Skip to main content

Abstract

Marine mussels use GlossaryTerm

MAP

s (GlossaryTerm

MAP

s) for their adhesion. GlossaryTerm

MAP

s have fascinating properties, including strong adhesion to various material substrates, water displacement, biocompatibility, and controlled biodegradability. In this work, among six types of GlossaryTerm

MAP

s, including fp-1–fp-6, biosynthetic constructs of GlossaryTerm

MAP

s are considered; hybrid type recombinant GlossaryTerm

MAP

s are designed to improve productivity and purification. Hybrid recombinant fp-151, which comprises six decapeptide repeats of fp-1 at both N and C-termini of fp-5, was successfully overexpressed in a bacterial system, showing approximately 1 g / L production yield in a pilot scale fed-batch bioreactor culture. For industrial applications, it was attempted to use GlossaryTerm

MAP

s in tissue engineering fields as coating extracellular matrix (GlossaryTerm

ECM

) through surface modification and constructing nanofibrous scaffolds. As a result, the GlossaryTerm

MAP

-based coating strategy could be generally applied for facile and efficient surface modification of negatively charged bioactive molecules for tissue engineering. The use of GlossaryTerm

MAP

-based nanofibers could provide bioactive peptides efficiently onto the scaffold surface, enhancing the cell attachment and proliferation on the nanofibers fabricated using GlossaryTerm

RGD

peptide-conjugated GlossaryTerm

MAP

s compared with bare polycaprolactone (GlossaryTerm

PCL

) polymer nanofibers as well having a four times higher mechanical strength. Also, easy fabrication through blending with diverse types of synthetic polymers and significant bone regeneration was observed. In addition, there was a trial for utilization of GlossaryTerm

MAP

s in pharmaceutics, cosmetics, and food industries with encapsulating active molecules such as chemical drugs, proteins, cells, and flavor ingredients through a complex coacervation technique based on GlossaryTerm

MAP

s.

Finally, GlossaryTerm

MAP

s have been suggested as immobilization material for biosensors due to their unique adhesive property on various materials, including biomolecules, glass, polymers, and metals. GlossaryTerm

MAP

was genetically fused with C-termini of the GlossaryTerm

BC

domain of protein A and can be successfully used as a functional material for the development of various immunosensors and immunoassays. The GlossaryTerm

MAP

-based whole cell biosensor can be successfully used for industrial applications, including environmental monitoring of chemicals and heavy metals, and food screening. Collectively, GlossaryTerm

MAP

s might be a useful and applicable biomaterial in diverse industrial fields due to their superior adhesion properties (even in water), biocompatibility, and controlled biodegradable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BC:

bubble column

CS:

chondroitin sulfate

CT:

computer tomography

DNA:

deoxyribonucleic acid

DOPA:

dihydroxy-l-phenylalanine

DS:

dermatan sulfate

ECM:

extracellular matrix

GAG:

glycosaminoglycan

HA:

hyaluronic acid

HS:

heparin sulfate

MAP:

mussel adhesive protein

MHDS:

multihead deposition system

OPH:

organophosphorus hydrolase

OP:

organophosphorus

PCL:

polycaprolactone

PLGA/PCL:

poly(d,l-lactide-co-glycolide)/polycaprolactone

RGD:

arginylglycylaspartic acid

SFF:

solid freeform fabrication

hADSC:

human adipose-derived stem cell

References

  1. J.H. Waite, M.L. Tanzer: Polyphenolic substance of Mytilus edulis: Novel adhesive containing L-DOPA and hydroxyproline, Science 212, 1038–1040 (1981)

    Article  CAS  Google Scholar 

  2. K. Kamino, K. Inoue, T. Maruyama, N. Takamatsu, S. Harayama, Y. Shizuri: Barnacle cement proteins. Importance of disulfide bonds in their insolubility, J. Biol. Chem. 275, 27360–27365 (2000)

    CAS  Google Scholar 

  3. R.J. Stewart, J.C. Weaver, D.E. Morse, J.H. Waite: The tube cement of Phragmatopoma californica: A solid foam, J. Exp. Biol. 207, 4727–4734 (2004)

    Article  CAS  Google Scholar 

  4. D.S. Hwang, H. Zeng, A. Masic, M.J. Harrington, J.N. Israelachvili, J.H. Waite: Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques, J. Biol. Chem. 285, 25850–25858 (2010)

