set was known.

The present paper intends to fill this gap and provides such an example

with 54 rules. It is expected, however, that this number of rules can

be dramatically reduced and the minimal number of rules to generate

a non-semilinear set in a catalytic P system with two catalysts remains

open.

1 Main result

In this paper we use extended catalytic P systems as defined at the beginning of
Chapter 4 in [2], where the terminal set of output objects is formed by all non-
catalytic objects. No cooperative rules, bistable catalysts, priorities or similar
enhancements are considered.

Theorem 1. Extended catalytic P systems with a single membrane, two cata-

lysts and 54 rules can generate non-semilinear sets of numbers.

Proof. We construct an example of a catalytic P systems with two catalysts and
54 rules generating the set {2n − 1 |n ≥ 1}. This set is generated by a non-
deterministic register machine with the following program, starting with both
registers empty and with the result in register 1:

1: (ADD(1), 2, 7)
2: (SUB(1), 3, 5)
3: (ADD(2), 4, 4)
4: (ADD(2), 2, 2)
5: (SUB(2), 6, 1)
6: (ADD(1), 5, 5)
7: HALT

330 P. Sośık

We construct a catalytic P system Π following precisely the construction in the
proof of Corollary 8 in [1]. This construction uses a specific group of rules of a P
system to implement each instruction of the register machine. However, we use
the terminal set of objects O\C to define the output as in [2], instead of another
membrane used in [1]. Therefore we omit the rules in [1] which transport objects
to membrane 2. The resulting catalytic P system simulates the non-deterministic
register machine described above and it generates a representation of contents
of its registers by the corresponding number of symbols o1 and o2, respectively:

Π = (O, {c1, c2}, [1]
1
, w,R, 1),

O = {#} ∪ {c1, c
′

1
, c′′

1
, c2, c

′

2
, c′′

2
} ∪ {o1, o2}

∪ {pj , p̃j , p
′

j , p
′′

j , p̄j , p̄
′

j , p̄
′′

j , p̂j , p̂
′

j , p̂
′′

j | j = 2, 5}

∪ {pj , p̃j | j = 1, 3, 4, 6, 7},

R = {x → # | x ∈ {pj , p̃j , p
′

j , p
′′

j , p̄j , p̄
′′

j , p̂j , p̂
′′

j | j = 2, 5}}

∪ {x → # | x ∈ {c′
1
, c′′

1
, c′

2
, c′′

2
}} ∪ {# → #}

∪ {c1p7 → c1, c2p̃7 → c2}

∪ {c1p̃j → c1 | j = 1, 3, 4, 6}

∪ {c2p1 → c2p2p̃2o1, c2p1 → c2p7p̃7o1,

c2p3 → c2p4p̃4o2, c2p4 → c2p2p̃2o2, c2p6 → c2p5p̃5o1}

∪ {crpj → crp̂j p̂
′

j , crpj → crp̄j p̄
′

j p̄
′′

j , cror → crc
′

r, crc
′

r → crc
′′

r ,

c3−rc
′′

r → c3−r, crp̂
′

j → cr#, c3−rp̂
′

j → c3−rp̂
′′

j , crp̂
′′

j → crpkp̃k,

crp̄j → cr, c3−rp̄
′′

j → c3−rp
′′

j , c3−rp
′′

j → c3−rp
′

j ,

crp
′

j → crplp̃l | (j, r, k, l) = (2, 1, 3, 5), (5, 2, 6, 1)}

∪ {c2y → c2 | y ∈ {p̃2, p̂2, p̄
′

2
}}

∪ {c1y → c1 | y ∈ {p̃5, p̂5, p̄
′

5
}},

w = c1c2p1p̃1.

The above construction is correct (provided that the proof of Corollary 8 in
[1] is correct). The total number of rules is 62. However, the above construction
is general and can be simplified in specific cases. For example, when a SUB
instruction is followed in the program by one or more instructions ADD, the rules
implementing ADD can be eliminated and substituted by an extended last rule
of SUB which would add the necessary objects. Similarly, the rules implementing
HALT can be substituted by a modification of rules of the previous instruction.
Particularly, in our case we can:

1. (a) remove the rules c1p̃3 → c1, c1p̃4 → c1, c2p3 → c2p4p̃4o2, c2p4 →

c2p2p̃2o2, implementing instructions 3: (ADD(2), 4, 4), 4: (ADD(2), 2, 2),
and

(b) modify the rule c1p̂
′′

2
→ c1p3p̃3 which is a part of implementation of

2: (SUB(1), 3, 5) to the form c1p̂
′′

2
→ c1p2p̃2o2o2;

A Catalytic P System with Two Catalysts Generating a Non-Semilinear Set 331

2. (a) remove the rules c1p̃6 → c1, c2p6 → c2p5p̃5o1, implementing instruction
6: (ADD(1), 5, 5), and

(b) modify the rule c2p̂
′′

5
→ c2p6p̃6 which is a part of implementation of

2: (SUB(2), 6, 1) to the form c2p̂
′′

5
→ c2p5p̃5o1;

3. (a) remove the rules c1p7 → c1, c2p̃7 → c2, implementing 7: HALT, and
(b) modify the rule c2p1 → c2p7p̃7o1 which is a part of implementation of

1: (ADD(1), 2, 7) to the form c2p1 → c2o1.

