102 Springer Series in Solid-State Sciences Edited by Hans-Joachim Queisser

Springer Series in Solid-State Sciences

Editors: M. Cardona P. Fulde K. von Klitzing H.-J. Queisser

Managing Editor: H.K.V. Lotsch

Volumes 1–89 are listed at the end of the book

- 90 Earlier and Recent Aspects of Superconductivity Editors: J. G. Bednorz and K. A. Müller
- 91 Electronic Properties of Conjugated Polymers III Basic Models and Applications Editors: H. Kuzmany, M. Mehring, and S. Roth
- 92 Physics and Engineering Applications of Magnetism Editors: Y. Ishikawa and N. Miura
- 93 Quasicrystals Editors: T. Fujiwara and T. Ogawa
- 94 Electronic Conduction in Oxides By N. Tsuda, K. Nasu, A. Yanase, and K. Siratori
- 95 Electronic Materials A New Era in Materials Science Editors: J. R. Chelikowsky and A. Franciosi
- 96 Electron Liquids By A. Isihara
- 97 Localization and Confinement of Electrons in Semiconductors Editors: F. Kuchar, H. Heinrich, and G. Bauer
- 98 Magnetism and the Electronic Structure of Crystals By V. A. Gubanov, A. I. Liechtenstein, and A. V. Postnikov
- 99 Electronic Properties of High-T_c Superconductors and Related Compounds Editors: H. Kuzmany, M. Mehring, and J. Fink
- 100 Electron Correlations in Molecules and Solids By P. Fulde
- 101 High Magnetic Fields in Semiconductor Physics III Quantum Hall Effect, Transport and Optics By G. Landwehr
- 102 Conjugated Conducting Polymers Editor: H. Kiess
- 103 Molecular Dynamics Simulations Editor: F. Yonezawa
- 104 Products of Random Matrices in Statistical Physics By A. Crisanti, G. Paladin, and A. Vulpiani
- 105 Self-Trapped Excitons By K.S. Song and R.T. Williams
- 106 Physics of High-Temperature Superconductors Editors: S. Maekawa and M. Sato
- 107 Electronic Properties of Polymers Orientation and Dimensionality of Conjugated Systems Editors: H. Kuzmany, M. Mehring, and S. Roth
- 108 Site Symmetry in Crystals Theory and Applications By R. A. Evarestov and V. V. Smirnov

H. G. Kiess (Ed.)

Conjugated Conducting Polymers

With 118 Figures

With Contributions by

D. Baeriswyl, D. K. Campbell, G. C. Clark,

G. Harbeke, P. K. Kahol, H. G. Kiess,

S. Mazumdar, M. Mehring, W. Rehwald

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Dr. rer. nat. Helmut G. Kiess Paul Scherrer Institut Zürich Badenerstrasse 569 CH-8048 Zürich, Switzerland

Series Editors: Professor Dr., Dres. h.c. Manuel Cardona Professor Dr., Dr. h.c. Peter Fulde Professor Dr., Dr. h.c. Klaus von Klitzing Professor Dr. Hans-Joachim Queisser

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1 W-7000 Stuttgart 80, Fed. Rep. of Germany

Managing Editor: Dr. Helmut K. V. Lotsch Springer-Verlag, Tiergartenstrasse 17

W-6900 Heidelberg, Fed. Rep. of Germany

ISBN-13:978-3-642-46731-8 DOI: 10.1007/978-3-642-46729-5 e-ISBN-13:978-3-642-46729-5

Library of Congress Cataloging-in-Publication Data Conjugated conducting polymers / H. Kiess (ed.); with contributions by H. Kiess ... [et al.]. p. cm.—(Springer series in solid state sciences; vol. 102) ISBN 3-540-53594-2 (Berlin: acid-free paper) ISBN 0-387-53594-2 (New York: acid-free paper) 1. Polymers—Electric properties. 2. Polymers—Optical properties. I. Kiess, H. (Helmut), 1931– II. Series: Springer series in solid state sciences; 102. QD381.9.E38C664 1992 530.4'13—dc20 91-25652 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992

Softcover reprint of the hardcover 1st edition 1992

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Thomson Press (India) Ltd., New Delhi 54/3020-5 4 3 2 1 0 – Printed on acid-free paper

Preface

This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasione-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors.

