Skip to main content

ICL 16: Subchondral Bone and Reason for Surgery

  • Chapter
  • First Online:
ESSKA Instructional Course Lecture Book

Abstract

The subchondral bone plays a key role in the integrity and repair of the entire osteochondral unit. Its unique anatomical structure is well suited to support the articular cartilage, even providing nutrition for its basal layers. The subchondral bone becomes a problem in reconstructive cartilage surgery when violated, for example, following osteochondral fractures or in osteochondritis dissecans (OCD), thus leading to an osteochondral lesion. Such osteochondral defects are difficult to treat because the subchondral bone and the articular cartilage have very dissimilar intrinsic healing capacities [35–37]. Recent clinical evidence also pointed to the role of the subchondral bone alterations in the course of spontaneous and surgical cartilage repair. In the treatment of cartilage defects, it is imperative to establish the etiology of the subchondral bone lesion and then address the specific pathology accordingly. This chapter will focus on the subchondral bone and its relevance for reconstructive cartilage surgery. It is based on individual presentations from the Instructional Course Lecture “Subchondral bone and reason for surgery” (Table 11.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aspenberg P, Van der Vis H. Migration, particles, and fluid pressure. A discussion of causes of prosthetic loosening. Clin Orthop Relat Res. 1998;352:75–80.

    Article  PubMed  Google Scholar 

  2. Bedi AF, Foo LF, Williams III RJ, Potter HG, The Cartilage Study Group. The maturation of synthetic scaffolds for osteochondral donor sites of the knee: an MRI and T2-mapping analysis. Cartilage. 2010;1(1):20–8.

    Article  Google Scholar 

  3. Bentley G, Bhamra JS, Gikas PD, Skinner JA, Carrington R, Briggs TW. Repair of osteochondral defects in joints–how to achieve success. Injury. 2013;44 Suppl 1:S3–10. Review.

    Article  PubMed  Google Scholar 

  4. Bining HJ, Santos R, Andrews G, Forster BB. Can T2 relaxation values and color maps be used to detect chondral damage utilizing subchondral bone marrow edema as a marker? Skeletal Radiol. 2009;38:459–65.

    Article  PubMed  Google Scholar 

  5. Bousson V, Lowitz T, Laouisset L, Engelke K, Laredo JD. CT imaging for the investigation of subchondral bone in knee osteoarthritis. Osteoporosis Int. 2012;23 Suppl 8:S861–5.

    Article  Google Scholar 

  6. Braune W, Fischer O. Die Bewegungen des Kniegelenks nach einer neuen Methode am lebenden Menschen gemessen. Abhandlungen der mathematisch-physischen Klasse der Köninglich-Sächsischen Gesellschaft der Wissenschaften 17–2, Leipzig, S Hirzel; 1891. p. 75–150.

    Google Scholar 

  7. Bretlau T, Tuxoe J, Larsen L, Jorgensen U, Thomsen HS, Lausten GS. Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc. 2002;10:96–101.

    Article  PubMed  Google Scholar 

  8. Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res. 2004;422:214–23.

    Google Scholar 

  9. Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T. Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy. 2009;25(7):810–4.

    Article  PubMed  Google Scholar 

  10. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage. 2006;14:1081–5. OARS, Osteoarthritis Research Society.

    Article  PubMed  CAS  Google Scholar 

  11. Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.

    Article  PubMed  Google Scholar 

  12. Crema MD, Roemer FW, Marra MD, Niu J, Lynch JA, Felson DT, Guermazi A. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: the MOST study. Eur J Radiol. 2010;75:e92–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Crema MDR, Roemer FW, Marra MD, Niu J, Zhu Y, Lynch J, Lewis CE, El-Khoury G, Felson DT, Guermazi A. 373 MRI-detected bone marrow edema-like lesions are strongly associated with subchondral cysts in patients with or at risk for knee osteoarthritis: the most study. Osteoarthritis Cartilage. 2008;16:S160. World Congress on Osteoarthritisheld.

    Article  Google Scholar 

  14. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.