These modifications allow to save eight rules (and some objects), getting us to
the final number of 54 rules. The resulting P systems will have the form:

Π = (O, {c1, c2}, [1]
1
, w,R, 1),

O = {#} ∪ {c1, c
′

1
, c′′

1
, c2, c

′

2
, c′′

2
} ∪ {o1, o2} ∪ {p1, p̃1}

∪ {pj , p̃j , p
′

j , p
′′

j , p̄j , p̄
′

j , p̄
′′

j , p̂j , p̂
′

j , p̂
′′

j | j = 2, 5}

R = {x → # | x ∈ {pj , p̃j , p
′

j , p
′′

j , p̄j , p̄
′′

j , p̂j , p̂
′′

j | j = 2, 5}}

∪ {x → # | x ∈ {c′
1
, c′′

1
, c′

2
, c′′

2
}} ∪ {# → #}

∪ {c1p̃1 → c1, c2p1 → c2p2p̃2o1, c2p1 → c2o1}

∪ {crpj → crp̂j p̂
′

j , crpj → crp̄j p̄
′

j p̄
′′

j , cror → crc
′

r, crc
′

r → crc
′′

r ,

c3−rc
′′

r → c3−r, crp̂
′

j → cr#, c3−rp̂
′

j → c3−rp̂
′′

j ,

crp̄j → cr, c3−rp̄
′′

j → c3−rp
′′

j , c3−rp
′′

j → c3−rp
′

j ,

crp
′

j → crplp̃l | (j, r, l) = (2, 1, 5), (5, 2, 1)}

∪ {c1p̂
′′

2
→ c1p2p̃2o2o2, c2p̂

′′

5
→ c2p5p̃5o1}

∪ {c2y → c2 | y ∈ {p̃2, p̂2, p̄
′

2
}}

∪ {c1y → c1 | y ∈ {p̃5, p̂5, p̄
′

5
}},

w = c1c2p1p̃1.

2 Conclusion

We have shown that an extended catalytic P systems with a single membrane,
two catalysts and 54 rules can generate non-semilinear sets of numbers. However,
this result is barely optimal in terms of simplicity of the P system, particularly
the minimal number of necessary rules.

For example, we conjecture that a significant simplification of implementation
of instructions SUB can be achieved using the fact that for each register there
exists only one instruction SUB decrementing it. Another promising way is to
abandon the constructions used in [1, 2] and to construct a catalytic P system
generating a non-semilinear set directly “from the scratch.”

Acknowledgements

This work was supported by the Ministerio de Ciencia e Innovación, Spain,
under project TIN2012-36992, by the European Regional Development Fund in

332 P. Sośık

the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), and
by the Silesian University in Opava under the Student Funding Scheme, project
SGS/7/2011.

References

1. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems

without priorities: two catalysts are sufficient. Theoretical Computer Science 330,

251–266 (2005)

2. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)

Author Index

Adorna H. N., 181
Alhazov A., 41
Aman B., 49, 299

Banu-Demergian I.T., 63
Burtseva L., 325

Cienciala L., 81
Ciencialová L., 81
Ciobanu A., 95
Ciobanu G., 49, 299, 303
Cojocaru S., 41
Colesnicov A., 41
Csajbók Z.E., 241
Csuhaj-Varjú E., 117

Dragomir C., 131

Fésüs M., 313
Fernau H., 309
Freund R., 153, 309, 317, 321

Gazdag Zs., 167
Gheorghe M., 9
Gruska J., 11

Hernandez N.H. S., 181

Ipate F., 9, 95, 131, 255
Ivanov S., 199, 309

Juayong R.A. B., 181

Konur S., 131

Langer M., 81
Lefticaru R., 131
Leporati A., 15, 213, 225, 325

Malahov L., 41
Manzoni L., 213
Mauri G., 225
Mierla L., 131
Mihálydeák T., 241

Nicolescu R., 255

Obtu lowicz A., 277
Oswald M., 309, 317

Pérez-Jiménez M.J., 283
Păun Gh., 25, 317
Petic M., 41
Porreca A.E., 213, 225

Riscos-Núñez A., 283
Rius-Font M., 283
Rogozhin Yu., 321

Sburlan D., 303
Schmid M.L., 309
Sośık P., 35, 329
Stefanescu G., 63
Subramanian K.G., 309

Takács P., 241

Valencia-Cabrera L., 283
Vaszil G., 117, 313
Verlan S., 37, 199, 321

Wu H., 255

Zandron C., 225

333