After a brief introductory chapter, the second chapter presents basic theoretical concepts and treats in detail the various models for π -conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between π -electrons and lattice displacements. For a semi-quantitative understanding of the various measurements. electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features. the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter. Measurements on dopant- and light-induced changes in the optical spectra help to clarify many controversial aspects concerning the nature of the charge carriers and the question of electron-phonon and electron-electron interactions. It is important to note also that the nonlinear optical coefficients of these materials are high, so they could conceivably become useful in optical processing. The final chapter gives an account of the magnetic properties of these polymers. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) measurements allow direct probing of properties on a microscopic scale and can thus give detailed information which is otherwise not accessible, for example, we can establish whether the charge carriers induced by doping carry spin (i.e. are bipolarons, solitons or polarons). Data on spin dynamics also provide information on the mobility of the carriers, the spin distribution in defects and electron-electron interactions, which is otherwise difficult to obtain.

This book is dedicated to the late Prof. Günther Harbeke, who contributed to one of the chapters. His interest in the optical properties of condensed matter stimulated much of the work which was followed up experimentally in the former Laboratories RCA Ltd., Zürich, and which finally helped to shape the chapter on optics. It is therefore with deep respect that the coauthors dedicate this book to his memory.

Zürich, February 1992

Helmut Kiess

Contents

1.	Introduction				
	By H. G. Kiess	1			
	References	5			
2.	An Overview of the Theory of π -Conjugated Polymers				
	By D. Baeriswyl, D. K. Campbell, and S. Mazumdar				
	(With 37 Figures)	7			
	2.1 Synopsis	7			
	2.2 Theoretical Concepts, Models and Methods	13			
	2.2.1 The Born-Oppenheimer Approximation	14			
	2.2.2 Ab Initio Calculations	15			
	2.2.3 Model Hamiltonians	18			
	2.3 The Hückel and SSH Models: Independent-Electron	10			
	Theories	28			
	2.3.1 From Polyethylene to Polyacetylene	28			
	2.3.2 Bond Alternation	31			
	2.3.3 The Strength of the Electron-Phonon Coupling	34			
	2.3.4 Stability of the Dimerized State				
	and the Phonon Spectrum	35			
	2.3.5 Spatially Localized Nonlinear Excitations:				
	Solitons, Polarons and Bipolarons	36			
	2.3.6 Predictions of the Model	47			
	2.4 Hubbard Model: A Paradigm for Correlated				
	Electron Theories	49			
	2.4.1 Ground State and Excitation Spectrum	50			
	2.4.2 Correlation Functions	53			
	2.4.3 Relevance for Conjugated Polymers	54			
	2.5 The One-Dimensional Peierls-Hubbard Model	56			
	2.5.1 The Model Hamiltonian and its Parameters	57			
	2.5.2 Methods	60			
	2.6 The Combined Effects of Electron-Phonon				
	and Electron-Electron Interactions: Theory and Experiment	67			
	2.6.1 Ground State	67			
	2.6.2 Electronic Excitations and Excited States	82			

		2.6.3 Vibrational Excitation: Raman and Infrared	
		Spectroscopy	102
	2.7	Beyond Simple Models: Discussion and Conclusions	105
		2.7.1 Effects of Disorder	105
		2.7.2 Interchain Coupling and Three-Dimensional Effects	106
		2.7.3 Lattice Quantum Fluctuations	108
		2.7.4 Doping Effects and the Semiconductor-Metal	
		Transition	109
		2.7.5 Transport	111
		2.7.6 Concluding Remarks	112
Re	fere		114
no			
_			
		rge Transport in Polymers	125
	•	W. Rehwald and H.G. Kiess (With 15 Figures)	135
	3.1	Models for the Insulating and Semiconducting States	136
		3.1.1 The Electronic Ground State	136
		3.1.2 The Nature of the Charge Carriers	141
		3.1.3 Disorder Along the Chains	146
		3.1.4 Low and Intermediate Doping	147
	3.2	Models for Transport Processes	149
		3.2.1 Conduction in Extended States	149
		3.2.2 Conduction in Localized States	150
		3.2.3 Transport in One Dimension	152
		3.2.4 Transport by Quasi-Particles	154
	3.3	Experiments in the Insulating and Semiconducting State	157
		3.3.1 Polyacetylene	157
		3.3.2 Other Polymers	162
	34	The Semiconductor–Metal Transition	
	5.1	and the Metallic State	164
		3.4.1 Models for the Highly Doped State	165
		3.4.2 Experiments in the Highly Doped State	167
	35	Summary	170
Re		nces	171
1.0			
4	Ont	tical Properties of Conducting Polymers	
		H. G. Kiess and G. Harbeke (With 21 Figures)	175
	2		175
		Elementary Considerations	
		Dielectric Response Function and Band Structure	177
	4.3	Band Gap and Band Structures of Undoped Conjugated	170
		Polymers	178
		4.3.1 Results of Band Structure Calculations	178
		4.3.2 Experimental Results	182
	4.4	Photon-Phonon Interaction	185
		4.4.1 General Remarks	185

	4.4.2 Calculations of Vibrational Spectra of Polymers	186
	4.4.3 Experimental Results	188
4.5	The Study of Elementary Excitations in Conjugated	
	Polymers	191
	4.5.1 General Considerations	191
	4.5.2 The Electronic States of the Quasi-Particles	192
	4.5.3 The Vibrational State of the Quasi-Particles	198
	4.5.4 Experimental Results	198
4.6	Highly Conducting Conjugated Polymers	206
	4.6.1 General Considerations	206
	4.6.2 The Highly Conducting Phase	
	of Trans-Polyacetylene	207
	4.6.3 Polyacetylene: Experimental Results	209
	4.6.4 Highly Conducting Polymers	207
	with Nondegenerate Ground State	211
	4.6.5 Concluding Remarks	213
Refere	ences	
		211
	gnetic Properties of Conjugated Polymers	
By	P. K. Kahol, G. C. Clark, and M. Mehring (With 46 Figures)	217
	General Aspects of Magnetic Properties and Resonance	
	Techniques	218
	5.1.1 Susceptibility	218
	5.1.2 Lineshapes, Linewidths and Lineshifts	
	5.1.3 Spin Relaxation (T_1, T_2, T_{1p})	220
	5.1.4 Double Resonance Techniques	224
	5.1.5 High-Resolution NMR	220
52	Structure and Lattice Dynamics of Conjugated Polymers	231
5.2	in the Non-Conducting Phase	233
	5.2.1 Lattice Structure Determination from Dipole–Dipole	233
	Interactions	233
	5.2.2 Bond Length Determination from Dipole–Dipole	233
	Interactions	120
	5.2.3 Chemical Shift Tensor	
53	Spin Dynamics of Conjugated Defects	240
5.5	in the Non Conducting Disease	245
	in the Non-Conducting Phase	
		245
	5.3.2 Dynamic Nuclear Polarization	253
	5.3.3 Nuclear Spin Lattice Relaxation	256
	5.3.4 Electron Spin Relaxation	261
F 4	5.3.5 Light-Induced ESR	265
5.4	Magnetic Properties of Conjugated Polymers	
	in the Conducting Phase	267
	5.4.1 Susceptibility	267

	5.4.2 ESR Lineshapes and Linewidths	272
	5.4.3 NMR Results	278
5.5	Magnetic Properties of Polydiacetylenes (PDA)	281
	5.5.1 Structure	281
	5.5.2 Solid-State Polymerization	283
	5.5.3 Quasi-Particle Excitation	289
5.6	Other Conjugated Polymers	291
5.7	Conclusions and Remarks	295
Refere	nces	297
Subjec	t Index	305

Contributors

Baeriswyl, Dionys Institut de Physique Théorique, Université de Fribourg, CH-1700 Fribourg, Switzerland Campbell, David K. Center for Nonlinear Studies, Los Alamos National Laboratory, Mail Stop B 262, Los Alamos, NM 87545, USA Clark, Gilbert C. Department of Physics, University of California, Los Angeles, CA 90024, USA Harbeke, Günther (deceased) Formerly at Paul Scherrer Institut, c/o Laboratories RCA Ltd., Badenerstrasse 569, CH-8048 Zürich, Switzerland Kahol, Pawan K. II. Physikalisches Institut, Universtät Stuttgart, Pfaffenwaldring 57, W-7000 Stuttgart 80, Federal Republic of Germany Kiess. Helmut G. Paul Scherrer Institut, c/o Laboratories RCA Ltd., Badenerstrasse 569, CH-8048 Zürich, Switzerland Mazumdar, Sumitendra Department of Physics, University of Arizona, Tucson, AZ 85721, USA Mehring, Michael II. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, W-7000 Stuttgart 80, Federal Republic of Germany Rehwald, Walther Paul Scherrer Institut, c/o Laboratories RCA Ltd., Badenerstasse 569, CH-8048 Zürich, Switzerland