    Article  PubMed  CAS  Google Scholar 

  15. Davies NH, Niall D, King LJ, Lavelle J, Healy JC. Magnetic resonance imaging of bone bruising in the acutely injured knee-short-term outcome. Clin Radiol. 2004;59:439–45.

    Article  PubMed  CAS  Google Scholar 

  16. Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D, Marenghi P, Delcogliano A. Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc. 2013. doi 10.1007/s00167-013-2717-3 PMID: 24146051. [Epub ahead of print].

  17. Dhollander AA, De Neve F, Almqvist KF, et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):536–42.

    Article  PubMed  CAS  Google Scholar 

  18. Dhollander AA, Liekens K, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC. A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy. 2012;28(2):225–33.

    Article  PubMed  Google Scholar 

  19. Drobnic M, Radosavljevic D, Cor A, Brittberg M, Strazar K. Debridement of cartilage lesions before autologous chondrocyte implantation by open or transarthroscopic techniques: a comparative study using post-mortem materials. J Bone Joint Surg Br. 2010;92:602–8.

    Article  PubMed  CAS  Google Scholar 

  20. Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CW. Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology. 2007;243:475–82.

    Article  PubMed  Google Scholar 

  21. Eckstein F, Muller-Gerbl M, Steinlechner M, Kierse R, Putz R. Subchondral bone density of the human elbow assessed by computed tomography osteoabsorptiometry: a reflection of the loading history of the joint surfaces. J Orthop Res. 1995;13:268–78.

    Article  PubMed  CAS  Google Scholar 

  22. El-Khoury GY, Alliman KJ, Lundberg HJ, Rudert MJ, Brown TD, Saltzman CL. Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Radiology. 2004;233:768–73.

    Article  PubMed  Google Scholar 

  23. Felson DT, Nevitt MC, Yang M, Clancy M, Niu J, Torner JC, Lewis CE, Aliabadi P, Sack B, McCulloch C, Zhang Y. A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol. 2008;35:2047–54.

    PubMed Central  PubMed  Google Scholar 

  24. Filardo G, Di Martino A, Kon E, Delcogliano M, Marcacci M. Midterm results of a combined biological and mechanical approach for the treatment of a complex knee lesion. Cartilage. 2013;3(3):288–92.

    Article  Google Scholar 

  25. Filardo G, Kon E, Berruto M, Di Martino A, Patella S, Marcheggiani Muccioli GM, Zaffagnini S, Marcacci M. Arthroscopic second generation autologous chondrocytes implantation associated with bone grafting for the treatment of knee osteochondritis dissecans: results at 6 years. Knee. 2012;19(5):658–63.

    Article  PubMed  Google Scholar 

  26. Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M. Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med. 2013;41(8):1786–93.

    Article  PubMed  Google Scholar 

  27. Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am J Sports Med. 2011;39(10):2153–60.

    Article  PubMed  Google Scholar 

  28. Filardo G, Kon E, Perdisa F, Di Matteo B, Di Martino A, Iacono F, Zaffagnini S, Balboni F, Vaccari V, Marcacci M. Osteochondral scaffold reconstruction for complex knee lesions: a comparative evaluation. Knee. 2013;20(6):570–6.

    Article  PubMed  CAS  Google Scholar 

  29. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013;29(1):174–86.

    Article  PubMed  Google Scholar 

  30. Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P. Mid-term results of Autologous Matrix-Induced Chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1456–64.

    Article  PubMed  CAS  Google Scholar 

  31. Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92:2470–90.

    PubMed  CAS  Google Scholar 

  32. Gomoll AH, Filardo G, de Girolamo L, Espregueira-Mendes J, Marcacci M, Rodkey WG, Steadman JR, Zaffagnini S, Kon E. Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):450–66.

    Article  PubMed  CAS  Google Scholar 

  33. Henderson IJ, La Valette DP. Subchondral bone overgrowth in the presence of full-thickness cartilage defects in the knee. Knee. 2005;12:435–40.

    Article  PubMed  Google Scholar 

  34. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18:730–4.

    Article  PubMed  Google Scholar 

  35. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338:917–21.