    Article  CAS  Google Scholar 

  5. N. Holten-Andersen, J.H. Waite: Mussel-designed protective coatings for compliant substrates, J. Dent. Res. 87, 701–709 (2008)

    Article  CAS  Google Scholar 

  6. T.J. Deming: Mussel byssus and biomolecular materials, Curr. Opin. Chem. Biol. 3, 100–105 (1999)

    Article  CAS  Google Scholar 

  7. J. Monahan, J.J. Wilker: Specificity of metal ion cross-linking in marine mussel adhesives, Chem. Commun. 21, 1672–1673 (1999)

    Google Scholar 

  8. M.J. Sever, J.T. Weisser, J. Monahan, S. Srinivasan, J.J. Wilker: Metal-mediated cross-linking in the generation of a marine-mussel adhesive, Angew. Chem. Int. Ed. 43, 448–450 (2004)

    Article  CAS  Google Scholar 

  9. M. Yu, T.J. Deming: Synthetic polypeptide mimics of marine adhesives, Macromolecules 31, 4739–4745 (1998)

    Article  CAS  Google Scholar 

  10. T.H. Anderson, J. Yu, A. Estrada, M.U. Hammer, J.H. Waite, J.N. Israelachvili: The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films, Adv. Funct. Mater. 20, 4196–4205 (2010)

    Article  CAS  Google Scholar 

  11. J. Yu, W. Wei, E. Danner, R.K. Ashley, J.N. Israelachvili, J.H. Waite: Mussel protein adhesion depends on interprotein thiol-mediated redox modulation, Nat. Chem. Biol. 7, 588–590 (2011)

    Article  CAS  Google Scholar 

  12. J. Yu, W. Wei, E. Danner, J.N. Israelachvili, J.H. Waite: Effects of interfacial redox in mussel adhesive protein films on mica, Adv. Mater. 23, 2362–2366 (2011)

    Article  CAS  Google Scholar 

  13. S.C. Nicklisch, J.H. Waite: Mini-Review: The role of redox in Dopa-mediated marine adhesion, Biofouling 28, 865–877 (2012)

    Article  CAS  Google Scholar 

  14. H.G. Silverman, F.F. Roberto: Understanding marine mussel adhesion, Mar. Biotechnol. 9, 661–681 (2007)

    Article  CAS  Google Scholar 

  15. H.J. Cha, D.S. Hwang, S. Lim: Development of bioadhesives from marine mussels, Biotechnol. J. 3, 631–638 (2008)

    Article  CAS  Google Scholar 

  16. B.P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite: Mussel-inspired adhesives and coatings, Annu. Rev. Mater. Res. 41, 99–132 (2011)

    Article  CAS  Google Scholar 

  17. H. Zeng, D.S. Hwang, J.N. Israelachvili, J.H. Waite: Strong reversible Fe${}^{{3+}}$-mediated bridging between dopa-containing protein films in water, Proc. Natl. Acad. Sci. USA 107, 12850–12853 (2010)

    Article  CAS  Google Scholar 

  18. E.W. Danner, Y. Kan, M.U. Hammer, J.N. Israelachvili, J.H. Waite: Adhesion of mussel foot protein Mefp-5 to mica: An underwater superglue, Biochemistry 51, 6511–6518 (2012)

    Article  CAS  Google Scholar 

  19. K. Inoue, Y. Takeuchi, D. Miki, S. Odo: Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family, J. Biol. Chem. 270, 6698–6701 (1995)

    Article  CAS  Google Scholar 

  20. H. Zhao, J.H. Waite: Proteins in load-bearing junctions: The histidine-rich metal-binding protein of mussel byssus, Biochemistry 45, 14223–14231 (2006)

    Article  CAS  Google Scholar 

  21. R.L. Strausberg, R.P. Link: Protein-based medical adhesives, Trends Biotechnol. 8, 53–57 (1990)

    Article  CAS  Google Scholar 

  22. D.S. Hwang, Y. Gim, H.J. Cha: Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli, Biotechnol. Prog. 21, 965–970 (2005)

    Article  CAS  Google Scholar 

  23. D.S. Hwang, H.J. Yoo, J.H. Jun, W.K. Moon, H.J. Cha: Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli, Appl. Environ. Microbiol. 70, 3352–3359 (2004)

