Max Schaldach

Electrotherapy of the Heart

Technical Aspects in Cardiac Pacing

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest

Prof. Dr.-Ing. Max Schaldach

Zentralinstitut für Biomedizinische Technik der Friedrich-Alexander-Universität Erlangen-Nürnberg Turnstraße 5 8520 Erlangen Germany

ISBN 978-3-642-50211-8 ISBN 978-3-642-50209-5 (eBook) DOI 10.1007/978-3-642-50209-5

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

Springer-Verlag Berlin Heidelberg 1992 Softcover reprint of the hardcover 1st edition 1992

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Coverdesign: Jan Vogel; Typesetting: Camera ready by author

60/3020 - 5 4 3 2 1 0 - Printed on acid-free paper

FOREWORD

Biomedical engineering has significantly contributed to the success of medicine in diagnosis and therapy during the last thirty years. One of the most successful contributions has been the development of pacemaker technology. Since the first implant in 1958, the concept has evolved from a simple pulse generator to a powerful system capable of not only stimulating, but sensing, programmability and computer-based, decision-making technology. Today's implantable pacemakers demonstrate one of the most successful examples of the interdisciplinary task of applying modern technology in the fields of materials and electronics to medicine. The clinical treatment of all types of arrhythmias has reached a standard that renders possible not only emergency treatment but also increases the quality of life. Despite these impressive advances, the artifical pacemaker is still inferior to the physiological pacing system, especially regarding the capability to adjust the stimulation rate to the hemodynamic requirements.

Electrotherapy of the Heart is a unique representation of this fascinating development. The author, Max Schaldach, is one of the founders of pacemaker technology and is internationally known as a researcher and professor in the fields of applied physics and biomedical engineering. He continues to contribute extensively to the field of cardiac pacing in development, design and manufacture, and has strongly influenced the technology to its present advanced state.

There is no doubt that this book will further promote research and development in pacemaker technology with the aim of a more physiological approach for the greatest benefit to the patient.

Helmut Hutten

PREFACE

In 1958, the first implantable cardiac pacing system was developed by Elmquist and implanted by Senning. Since then, the exemplary collaboration between medicine and engineering has developed into an extremely successful therapy.

The multidisciplinary nature of the technical task of pacemaker development is based upon the diverse components of physiology, electronics, physics, electrochemistry and the material sciences. Progress in basic technologies such as microelectronics has made it possible to design pacemakers which, in practice, has led to broad clinical applications of treating a wide spectrum of arrhythmias. The information presented here is not generally found in conventional journals and textbooks and, therefore, may contribute to the interdisciplinary collaboration between biomedical engineering and the medical profession.

This book, as its title suggests, highlights many of the recent and most important technological advances and concepts in cardiac electrotherapy to implement different approaches of adapting the stimulation rate from a systems engineering standpoint to meet the cardiovascular requirements. Innovations to solve the rate-adaptation problem include *physiological* rate adaptation which operates as a closed-loop control system. The artificial pacemaker and the Autonomic Nervous system, in concert, reestablish chronotropy by utilizing its physiological control elements. This approach is an important milestone toward development of an "intelligent" pacemaker capable of implementing a much broader concept of electrotherapy for the heart.

As progress in neurocardiology suggests, monitoring of the autonomic balance should result in a preventive pacing technique which can be superior to pharmacological approaches and which will finally replace the defibrillator.

May the multidisciplinary task of pacemaker development become evident to the reader.

Erlangen, January 1992

M. Schaldach

Dedicated to

my colleagues and my friends who have accompanied me during the past thirty years.

Max Schaldach

CONTENTS

Basic Anatomy and Physiology of the Heart1
Position and Structure of the Heart1
Generation and Tine Course of Excitation
Excitation-Contraction Coupling and the Contraction Process10
Physiology of the Heartbeat13
The Pacemaker Potential and the Spread of Excitation13
Cardiac Mechanics14
Adjustments of the Heartbeat16
Neural-Humoral Control of Circulation
Role of the Autonomic Nervous System in Cardiovascular Regulation
Circulatory Regulation in Patients with Disorders of the Heart's Pacemaking or Conducting System23
Monitoring the Electrical Activity of the Heart
Pathophysiology
Disorders of the Pacemaking Function
Disturbances of Conduction
Therapy for Cardiac Rhythm Disturbances41
Electrotherapy in the Treatment of Cardiac Rhythm Disturbances42

Pacemaker Technology
Implantable Pacemakers: History, Current Status and Trends
Multiprogrammable Single-Chamber Pacemakers51
Technical Solution for the Multiprogrammable Single-Chamber Pacemaker52
Multiprogrammable Dual-Chamber Pacemaker
Technical Solution for the Dual-Chamber Pacemaker61
Controlled and Regulated Pacemakers
Control Aspects of Cardiac Output Adjustment
Different Strategies of Rate Adaptation76
Forward Consideration of Disturbance Variables
Open-Loop Control Using Corporeal, Non-Cardiac State Variables
Rate Adaptation Using Cardiac Parameters
Status of the Application of Corporeal Control Parameters 87
Motion Energy as a Control Parameter
Central Venous Temperature as a Corporeal Control Parameter96
Cardiac Control Parameters 105
Principles of Intracardiac Conductance Measurement 106
Basic Aspects of Conductance
Anisotropic Impedance 110
Employment of PEP for Rate Adaptation
Improving the PEP Control: Concept of VIP
Unipolar Right Ventricular Conductance Measurement 121

Clinical Results
Employment of Volume Information for Rate Adaptation .133
Conclusions
The Stimulating Electrode145
Electrode/Myocardium Interface145
Helmholtz Doublelayer148
Electrical Characteristics151
Electrode Materials159
Porous Electrode160
TiN as an Electrode Material162
Comparative Studies164
Materials in Pacemaker Technology169
Definition of a Biomaterial169
Summary of Biomaterials in Common Use
General Characteristics of Biomaterials
Biomaterials in Soft-Tissue Implants
Resistance to Corrosion175
Biocompatibility178
Quality Testing and Reliability182
Physiological Characteristics of the Blood183
Interactions Between Blood and Artificial Surfaces185
Determination of Blood Compatibility
Pacemaker Power Sources191
Battery Development
State of the Art in Pacemaker Power Sources

The Elements of a Primary Battery	97
Battery Performance	00
Chemistry of the Lithium/Iodine-Polyvinylpyridine (Li/I2-PVP) System	03
Design of Lithium/Iodine-PVP Cells	04
Discharge Characteristics of the Li/I ₂ -PVP Battery $\dots 2$	06
Cell Design and Qualification2	07
Reestablishment of Physiological Regulation —A Challenge to Technology	09
New Concepts in Electrotherapy of the Heart	10
Conclusions 2	12
Bibliography 2	15

Index	239
-------	-----