    Article  PubMed  CAS  Google Scholar 

  36. Hunziker EB. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage. 1999;7:15–28.

    Article  PubMed  CAS  Google Scholar 

  37. Hunziker EB. The elusive path to cartilage regeneration. Adv Mater. 2009;21:3419–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol. 2000;35:581–8.

    Article  PubMed  CAS  Google Scholar 

  39. Jackson DW, Lalor PA, Aberman HM, Simon TM. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am. 2001;83A:53–64.

    Google Scholar 

  40. Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop. 2001;391:306–17.

    Article  Google Scholar 

  41. Johnson-Nurse C, Dandy DJ. Fracture-separation of articular cartilage in the adult knee. J Bone Joint Surg Br. 1985;67:42–3.

    PubMed  CAS  Google Scholar 

  42. Joshi N, Reverte-Vinaixa M, Díaz-Ferreiro EW, Domínguez-Oronoz R. Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med. 2012;40(6):1289–95.

    Article  PubMed  Google Scholar 

  43. Kon E, Delcogliano M, Filardo G, Altadonna G, Marcacci F. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc. 2009;17(11):1312–5.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med. 2011;39(6):1180–90.

    Article  PubMed  Google Scholar 

  45. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M. Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res. 2010;28(1):116–24.

    PubMed  Google Scholar 

  46. Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury. 2010;41:693–701.

    Article  PubMed  CAS  Google Scholar 

  47. Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G, Martin I, Marcacci M. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord. 2010;11:220.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Kon E, Filardo G, Di Martino A, Busacca M, Moio A, Perdisa F, Marcacci M. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med. 2014;42:158–65. PubMed PMID: 24114751.

    Article  PubMed  Google Scholar 

  49. Kon E, Filardo G, Roffi A, Andriolo L, Marcacci M. New trends for knee cartilage regeneration: from cell-free scaffolds to mesenchymal stem cells. Curr Rev Musculoskelet Med. 2012;5(3):236–43.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Kon E, Mutini A, Arcangeli E, et al. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med. 2010;4(4):300–8.

    Article  PubMed  CAS  Google Scholar 

  51. Kothari M, Guermazi A, von Ingersleben G, Miaux Y, Sieffert M, Block JE, Stevens R, Peterfy CG. Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol. 2004;14:1568–73.

    Article  PubMed  Google Scholar 

  52. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Südkamp N. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14:1119–25.

    Article  PubMed  CAS  Google Scholar 

  53. Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V, Friedrich KM, Marlovits S, Weber M, Trattnig S. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage. 2012;20:357–63. OARS, Osteoarthritis Research Society.

    Article  PubMed  CAS  Google Scholar 

  54. Liukkonen J, Hirvasniemi J, Joukainen A, Penttila P, Viren T, Saarakkala S, Kroger H, Jurvelin JS, Toyras J. Arthroscopic ultrasound technique for simultaneous quantitative assessment of articular cartilage and subchondral bone: an in vitro and in vivo feasibility study. Ultrasound Med Biol. 2013;39:1460–8.

    Article  PubMed  CAS  Google Scholar 

  55. Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng Part A. 2014 Jan 29. [Epub ahead of print] PMID: 24476065.

    Google Scholar 

  56. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18:419–33.

    Article  PubMed  Google Scholar 

  57. Magnussen RA, Dunn WR, Carey JL, Spindler KP. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res. 2008;466:952–62.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Marcacci M, Zaffagnini S, Kon E, Marcheggiani Muccioli GM, Di Martino A, Di Matteo B, Bonanzinga T, Iacono F, Filardo G. Unicompartmental osteoarthritis: an integrated biomechanical and biological approach as alternative to metal resurfacing. Knee Surg Sports Traumatol Arthrosc. 2013;21(11):2509–17.

    Article  PubMed  CAS  Google Scholar 

  59. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, Trattnig S. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol. 2004;52:310–9.

    Article  PubMed  Google Scholar 

  60. Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech. 2007;40:750–65 [11].