    Article  CAS  Google Scholar 

  24. D.S. Hwang, Y. Gim, H.J. Yoo, H.J. Cha: Practical recombinant hybrid mussel bioadhesive fp-151, Biomaterials 28, 3560–3568 (2007)

    Article  CAS  Google Scholar 

  25. Y.S. Choi, D.G. Kang, S. Lim, Y.J. Yang, C.S. Kim, H.J. Cha: Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material, Biofouling 27, 729–737 (2011)

    Article  CAS  Google Scholar 

  26. S.A. Maskarinec, D.A. Tirrell: Protein engineering approaches to biomaterials design, Curr. Opin. Biotechnol. 16, 422–426 (2005)

    Article  CAS  Google Scholar 

  27. K.M. Woo, J. Seo, R. Zhang, P.X. Ma: Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds, Biomaterials 28, 2622–2630 (2007)

    Article  CAS  Google Scholar 

  28. A.A. Sawyer, K.M. Hennessy, S.L. Bellis: The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite, Biomaterials 28, 383–392 (2007)

    Article  CAS  Google Scholar 

  29. L.Y. Santiago, R.W. Nowak, J.P. Rubin, K.G. Marra: Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications, Biomaterials 27, 2962–2969 (2006)

    Article  CAS  Google Scholar 

  30. M. Morra, C. Cassinelli, G. Cascardo, M. Fini, G. Giavaresi, R. Giardino: Covalently-linked hyaluronan promotes bone formation around Ti implants in a rabbit model, J. Orthop. Res. 27, 657–663 (2009)

    Article  CAS  Google Scholar 

  31. I.F. Bambang, S. Xu, J. Zhou, M. Salto-Tellez, S.K. Sethi, D. Zhang: Overexpression of endoplasmic reticulum protein 29 regulates mesenchymal-epithelial transition and suppresses xenograft tumor growth of invasive breast cancer cells, Lab. Investig. 89, 1229–1242 (2009)

    Article  CAS  Google Scholar 

  32. A.K. Achyuta, R. Cieri, K. Unger, S.K. Murthy: Synergistic effect of immobilized laminin and nerve growth factor on PC12 neurite outgrowth, Biotechnol. Prog. 25, 227–234 (2009)

    Article  CAS  Google Scholar 

  33. F. Bai, X. Guo, L. Yang, J. Wang, Y. Shi, F. Zhang, H. Zhang, Y. Lu, H. Xie, K. Wu, D. Fan: Establishment and characterization of a high metastatic potential in the peritoneum for human gastric cancer by orthotopic tumor cell implantation, Dig. Dis. Sci. 52, 1571–1578 (2007)

    Article  Google Scholar 

  34. C.D. Hodneland, Y.S. Lee, D.H. Min, M. Mrksich: Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands, Proc. Natl. Acad. Sci. USA 99, 5048–5052 (2002)

    Article  CAS  Google Scholar 

  35. M. Gilbert, C.M. Giachelli, P.S. Stayton: Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces, J. Biomed. Mater. Res. A 67, 69–77 (2003)

    Article  CAS  Google Scholar 

  36. E. Ruoslahti: RGD and other recognition sequences for integrins, Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996)

    Article  CAS  Google Scholar 

  37. R.G. LeBaron, K.A. Athanasiou: Extracellular matrix cell adhesion peptides: Functional applications in orthopedic materials, Tissue Eng. 6, 85–103 (2000)

    Article  CAS  Google Scholar 

  38. S.P. Massia, J.A. Hubbell: Covalent surface immobilization of Arg-Gly-Asp-and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates, Anal. Biochem. 187, 292–301 (1990)

    Article  CAS  Google Scholar 

  39. M.K. Chelberg, J.B. McCarthy, A.P. Skubitz, L.T. Furcht, E.C. Tsilibary: Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility, J. Cell. Biol. 111, 261–270 (1990)

    Article  CAS  Google Scholar 

  40. R.O. Hynes: Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69, 11–25 (1992)

    Article  CAS  Google Scholar 

  41. B.H. Choi, Y.S. Choi, D.G. Kang, B.J. Kim, Y.H. Song, H.J. Cha: Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides, Biomaterials 31, 8980–8988 (2010)