    Article  PubMed  Google Scholar 

  61. McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. AJR Am J Roentgenol. 2001;176:359–64.

    Article  PubMed  CAS  Google Scholar 

  62. Melton JT, Wilson AJ, Chapman-Sheath P, Cossey AJ. TruFit CB bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices. 2010;7(3):333–41.

    Article  PubMed  CAS  Google Scholar 

  63. Menetrey J, Unno-Veith F, Madry H, Van Breuseghem I. Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc. 2010;18:463–71.

    Article  PubMed  Google Scholar 

  64. Merrick MV. Investigation of joint disease. Eur J Nucl Med. 1992;19:894–901.

    Article  PubMed  CAS  Google Scholar 

  65. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37:902–8.

    Article  PubMed  Google Scholar 

  66. Mithoefer K, Williams 3rd RJ, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am. 2005;87:1911–20.

    Article  PubMed  Google Scholar 

  67. Mont MA, Baumgarten KM, Rifai A, Bluemke DA, Jones LC, Hungerford DS. A traumatic osteonecrosis of the knee. J Bone Joint Surg Am. 2000;82:1279–90.

    PubMed  CAS  Google Scholar 

  68. Nakamae A, Egebretsen L, Bhar R, Krosshaug T, Ochi M. Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Sports Traumatol Arthrosc. 2006;14:1252–8.

    Article  PubMed  Google Scholar 

  69. Orth P, Cucchiarini M, Kaul G, Ong MF, Gräber S, Kohn D, Madry H. Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model. Osteoarthritis Cartilage. 2012;20(10):1161–9.

    Article  PubMed  CAS  Google Scholar 

  70. Orth P, Cucchiarini M, Kohn D, Madry H. Alterations of the subchondral bone in osteochondral repair-translational data and clinical evidence. Eur Cell Mater. 2013;25:299–316.

    PubMed  CAS  Google Scholar 

  71. Orth P, Goebel L, Wolfram U, Ong MF, Graber S, Kohn D, Cucchiarini M, Ignatius A, Pape D, Madry H. Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months. Am J Sports Med. 2012;40:828–36.

    Article  PubMed  Google Scholar 

  72. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009;27:1347–52.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Pape D, Filardo G, Kon E, van Dijk CN, Madry H. Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):448–62.

    Article  PubMed  Google Scholar 

  74. Pascarella A, Ciatti R, Pascarella F, et al. Treatment of articular cartilage lesions of the knee joint using a modified AMIC technique. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):509–13.

    Article  PubMed  Google Scholar 

  75. Patrascu JM, Freymann U, Kaps C, Poenaru DV. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br. 2010;92(8):1160–3.

    Article  PubMed  CAS  Google Scholar 

  76. Perdisa F, Filardo G, Di Matteo B, Di Martino A and Marcacci M. Biological knee reconstruction: a case report of an Olympic athlete. Eur Rev Pharmacol Sci. 2014 (in press).

    Google Scholar 

  77. Pridie KH. A method of surfacing knee joints. Proceedings of the British orthopaedic association. J Bone Joint Surg Br. 1959;41:618–9.

    Google Scholar 

  78. Rand T, Brossmann J, Pedowitz R, Ahn JM, Haghigi P, Resnick D. Analysis of patellar cartilage. Comparison of conventional MR imaging and MR and CT arthrography in cadavers. Acta Radiol. 2000;41:492–7.

    PubMed  CAS  Google Scholar 

  79. Reynolds JF, Smith DM, Lambin EF, Turner 2nd BL, Mortimore M, Batterbury SP, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B. Global desertification: building a science for dryland development. Science. 2007;316(5826):847–51.

    Article  PubMed  CAS  Google Scholar 

  80. Roemer FW, Bohndorf K. Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol. 2002;31:615–23.

    Article  PubMed  CAS  Google Scholar 

  81. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K, Guermazi A. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage. 2009;17:1115–31. OARS, Osteoarthritis Research Society.

    Article  PubMed  CAS  Google Scholar 

  82. Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009;37 Suppl 1:10S–919.