    Article  CAS  Google Scholar 

  42. B.H. Choi, Y.S. Choi, D.S. Hwang, H.J. Cha: Facile surface functionalization with glycosaminoglycans by direct coating with mussel adhesive protein, Tissue Eng. C Methods 18, 71–79 (2012)

    Article  CAS  Google Scholar 

  43. B.E. Uygun, S.E. Stojsih, H.W. Matthew: Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells, Tissue Eng. A 15, 3499–3512 (2009)

    Article  CAS  Google Scholar 

  44. L. Lapcik Jr., L. Lapcik, S. De Smedt, J. Demeester, P. Chabrecek: Hyaluronan: Preparation, structure, properties, and applications, Chem. Rev. 98, 2663–2684 (1998)

    Article  CAS  Google Scholar 

  45. R.Z. LeGeros, R.G. Craig: Strategies to affect bone remodeling: Osteointegration, J. Bone Min. Res. 8(Suppl. 2), 583–596 (1993)

    Google Scholar 

  46. P.H. Chua, K.G. Neoh, E.T. Kang, W. Wang: Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion, Biomaterials 29, 1412–1421 (2008)

    Article  CAS  Google Scholar 

  47. X. Zhu, J. Chen, L. Scheideler, R. Reichl, J. Geis-Gerstorfer: Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials 25, 4087–4103 (2004)

    Article  CAS  Google Scholar 

  48. R. Langer, J.P. Vacanti: Tissue engineering, Science 260, 920–926 (1993)

    Article  CAS  Google Scholar 

  49. B.J. Kim, Y.S. Choi, H.J. Cha: Reinforced multifunctionalized nanofibrous scaffolds using mussel adhesive proteins, Angew. Chem. Int. Ed. 51, 675–678 (2012)

    Article  CAS  Google Scholar 

  50. C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin: Nanofiber technology: Designing the next generation of tissue engineering scaffolds, Adv. Drug. Deliv. Rev. 59, 1413–1433 (2007)

    Article  CAS  Google Scholar 

  51. D. Liang, B.S. Hsiao, B. Chu: Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug Deliv. Rev. 59, 1392–1412 (2007)

    Article  CAS  Google Scholar 

  52. H.S. Yoo, T.G. Kim, T.G. Park: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Adv. Drug. Deliv. Rev. 61, 1033–1042 (2009)

    Article  CAS  Google Scholar 

  53. W.L. Murphy, R.G. Dennis, J.L. Kileny, D.J. Mooney: Salt fusion: An approach to improve pore interconnectivity within tissue engineering scaffolds, Tissue Eng. 8, 43–52 (2002)

    Article  CAS  Google Scholar 

  54. J.M. Hong, B.J. Kim, J.H. Shim, K.S. Kang, K.J. Kim, J.W. Rhie, H.J. Cha, D.W. Cho: Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins, Acta Biomater. 8, 2578–2586 (2012)

    Article  CAS  Google Scholar 

  55. D.W. Hutmacher, M. Sittinger, M.V. Risbud: Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems, Trends Biotechnol. 22, 354–362 (2004)

    Article  CAS  Google Scholar 

  56. J.Y. Kim, J.J. Yoon, E.K. Park, D.S. Kim, S.Y. Kim, D.W. Cho: Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system, Biofabrication 1, 015002 (2009)

    Article  CAS  Google Scholar 

  57. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Müller: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing, Acta Biomater. 7, 907–920 (2011)

    Article  CAS  Google Scholar 

  58. S.J. Hollister: Porous scaffold design for tissue engineering, Nat. Mater. 4, 518–524 (2005)

    Article  CAS  Google Scholar 

  59. H.G. Bungenberg de Jong: Complex colloid systems, Coll. Sci. 2, 232–258 (1949)

    Google Scholar 

  60. J.T. Overbeek, M.J. Voorn: Phase separation in polyelectrolyte solutions. Theory of complex coacervation, J. Cell Physiol. 49, 7–26 (1957)

    Article  CAS  Google Scholar 

  61. C.G. De Kruif, F. Weinbreck, R. De Vries: Complex coacervation of proteins and anionic polysaccharides, Curr. Opin. Coll. Interface Sci. 9, 340–349 (2004)

    Article  CAS  Google Scholar 

  62. C. Schmitt, C. Sanchez, S. Desobry-Banon, J. Hardy: Structure and technofunctional properties of protein-polysaccharide complexes: A review, Crit. Rev. Food Sci. 38, 689–753 (1998)

    Article  CAS  Google Scholar 

  63. K. Tsuiji: Microencapsulation of pesticides and their improved handling safety, J. Microencapsul. 18, 137–147 (2001)

    Article  Google Scholar 

  64. Y. Yeo, N. Baek, K. Park: Microencapsulation methods for delivery of protein drugs, Biotechnol. Bioproc. E 6, 213–230 (2001)

    Article  CAS  Google Scholar 

  65. S.R. Bhatia, S.F. Khattak, S.C. Roberts: Polyelectrolytes for cell encapsulation, Curr. Opin. Coll. Interface Sci. 10, 45–51 (2005)

    Article  CAS  Google Scholar 

  66. S. Tirkonen, L. Turakka, P. Paronen: Microencapsulation of indomethacin by gelatin-acacia complex coacervation in the presence of surfactants, J. Microencapsul. 11, 615–626 (1994)

    Article  Google Scholar 

  67. S. Suzuki, T. Kondo: Interactions of gelatin-acacia microcapsules with surfactants, Coll. Surf. B 4, 163–171 (1982)

    Article  CAS  Google Scholar 

  68. M. Rabiskova, J. Song, F.O. Opawale, D.J. Burgess: The influence of surface properties on uptake of oil into complex coacervate microcapsules, J. Pharm. Pharmacol. 46, 631–635 (1994)

    Article  CAS  Google Scholar 

  69. H. Takenaka, Y. Kawashima, S.Y. Lin: Micromeritic properties of sulfamethoxazole microcapsules prepared by gelatin–acacia coacervation, J. Pharm. Sci. 69, 513–516 (1980)

    Article  CAS  Google Scholar 

  70. H. Jizomoto, E. Kanaoka, K. Sugita, K. Hirano: Gelatin-acacia microcapsules for trapping micro oil droplets containing lipophilic drugs and ready disintegration in the gastrointestinal tract, Pharm. Res. 10, 1115–1122 (1993)

    Article  CAS  Google Scholar 

  71. C. Dong, J.A. Rogers: Acacia-gelatin microencapsulated liposomes: Preparation, stability, and release of acetylsalicylic acid, Pharm. Res. 10, 141–146 (1993)

    Article  CAS  Google Scholar 

  72. V.B. Junyaprasert, A. Mitrevej, N. Sinchaipanid, P. Boonme, D.E. Wurster: Effect of process variables on the microencapsulation of vitamin a palmitate by gelatin-acacia coacervation, Drug. Dev. Ind. Pharm. 27, 561–566 (2001)

    Article  CAS  Google Scholar 

  73. J.N. McMullen, D.W. Newton, C.H. Becker: Pectin-gelatin complex coacervates II: Effect of microencapsulated sulfamerazine on size, morphology, recovery, and extraction of water-dispersible microglobules, J. Pharm. Sci. 73, 1799–1803 (1984)

    Article  CAS  Google Scholar 

  74. G.R. Chilvers, V.J. Morris: Coacervation of gelatin-gellan gum mixtures and their use in microencapsulation, Carbohyd. Polym. 7, 111–120 (1987)

    Article  CAS  Google Scholar 

  75. W. Shao, K.W. Leong: Microcapsules obtained from complex coacervation of collagen and chondroitin sulfate, J. Biomater. Sci. Polym. E 7, 389–399 (1995)

    Article  CAS  Google Scholar 

  76. S.L. Young, X. Sarda, M. Rosenberg: Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates, J. Dairy Sci. 76, 2878–2885 (1993)

    Article  CAS  Google Scholar 

  77. H. Zhao, C.J. Sun, R.J. Stewart, J.H. Waite: Cement proteins of the tube-building polychaete Phragmatopoma californica, J. Biol. Chem. 280, 42938–42944 (2005)

    Article  CAS  Google Scholar 

  78. H. Zhao, J.H. Waite: Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus, J. Biol. Chem. 281, 26150–26158 (2006)

    Article  CAS  Google Scholar 

  79. R.J. Stewart, C.S. Wang, H. Shao: Complex coacervates as a foundation for synthetic underwater adhesives, Adv. Coll. Interface 167, 85–93 (2011)

    Article  CAS  Google Scholar 

  80. J.H. Waite: Adhesion a la Moule, Integr. Comp. Biol. 42, 1172–1180 (2002)

    Article  CAS  Google Scholar 

  81. S. Lim, Y.S. Choi, D.G. Kang, Y.H. Song, H.J. Cha: The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins, Biomaterials 31, 3715–3722 (2010)

    Article  CAS  Google Scholar 

  82. C. Thomasin, H. Nam-Trân, H.P. Merkle, B. Gander: Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 1. Overview and theoretical considerations, J. Pharm. Sci. 87, 259–268 (1998)

    Article  CAS  Google Scholar 

  83. K.G.H. Desai, H.J. Park: Recent developments in microencapsulation of food ingredients, Dry. Technol. 23, 1361–1394 (2005)

    Article  CAS  Google Scholar 

  84. R. Arshady: Microcapsules for food, J. Microencapsul. 10, 413–435 (1993)

    Article  CAS  Google Scholar 

  85. H.J. Cha, D.S. Hwang, S. Lim, J.D. White, C.R. Matos-Perez, J.J. Wilker: Bulk adhesive strength of recombinant hybrid mussel adhesive protein, Biofouling 25, 99–107 (2009)

    Article  CAS  Google Scholar 

  86. D.S. Hwang, H. Zeng, A. Srivastava, D.V. Krogstad, M. Tirrell, J.N. Israelachvili, J.H. Waite: Viscosity and interfacial properties in a mussel-inspired adhesive coacervate, Soft Matter 6, 3232–3236 (2010)

    Article  CAS  Google Scholar 

  87. V.A. Burzio, T. Silva, J. Pardo, L.O. Burzio: Mussel adhesive enhances the immobilization of human chorionic gonadotrophin to a solid support, Anal. Biochem. 241, 190–194 (1996)

    Article  CAS  Google Scholar 

  88. C. Saby, J.H.T. Luong: Mytilus edulis adhesive protein (MAP) as an enzyme immobilization matrix in the fabrication of enzyme-based electrodes, Electroanalysis 10, 1193–1199 (1998)

    Article  CAS  Google Scholar 

  89. J.H. Waite: Nature's underwater adhesive specialist, Int. J. Adhes. Adhes. 7, 9–14 (1987)

    Article  CAS  Google Scholar 

  90. D. Morgan: Two firms race to derive profits from mussels' glue, Scientist 4, 1–6 (1990)

    Google Scholar 

  91. M. Kitamura, K. Kawakami, N. Nakamura, K. Tsumoto, H. Uchiyama, Y. Ueda, I. Kumagai, T. Nakaya: Expression of a model peptide of a marine mussel adhesive protein in Escherichia coli and characterization of its structural and functional properties, J. Polym. Sci. Polym. Chem. 37, 729–736 (1999)

    Article  CAS  Google Scholar 

  92. A.J. Salerno, J. Goldberg: Cloning, expression, and characterization of a synthetic analog to the bioadhesive precursor protein of the sea mussel Mytilus edulis, Appl. Microbiol. Biotechnol. 39, 221–226 (1993)

    Article  CAS  Google Scholar 

  93. C.S. Kim, Y.S. Choi, W. Ko, J.H. Seo, J. Lee, H.J. Cha: A mussel adhesive protein fused with the BC domain of protein a is a functional linker material that efficiently immobilizes antibodies onto diverse surfaces, Adv. Funct. Mater. 21, 4101–4108 (2011)

    Article  CAS  Google Scholar 

  94. M.D.P. Boyle, K.J. Reis: Bacterial Fc Receptors, Nat. Biotechnol. 5, 697–703 (1987)

    Article  CAS  Google Scholar 

  95. J.M. Lee, H.K. Park, Y. Jung, J.K. Kim, S.O. Jung, B.H. Chung: Direct immobilization of protein G variants with various numbers of cysteine residues on a gold surface, Anal. Chem. 79, 2680–2687 (2007)

    Article  CAS  Google Scholar 

  96. Y. Jung, J.M. Lee, H. Jung, B.H. Chung: Self-directed and self-oriented immobilization of antibody by protein G$-$DNA conjugate, Anal. Chem. 79, 6534–6541 (2007)

    Article  CAS  Google Scholar 

  97. S.M. Patrie, M. Mrksich: Self-assembled monolayers for MALDI-TOF mass spectrometry for immunoassays of human protein antigens, Anal. Chem. 79, 5878–5887 (2007)

    Article  CAS  Google Scholar 

  98. S. Ko, T.J. Park, H.-S. Kim, J.-H. Kim, Y.-J. Cho: Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors, Biosens. Bioelectron. 24, 2592–2597 (2009)

    Article  CAS  Google Scholar 

  99. T.H. Ha, S.O. Jung, J.M. Lee, K.Y. Lee, Y. Lee, J.S. Park, B.H. Chung: Oriented immobilization of antibodies with GST-fused multiple Fc-specific B-domains on a gold surface, Anal. Chem. 79, 546–556 (2006)

    Article  CAS  Google Scholar 

  100. C.S. Kim, B.-H. Choi, J.H. Seo, G. Lim, H.J. Cha: Mussel adhesive protein-based whole cell array biosensor for detection of organophosphorus compounds, Biosens. Bioelectron 41, 199–204 (2013)

    Article  CAS  Google Scholar 

  101. P. Mulchandani, W. Chen, A. Mulchandani, J. Wang, L. Chen: Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase, Biosens. Bioelectron. 16, 433–437 (2001)

    Article  CAS  Google Scholar 

  102. Q. Liu, H. Cai, Y. Xu, L. Xiao, M. Yang, P. Wang: Detection of heavy metal toxicity using cardiac cell-based biosensor, Biosens. Bioelectron. 22, 3224–3229 (2007)

    Article  CAS  Google Scholar 

  103. Q. Liu, H. Yu, Z. Tan, H. Cai, W. Ye, M. Zhang, P. Wang: In vitro assessing the risk of drug-induced cardiotoxicity by embryonic stem cell-based biosensor, Sens. Actuators B Chem. 155, 214–219 (2011)

    Article  CAS  Google Scholar 

  104. J. Kumar, S.F. D'Souza: Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry, Biosens. Bioelectron. 26, 4289–4293 (2011)

    Article  CAS  Google Scholar 

  105. A. Perdikaris, N. Vassilakos, I. Yiakoumettis, O. Kektsidou, S. Kintzios: Development of a portable, high throughput biosensor system for rapid plant virus detection, J. Virol. Methods 177, 94–99 (2011)

    Article  CAS  Google Scholar 

  106. T. Braschler, R. Johann, M. Heule, L. Metref, P. Renaud: Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation, Lab. Chip 5, 553–559 (2005)

    Article  CAS  Google Scholar 

  107. A.C. Jen, M.C. Wake, A.G. Mikos: Review: Hydrogels for cell immobilization, Biotechnol. Bioeng. 50, 357–364 (1996)

    Article  CAS  Google Scholar 

  108. S.K. Jha, M. Kanungo, A. Nath, S.F. D'Souza: Entrapment of live microbial cells in electropolymerized polyaniline and their use as urea biosensor, Biosens. Bioelectron. 24, 2637–2642 (2009)

    Article  CAS  Google Scholar 

  109. J. Kumar, S.F. D'Souza: An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent, Biosens. Bioelectron. 26, 1292–1296 (2010)

    Article  CAS  Google Scholar 

  110. J. Kumar, S.F. D'Souza: Immobilization of microbial cells on inner epidermis of onion bulb scale for biosensor application, Biosens. Bioelectron. 26, 4399–4404 (2011)

    Article  CAS  Google Scholar 

  111. S.F. D'Souza: Microbial biosensors, Biosens. Bioelectron. 16, 337–353 (2001)

    Article  Google Scholar 

  112. Y. Lei, W. Chen, A. Mulchandani: Microbial biosensors, Anal. Chim. Acta 568, 200–210 (2006)

    Article  CAS  Google Scholar 

  113. D.S. Hwang, Y. Gim, D.G. Kang, Y.K. Kim, H.J. Cha: Recombinant mussel adhesive protein Mgfp-5 as cell adhesion biomaterial, J. Biotechnol. 127, 725–727 (2007)

    Article  CAS  Google Scholar 

  114. D.S. Hwang, S.B. Sim, H.J. Cha: Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide, Biomaterials 28, 4039–4046 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung J. Cha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Choi, BH. et al. (2015). Mussel-Derived Bioadhesives. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_60

Download citation

Publish with us

Policies and ethics