    Article  PubMed  Google Scholar 

  83. Scheck RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 2004;10:1376–85.

    Article  Google Scholar 

  84. Schiavone Panni A, Cerciello S, Vasso M. The management of knee cartilage defects with modified amic technique: preliminary results. Int J Immunopathol Pharmacol. 2011;24(1 Suppl 2):149–52.

    PubMed  CAS  Google Scholar 

  85. Serre CM, Papillard M, Chavassieux P, et al. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J Biomed Mater Res. 1998;42:626–33.

    Article  PubMed  CAS  Google Scholar 

  86. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75:532–53.

    PubMed  CAS  Google Scholar 

  87. Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58:27–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23:4739–51.

    Article  PubMed  CAS  Google Scholar 

  89. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop. 2001;391: S362–9.

    Article  PubMed  Google Scholar 

  90. Sugimoto K, Takakura Y, Tohno Y, Kuami T, Kawate K, Kadono K. Cartilage thickness of the talar dome. Arthroscopy. 2005;21:401–4.

    Article  PubMed  Google Scholar 

  91. Tampieri A, Sandri M, Landi E, et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials. 2008;29:3539–46.

    Article  PubMed  CAS  Google Scholar 

  92. Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol. 2007;17:103–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Van der Vis HM, Aspenberg P, Marti RK, Tigchelaar W, Van Noorden CJ. Fluid pressure causes bone resorption in rabbit model of prosthetic loosening. Clin Orthop Relat Res. 1998;350:201–8.

    PubMed  Google Scholar 

  94. Van Dijk CN, Reilingh ML, Zengerink M, Van Bergen CJA. The natural history of osteochondral lesions in the ankle. Instr Course Lect. 2010;59:375–86.

    PubMed  Google Scholar 

  95. Van Dijk CN, Reilingh ML, Zengerink M, Van Bergen CJA. Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc. 2010;18(5):570–80.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L. Autologous chondrocyte implantation in cartilage lesions of the knee: Long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med. 2010;38:943–9.

    Article  PubMed  Google Scholar 

  97. Vellet AD, Marks PH, Fowler PJ, Munro TG. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology. 1991;178:271–6.

    PubMed  CAS  Google Scholar 

  98. Verhagen R. Diagnostic guidelines for chronic ankle pain. Amsterdam: Thesis; 2004.

    Google Scholar 

  99. Wasiak J, Clar C, Villanueva E. Autologous cartilage implantations for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev. 2006;(3):CD003323.

    Google Scholar 

  100. Welsch GH, Zak L, Mamisch TC, Paul D, Lauer L, Mauerer A, Marlovits S, Trattnig S. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences. J Magn Reson Imaging. 2011;33:180–8.

    Article  PubMed  Google Scholar 

  101. Zamber RW, Teitz CC, McGuire DA, Frost JD, Hermanson BK. Articular cartilage lesions of the knee. Arthroscopy. 1989;5:258–68.

    Article  PubMed  CAS  Google Scholar 

  102. Zengerink M, Struijs P, Tol J, Van Dijk CN. Treatment of osteochondral lesions of the talus: systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18(2):238–46.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Henderson I, Lavigne P, Valenzuela H, Oakes B. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res. 2007;455:253–61.

    Google Scholar 

  104. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage. 2006;14:13–29.

    Google Scholar 

  105. Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2000;215(3):835–40. doi:10.1148/radiology.215.3.r00jn05835. PubMed PMID: 10831707.

Download references

Acknowledgments

The authors thank B. Di Matteo, G. Venieri, F. Balboni: II Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy. Mona Eldracher, Gertrud Schmitt: Center of Experimental Orthopaedics, Homburg, Germany for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Madry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 ESSKA

About this chapter

Cite this chapter

Kon, E. et al. (2014). ICL 16: Subchondral Bone and Reason for Surgery. In: Zaffagnini, S., Becker, R., Kerkhoffs, G., Espregueira Mendes, J., van Dijk, C. (eds) ESSKA Instructional Course Lecture Book. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53983-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53983-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53982-4

  • Online ISBN: 978-3-642-53983-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics