Skip to main content

Experimental Models of Asbestos-Related Diseases

  • Chapter
  • First Online:

Abstract

Much of our understanding of the mechanisms by which asbestos injures the lung has been derived from experimental animal studies. Such studies have confirmed the fibrogenic and carcinogenic properties of asbestos fibers that have been surmised from human observations and have provided insights into the ways in which asbestos fibers interact with biological systems. Models commonly used to study asbestos-induced disease involve inhalation exposure to asbestos, intratracheal instillation, and in vitro studies of various cellular systems. Each of these techniques has particular advantages and disadvantages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gardner L (1938) Experimental pneumoconiosis. In: Lanza AJ (ed) Silicosis and asbestosis. Oxford University Press, New York, pp 282–283

    Google Scholar 

  2. King EJ, Clegg JW, Rae VM (1946) The effect of asbestos, and of asbestos and aluminium, on the lungs of rabbits. Thorax 1:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vorwald AJ, Durkan TM, Pratt PC (1951) Experimental studies of asbestosis. Arch Ind Hyg Occup Med 3:1–43

    CAS  Google Scholar 

  4. Timbrell V (1965) Human exposure to asbestos: dust controls and standards. The inhalation of fibrous dusts. Ann N Y Acad Sci 132:255–273

    Article  CAS  PubMed  Google Scholar 

  5. Wagner JC, Berry G, Skidmore JW, Timbrell V (1974) The effects of the inhalation of asbestos in rats. Br J Cancer 29:252–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roggli VL, Brody AR (1990) The role of electron microscopy in experimental models of pneumoconiosis. In: Schraufnager D (ed) Electron microscopy of the lung. Marcel Dekker, New York, pp 315–343

    Google Scholar 

  7. Green GM, Jakab GJ, Low RB, Davis GS (1977) Defense mechanisms of the respiratory membrane. Am Rev Respir Dis 115:479–514

    CAS  PubMed  Google Scholar 

  8. Lee KP (1985) Lung response to particulates with emphasis on asbestos and other fibrous dusts. Crit Rev Toxicol 14:33–86

    Article  CAS  PubMed  Google Scholar 

  9. Timbrell V (1976) Aerodynamic considerations and other aspects of glass fiber. HEW, Washington, DC, pp 33–53

    Google Scholar 

  10. Turnock AC, Bryks S, Bertalanffy FD (1971) The synthesis of tritium-labeled asbestos for use in biological research. Environ Res 4:86–94

    Article  CAS  PubMed  Google Scholar 

  11. Morgan A, Collier CG, Morris KJ, Launder KA (1993) A radioactive tracer technique to determine in vivo the number of fibers in the lungs of rats following their administration by intratracheal instillation. Environ Res 63:182–190

    Article  CAS  PubMed  Google Scholar 

  12. Evans JC, Evans RJ, Holmes A, Hounam RF, Jones DM, Morgan A, Walsh M (1973) Studies on the deposition of inhaled fibrous material in the respiratory tract of the rat and its subsequent clearance using radioactive tracer techniques. 1. UICC crocidolite asbestos. Environ Res 6:180–201

    Article  CAS  PubMed  Google Scholar 

  13. Morgan A, Evans JC, Evans RJ, Hounam RF, Holmes A, Doyle SG (1975) Studies on the deposition of inhaled fibrous material in the respiratory tract of the rat and its subsequent clearance using radioactive tracer techniques. Environ Res 10:196–207

    Article  CAS  PubMed  Google Scholar 

  14. Coin PG, Roggli VL, Brody AR (1994) Persistence of long, thin chrysotile asbestos fibers in the lungs of rats. Environ Health Perspect 102(Suppl 5):197–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brody AR, Hill LH (1981) Deposition pattern and clearance pathways of inhaled chrysotile asbestos. Chest 80:64–67

    Article  CAS  PubMed  Google Scholar 

  16. Brody AR, Hill LH, Adkins B Jr, O’Connor RW (1981) Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis 123:670–679

    CAS  PubMed  Google Scholar 

  17. Brody AR, Roe MW (1983) Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. Am Rev Respir Dis 128:724–729

    CAS  PubMed  Google Scholar 

  18. Schlesinger R (1980) Particle deposition in model systems of human and experimental animal airways. In: Willeke K (ed) Generation of aerosols and facilities for exposure experiments. Ann Arbor Science, Ann Arbor, pp 553–575

    Google Scholar 

  19. Pinkerton KE, Plopper CG, Mercer RR, Roggli VL, Patra AL, Brody AR, Crapo JD (1986) Airway branching patterns influence asbestos fiber location and the extent of tissue injury in the pulmonary parenchyma. Lab Invest 55:688–695

    CAS  PubMed  Google Scholar 

  20. Brain JD, Mensah GA (1983) Comparative toxicology of the respiratory tract. Am Rev Respir Dis 128:S87–S90

    CAS  PubMed  Google Scholar 

  21. Pritchard JN, Holmes A, Evans JC, Evans N, Evans RJ, Morgan A (1985) The distribution of dust in the rat lung following administration by inhalation and by single intratracheal instillation. Environ Res 36:268–297

    Article  CAS  PubMed  Google Scholar 

  22. Brain JD, Knudson DE, Sorokin SP, Davis MA (1976) Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation. Environ Res 11:13–33

    Article  CAS  PubMed  Google Scholar 

  23. Roggli VL, Brody AR (1984) Changes in numbers and dimensions of chrysotile asbestos fibers in lungs of rats following short-term exposure. Exp Lung Res 7:133–147

    Article  CAS  PubMed  Google Scholar 

  24. Middleton AP, Beckett ST, Davis JM (1979) Further observations on the short-term retention and clearance of asbestos by rats, using UICC reference samples. Ann Occup Hyg 22:141–152

    CAS  PubMed  Google Scholar 

  25. Roggli VL, George MH, Brody AR (1987) Clearance and dimensional changes of crocidolite asbestos fibers isolated from lungs of rats following short-term exposure. Environ Res 42:94–105

    Article  CAS  PubMed  Google Scholar 

  26. Raabe O (1984) Deposition and clearance of inhaled particles. In: Gee J, Morgan WKC, Brooks SM (eds) Occupational lung disease. Raven, New York, pp 1–37

    Google Scholar 

  27. Brody AR, Hill LH, Stirewalt WS, Adler KB (1983) Actin-containing microfilaments of pulmonary epithelial cells provide a mechanism for translocating asbestos to the interstitium. Chest 83:11S–12S

    Article  CAS  PubMed  Google Scholar 

  28. Brody AR, Hill LH, Hesterberg TW, Barrett JC, Adler KB (1986) Intracellular transport of inorganic particles. In: Clarkson TW, Sager PR, Syverson TL (eds) The cytoskeleton: a target for toxic agents. Plenum Publishing, New York, pp 221–227

    Chapter  Google Scholar 

  29. Mossman BT, Kessler JB, Ley BW, Craighead JE (1977) Interaction of crocidolite asbestos with hamster respiratory mucosa in organ culture. Lab Invest 36:131–139

    CAS  PubMed  Google Scholar 

  30. Topping DC, Nettesheim P, Martin DH (1980) Toxic and tumorigenic effects of asbestos on tracheal mucosa. J Environ Pathol Toxicol 3:261–275

    CAS  PubMed  Google Scholar 

  31. Craighead JE (1987) Current pathogenetic concepts of diffuse malignant mesothelioma. Hum Pathol 18:544–557

    Article  CAS  PubMed  Google Scholar 

  32. Viallat JR, Raybuad F, Passarel M, Boutin C (1986) Pleural migration of chrysotile fibers after intratracheal injection in rats. Arch Environ Health 41:282–286

    Article  CAS  PubMed  Google Scholar 

  33. Holt PF (1981) Transport of inhaled dust to extrapulmonary sites. J Pathol 133:123–129

    Article  CAS  PubMed  Google Scholar 

  34. Vincent JH, Jones AD, Johnston AM, McMillan C, Bolton RE, Cowie H (1987) Accumulation of inhaled mineral dust in the lung and associated lymph nodes: implications for exposure and dose in occupational lung disease. Ann Occup Hyg 31:375–393

    CAS  PubMed  Google Scholar 

  35. Warheit DB, Chang LY, Hill LH, Hook GE, Crapo JD, Brody AR (1984) Pulmonary macrophage accumulation and asbestos-induced lesions at sites of fiber deposition. Am Rev Respir Dis 129:301–310

    CAS  PubMed  Google Scholar 

  36. Bellmann B, Muhle H, Pott F, Konig H, Kloppel H, Spurny K (1987) Persistence of man-made mineral fibres (MMMF) and asbestos in rat lungs. Ann Occup Hyg 31:693–709

    CAS  PubMed  Google Scholar 

  37. Coin PG (1989) Pulmonary clearance of asbestos fibers. Thesis, Minneapolis, University of Minnesota

    Google Scholar 

  38. Holmes A, Morgan A (1980) Clearance of anthophyllite fibers from the rat lung and the formation of asbestos bodies. Environ Res 22:13–21

    Article  CAS  PubMed  Google Scholar 

  39. Kauffer E, Vigneron JC, Hesbert A, Lemonnier M (1987) A study of the length and diameter of fibres, in lung and in broncho-alveolar lavage fluid, following exposure of rats to chrysotile asbestos. Ann Occup Hyg 31:233–240

    CAS  PubMed  Google Scholar 

  40. Morgan A, Talbot RJ, Holmes A (1978) Significance of fibre length in the clearance of asbestos fibres from the lung. Br J Ind Med 35:146–153

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Berry G, Pooley F, Gibbs A, Harris JM, McDonald JC (2009) Lung fiber burden in the Nottingham gas mask cohort. Inhal Toxicol 21:168–172

    Article  CAS  PubMed  Google Scholar 

  42. Churg A (1994) Deposition and clearance of chrysotile asbestos. Ann Occup Hyg 38:625–633, 424–625

    CAS  PubMed  Google Scholar 

  43. Davis JM, Beckett ST, Bolton RE, Collings P, Middleton AP (1978) Mass and number of fibres in the pathogenesis of asbestos-related lung disease in rats. Br J Cancer 37:673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Middleton AP, Beckett ST, Davis JMG (1977) A study of the short-term retention and clearance of inhaled asbestos by rats, using U.I.C.C. standard reference samples. In: Walton WH (ed) Inhaled particles. Pergamon Press, Oxford, pp 247–257

    Google Scholar 

  45. Churg A, Wright JL, Gilks B, DePaoli L (1989) Rapid short-term clearance of chrysotile compared with amosite asbestos in the guinea pig. Am Rev Respir Dis 139:885–890

    Article  CAS  PubMed  Google Scholar 

  46. Sebastien P, Armstrong B, Monchaux G, Bignon J (1988) Asbestos bodies in bronchoalveolar lavage fluid and in lung parenchyma. Am Rev Respir Dis 137:75–78

    Article  CAS  PubMed  Google Scholar 

  47. Bernstein DM, Rogers R, Smith P (2004) The biopersistence of Brazilian chrysotile asbestos following inhalation. Inhal Toxicol 16:745–761

    Article  CAS  PubMed  Google Scholar 

  48. Bernstein DM, Chevalier J, Smith P (2005) Comparison of Calidria chrysotile asbestos to pure tremolite: final results of the inhalation biopersistence and histopathology examination following short-term exposure. Inhal Toxicol 17:427–449

    Article  CAS  PubMed  Google Scholar 

  49. Kimizuka G, Wang NS, Hayashi Y (1987) Physical and microchemical alterations of chrysotile and amosite asbestos in the hamster lung. J Toxicol Environ Health 21:251–264

    Article  CAS  PubMed  Google Scholar 

  50. Hiroshima K, Murai Y, Suzuki Y, Goldstein B, Webster I (1993) Characterization of asbestos fibers in lungs and mesotheliomatous tissues of baboons following long-term inhalation. Am J Ind Med 23:883–901

    Article  CAS  PubMed  Google Scholar 

  51. Parry WT (1985) Calculated solubility of chrysotile asbestos in physiological systems. Environ Res 37:410–418

    Article  CAS  PubMed  Google Scholar 

  52. Jaurand MC, Gaudichet A, Halpern S, Bignon J (1984) In vitro biodegradation of chrysotile fibres by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect. Br J Ind Med 41:389–395

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Morgan A, Davies P, Wagner JC, Berry G, Holmes A (1977) The biological effects of magnesium-leached chrysotile asbestos. Br J Exp Pathol 58:465–473

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bolton RE, Vincent JH, Jones AD, Addison J, Beckett ST (1983) An overload hypothesis for pulmonary clearance of UICC amosite fibres inhaled by rats. Br J Ind Med 40:264–272

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferin J, Leach LJ (1976) The effect of amosite and chrysotile asbestos on the clearance of TiO2 particles from the lung. Environ Res 12:250–254

    Article  CAS  PubMed  Google Scholar 

  56. McMillan CH, Jones AD, Vincent JH, Johnston AM, Douglas AN, Cowie H (1989) Accumulation of mixed mineral dusts in the lungs of rats during chronic inhalation exposure. Environ Res 48:218–237

    Article  CAS  PubMed  Google Scholar 

  57. Davis JM, Jones AD, Miller BG (1991) Experimental studies in rats on the effects of asbestos inhalation coupled with the inhalation of titanium dioxide or quartz. Int J Exp Pathol 72:501–525

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Churg A, Wright JL, Hobson J, Stevens B (1992) Effects of cigarette smoke on the clearance of short asbestos fibres from the lung and a comparison with the clearance of long asbestos fibres. Int J Exp Pathol 73:287–297

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McFadden D, Wright J, Wiggs B, Churg A (1986) Cigarette smoke increases the penetration of asbestos fibers into airway walls. Am J Pathol 123:95–99

    CAS  PubMed  PubMed Central  Google Scholar 

  60. McFadden D, Wright JL, Wiggs B, Churg A (1986) Smoking inhibits asbestos clearance. Am Rev Respir Dis 133:372–374

    CAS  PubMed  Google Scholar 

  61. Pinkerton KE, Brody AR, Miller FJ, Crapo JD (1989) Exposure to low levels of ozone results in enhanced pulmonary retention of inhaled asbestos fibers. Am Rev Respir Dis 140:1075–1081

    Article  CAS  PubMed  Google Scholar 

  62. Begin R, Sebastien P (1989) Excessive accumulation of asbestos fibre in the bronchoalveolar space may be a marker of individual susceptibility to developing asbestosis: experimental evidence. Br J Ind Med 46:853–855

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Adamson IY, Bowden DH (1987) Response of mouse lung to crocidolite asbestos. 1. Minimal fibrotic reaction to short fibres. J Pathol 152:99–107

    Article  CAS  PubMed  Google Scholar 

  64. Adamson IY, Bowden DH (1987) Response of mouse lung to crocidolite asbestos. 2. Pulmonary fibrosis after long fibres. J Pathol 152:109–117

    Article  CAS  PubMed  Google Scholar 

  65. Wright GW, Kuschner M (1977) The influence of varying lengths of glass and asbestos fibres on tissue response in guinea pigs. In: Walton WH (ed) Inhaled particles. Pergamon Press, Oxford, pp 455–474

    Google Scholar 

  66. Crapo JD, Barry BE, Brody AR, O’Neill JJ (1980) Morphological, morphometric, and x-ray microanalytical studies on lung tissue of rats exposed to chrysotile asbestos in inhalation chambers. In: Wagner JC (ed) Biological effects of mineral fibers. IARC Scientific Publication, Lyon, pp 273–283

    Google Scholar 

  67. Davis JM, Addison J, Bolton RE, Donaldson K, Jones AD, Smith T (1986) The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol 67:415–430

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Davis JM, Jones AD (1988) Comparisons of the pathogenicity of long and short fibres of chrysotile asbestos in rats. Br J Exp Pathol 69:717–737

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee KP, Barras CE, Griffith FD, Waritz RS, Lapin CA (1981) Comparative pulmonary responses to inhaled inorganic fibers with asbestos and fiberglass. Environ Res 24:167–191

    Article  CAS  PubMed  Google Scholar 

  70. Lemaire I, Nadeau D, Dunnigan J, Masse S (1985) An assessment of the fibrogenic potential of very short 4T30 chrysotile by intratracheal instillation in rats. Environ Res 36:314–326

    Article  CAS  PubMed  Google Scholar 

  71. Platek SF, Groth DH, Ulrich CE, Stettler LE, Finnell MS, Stoll M (1985) Chronic inhalation of short asbestos fibers. Fundam Appl Toxicol 5:327–340

    Article  CAS  PubMed  Google Scholar 

  72. Fasske E (1986) Patholgenesis of pulmonary fibrosis induced by chrysotile asbestos. Longitudinal light and electron microscopic studies on the rat model. Virchows Arch A Pathol Anat Histolpathol 408:329–346

    Google Scholar 

  73. Tomatis M, Turci F, Ceschino R, Riganti C, Gazzano E, Martra G, Ghigo D, Fubini B (2010) High aspect ratio materials: role of surface chemistry vs. length in the historical “long and short amosite asbestos fibers”. Inhal Toxicol 22:984–998

    Article  CAS  PubMed  Google Scholar 

  74. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lippmann M (1988) Asbestos exposure indices. Environ Res 46:86–106

    Article  CAS  PubMed  Google Scholar 

  76. Davis JM, Addison J, Bolton RE, Donaldson K, Jones AD (1986) Inhalation and injection studies in rats using dust samples from chrysotile asbestos prepared by a wet dispersion process. Br J Exp Pathol 67:113–129

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Davis JM, Bolton RE, Douglas AN, Jones AD, Smith T (1988) Effects of electrostatic charge on the pathogenicity of chrysotile asbestos. Br J Ind Med 45:292–299

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fattman CL, Tan RJ, Tobolewski JM, Oury TD (2006) Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase. Free Radic Biol Med 40:601–607

    Article  CAS  PubMed  Google Scholar 

  79. Davis JM, Addison J, Bolton RE, Donaldson K, Jones AD, Miller BG (1985) Inhalation studies on the effects of tremolite and brucite dust in rats. Carcinogenesis 6:667–674

    Article  CAS  PubMed  Google Scholar 

  80. Sebastien P, Begin R, Masse S (1990) Mass, number and size of lung fibres in the pathogenesis of asbestosis in sheep. J Exp Pathol (Oxford) 71:1–10

    CAS  Google Scholar 

  81. Begin R, Cantin A, Sebastien P (1990) Chrysotile asbestos exposures can produce an alveolitis with limited fibrosing activity in a subset of high fibre retainer sheep. Eur Respir J 3:81–90

    CAS  PubMed  Google Scholar 

  82. Begin R, Cantin A, Masse S (1991) Influence of continued asbestos exposure on the outcome of asbestosis in sheep. Exp Lung Res 17:971–984

    Article  CAS  PubMed  Google Scholar 

  83. Begin R, Rola-Pleszczynski M, Masse S, Lemaire I, Sirois P, Boctor M, Nadeau D, Drapeau G, Bureau MA (1983) Asbestos-induced lung injury in the sheep model: the initial alveolitis. Environ Res 30:195–210

    Article  CAS  PubMed  Google Scholar 

  84. Bozelka BE, Sestini P, Gaumer HR, Hammad Y, Heather CJ, Salvaggio JE (1983) A murine model of asbestosis. Am J Pathol 112:326–337

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Filipenko D, Wright JL, Churg A (1985) Pathologic changes in the small airways of the guinea pig after amosite asbestos exposure. Am J Pathol 119:273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang LY, Overby LH, Brody AR, Crapo JD (1988) Progressive lung cell reactions and extracellular matrix production after a brief exposure to asbestos. Am J Pathol 131:156–170

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Brody AR, Hill LH (1982) Interstitial accumulation of inhaled chrysotile asbestos fibers and consequent formation of microcalcifications. Am J Pathol 109:107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  88. McGavran PD, Brody AR (1989) Chrysotile asbestos inhalation induces tritiated thymidine incorporation by epithelial cells of distal bronchioles. Am J Respir Cell Mol Biol 1:231–235

    Article  CAS  PubMed  Google Scholar 

  89. Brody AR, Overby LH (1989) Incorporation of tritiated thymidine by epithelial and interstitial cells in bronchiolar-alveolar regions of asbestos-exposed rats. Am J Pathol 134:133–140

    CAS  PubMed  PubMed Central  Google Scholar 

  90. McGavran PD, Moore LB, Brody AR (1990) Inhalation of chrysotile asbestos induces rapid cellular proliferation in small pulmonary vessels of mice and rats. Am J Pathol 136:695–705

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pinkerton KE, Pratt PC, Brody AR, Crapo JD (1984) Fiber localization and its relationship to lung reaction in rats after chronic inhalation of chrysotile asbestos. Am J Pathol 117:484–498

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Barry BE, Wong KC, Brody AR, Crapo JD (1983) Reaction of rat lungs to inhaled chrysotile asbestos following acute and subchronic exposures. Exp Lung Res 5:1–21

    Article  CAS  PubMed  Google Scholar 

  93. Baptista AL, Parra ER, Filho JV, Kairalla RA, de Carvalho CR, Capelozzi VL (2006) Structural features of epithelial remodeling in usual interstitial pneumonia histologic pattern. Lung 184:239–244

    Article  PubMed  Google Scholar 

  94. Berube KA, Quinlan TR, Moulton G, Hemenway D, O’Shaughnessy P, Vacek P, Mossman BT (1996) Comparative proliferative and histopathologic changes in rat lungs after inhalation of chrysotile or crocidolite asbestos. Toxicol Appl Pharmacol 137:67–74

    Article  CAS  PubMed  Google Scholar 

  95. Dixon D, Bowser AD, Badgett A, Haseman JK, Brody AR (1995) Incorporation of bromodeoxyuridine (BrdU) in the bronchiolar-alveolar regions of the lungs following two inhalation exposures to chrysotile asbestos in strain A/J mice. J Environ Pathol Toxicol Oncol 14:205–213

    CAS  PubMed  Google Scholar 

  96. Mossman BT, Janssen YM, Marsh JP, Sesko A, Shatos MA, Doherty J, Adler KB, Hemenway D, Mickey R, Vacek et al (1991) Development and characterization of a rapid-onset rodent inhalation model of asbestosis for disease prevention. Toxicol Pathol 19:412–418

    CAS  PubMed  Google Scholar 

  97. Adamson IY, Bakowska J, Bowden DH (1993) Mesothelial cell proliferation after instillation of long or short asbestos fibers into mouse lung. Am J Pathol 142:1209–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Adamson IY, Bakowska J, Bowden DH (1994) Mesothelial cell proliferation: a nonspecific response to lung injury associated with fibrosis. Am J Respir Cell Mol Biol 10:253–258

    Article  CAS  PubMed  Google Scholar 

  99. Hirano S, Ono M, Aimoto A (1988) Functional and biochemical effects on rat lung following instillation of crocidolite and chrysotile asbestos. J Toxicol Environ Health 24:27–39

    Article  CAS  PubMed  Google Scholar 

  100. Pande P, Mosleh TA, Aust AE (2006) Role of alphavbeta5 integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells. Toxicol Appl Pharmacol 210:70–77

    Article  CAS  PubMed  Google Scholar 

  101. Kamp DW (2009) Asbestos-induced lung diseases: an update. Transl Res 153:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith CM, Batcher S, Catanzaro A, Abraham JL, Phalen R (1987) Sequence of bronchoalveolar lavage and histopathologic findings in rat lungs early in inhalation asbestos exposure. J Toxicol Environ Health 20:147–161

    Article  CAS  PubMed  Google Scholar 

  103. Warheit DB, Hill LH, Brody AR (1984) In vitro effects of crocidolite asbestos and wollastonite on pulmonary macrophages and serum complement. Scan Electron Microsc (Pt 2):919–926

    Google Scholar 

  104. Warheit DB, George G, Hill LH, Snyderman R, Brody AR (1985) Inhaled asbestos activates a complement-dependent chemoattractant for macrophages. Lab Invest 52:505–514

    CAS  PubMed  Google Scholar 

  105. Wilson MR, Gaumer HR, Salvaggio JE (1977) Activation of the alternative complement pathway and generation of chemotactic factors by asbestos. J Allergy Clin Immunol 60:218–222

    Article  CAS  PubMed  Google Scholar 

  106. Warheit DB, Hill LH, George G, Brody AR (1986) Time course of chemotactic factor generation and the corresponding macrophage response to asbestos inhalation. Am Rev Respir Dis 134:128–133

    CAS  PubMed  Google Scholar 

  107. Miller K (1979) Alterations in the surface-related phenomena of alveolar macrophages following inhalation of crocidolite asbestos and quartz dusts: an overview. Environ Res 20:162–182

    Article  CAS  PubMed  Google Scholar 

  108. Warheit DB, Hill LH, Brody AR (1984) Surface morphology and correlated phagocytic capacity of pulmonary macrophages lavaged from the lungs of rats. Exp Lung Res 6:71–82

    Article  CAS  PubMed  Google Scholar 

  109. Warheit DB, Hartsky MA (1988) Assessments of pulmonary macrophage clearance responses to inhaled particulates. Scanning Microsc 2:1069–1078

    CAS  PubMed  Google Scholar 

  110. Hansen K, Mossman BT (1987) Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47:1681–1686

    CAS  PubMed  Google Scholar 

  111. Afaq F, Abidi P, Matin R, Rahman Q (1998) Activation of alveolar macrophages and peripheral red blood cells in rats exposed to fibers/particles. Toxicol Lett 99:175–182

    Article  CAS  PubMed  Google Scholar 

  112. Case BW, Ip MP, Padilla M, Kleinerman J (1986) Asbestos effects on superoxide production. An in vitro study of hamster alveolar macrophages. Environ Res 39:299–306

    Article  CAS  PubMed  Google Scholar 

  113. Goodglick LA, Kane AB (1986) Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Res 46:5558–5566

    CAS  PubMed  Google Scholar 

  114. Jackson JH, Schraufstatter IU, Hyslop PA, Vosbeck K, Sauerheber R, Weitzman SA, Cochrane CG (1987) Role of oxidants in DNA damage. Hydroxyl radical mediates the synergistic DNA damaging effects of asbestos and cigarette smoke. J Clin Invest 80:1090–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cohn ZA, Wiener E (1963) The particulate hydrolases of macrophages. I. Comparative enzymology, isolation, and properties. J Exp Med 118:991–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dannenberg AM Jr, Burstone MS, Walter PC, Kinsley JW (1963) A histochemical study of phagocytic and enzymatic functions of rabbit mononuclear and polymorphonuclear exudate cells and alveolar macrophages. I. Survey and quantitation of enzymes, and states of cellular activation. J Cell Biol 17:465–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Franson R, Beckerdite S, Wang P, Waite M, Elsbach P (1973) Some properties of phospholipases of alveolar macrophages. Biochim Biophys Acta 296:365–373

    Article  CAS  PubMed  Google Scholar 

  118. Gee JB, Vassallo CL, Bell P, Kaskin J, Basford RE, Field JB (1970) Catalase-dependent peroxidative metabolism in the alveolar macrophage during phagocytosis. J Clin Invest 49:1280–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goggins JF, Lazarus GS, Fullmer HM (1968) Hyaluronidase activity of alveolar macrophages. J Histochem Cytochem 16:688–692

    Article  CAS  PubMed  Google Scholar 

  120. Janoff A (1972) Elastase-like protease of human granulocytes and alveolar macrophages. In: Mittman C (ed) Pulmonary emphysema and proteolysis. Academic, New York, pp 205–224

    Google Scholar 

  121. Paul BB, Strauss RR, Selvaraj RJ, Sbarra AJ (1973) Peroxidase mediated antimicrobial activities of alveolar macrophage granules. Science 181:849–850

    Article  CAS  PubMed  Google Scholar 

  122. Sjostrand M, Rylander R, Bergstrom R (1989) Lung cell reactions in guinea pigs after inhalation of asbestos (amosite). Toxicology 57:1–14

    Article  CAS  PubMed  Google Scholar 

  123. Garcia JG, Griffith DE, Cohen AB, Callahan KS (1989) Alveolar macrophages from patients with asbestos exposure release increased levels of leukotriene B4. Am Rev Respir Dis 139:1494–1501

    Article  CAS  PubMed  Google Scholar 

  124. Sestini P, Tagliabue A, Bartalini M, Boraschi D (1986) Asbestos-induced modulation of release of regulatory molecules from alveolar and peritoneal macrophages. Chest 89:161S–162S

    Article  CAS  Google Scholar 

  125. Bissonnette E, Rola-Pleszczynski M (1989) Pulmonary inflammation and fibrosis in a murine model of asbestosis and silicosis. Possible role of tumor necrosis factor. Inflammation 13:329–339

    Article  CAS  PubMed  Google Scholar 

  126. Dubois CM, Bissonnette E, Rola-Pleszczynski M (1989) Asbestos fibers and silica particles stimulate rat alveolar macrophages to release tumor necrosis factor. Autoregulatory role of leukotriene B4. Am Rev Respir Dis 139:1257–1264

    Article  CAS  PubMed  Google Scholar 

  127. Kumar RK, Bennett RA, Brody AR (1988) A homologue of platelet-derived growth factor produced by rat alveolar macrophages. FASEB J 2:2272–2277

    CAS  PubMed  Google Scholar 

  128. Davies R, Erdogdu G (1989) Secretion of fibronectin by mineral dust-derived alveolar macrophages and activated peritoneal macrophages. Exp Lung Res 15:285–297

    Article  CAS  PubMed  Google Scholar 

  129. Mossman BT, Gilbert R, Doherty J, Shatos MA, Marsh J, Cutroneo K (1986) Cellular and molecular mechanisms of asbestosis. Chest 89:160S–161S

    Article  CAS  PubMed  Google Scholar 

  130. Lemaire I, Beaudoin H, Masse S, Grondin C (1986) Alveolar macrophage stimulation of lung fibroblast growth in asbestos-induced pulmonary fibrosis. Am J Pathol 122:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lemaire I, Beaudoin H, Dubois C (1986) Cytokine regulation of lung fibroblast proliferation. Pulmonary and systemic changes in asbestos-induced pulmonary fibrosis. Am Rev Respir Dis 134:653–658

    CAS  PubMed  Google Scholar 

  132. Lemaire I, Ouellet S (1996) Distinctive profile of alveolar macrophage-derived cytokine release induced by fibrogenic and nonfibrogenic mineral dusts. J Toxicol Environ Health 47:465–478

    Article  CAS  PubMed  Google Scholar 

  133. Li XY, Lamb D, Donaldson K (1993) The production of TNF-alpha and IL-1-like activity by bronchoalveolar leucocytes after intratracheal instillation of crocidolite asbestos. Int J Exp Pathol 74:403–410

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Li XY, Lamb D, Donaldson K (1993) Production of interleukin 1 by rat pleural leucocytes in culture after intratracheal instillation of crocidolite asbestos. Br J Ind Med 50:90–94

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Li XY, Lamb D, Donaldson K (1994) Mesothelial cell injury caused by pleural leukocytes from rats treated with intratracheal instillation of crocidolite asbestos or Corynebacterium parvum. Environ Res 64:181–191

    Article  CAS  PubMed  Google Scholar 

  136. Schoenberger CI, Hunninghake GW, Kawanami O, Ferrans VJ, Crystal RG (1982) Role of alveolar macrophages in asbestosis: modulation of neutrophil migration to the lung after acute asbestos exposure. Thorax 37:803–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Doll NJ, Stankus RP, Goldbach S, Salvaggio JE (1982) In vitro effect of asbestos fibers on polymorphonuclear leukocyte function. Int Arch Allergy Appl Immunol 68:17–21

    Article  CAS  PubMed  Google Scholar 

  138. Elferink JG, Deierkauf M, Kramps JA, Koerten HK (1989) An activating and cytotoxic effect of asbestos on polymorphonuclear leukocytes. Agents Actions 26:213–215

    Article  CAS  PubMed  Google Scholar 

  139. Kamp DW, Dunne M, Weitzman SA, Dunn MM (1989) The interaction of asbestos and neutrophils injures cultured human pulmonary epithelial cells: role of hydrogen peroxide. J Lab Clin Med 114:604–612

    CAS  PubMed  Google Scholar 

  140. Donaldson K, Brown GM, Brown DM, Bolton RE, Davis JM (1989) Inflammation generating potential of long and short fibre amosite asbestos samples. Br J Ind Med 46:271–276

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kagan E (1985) Current perspectives in asbestosis. Ann Allergy 54:464–473

    CAS  PubMed  Google Scholar 

  142. de Shazo RD, Daul CB, Morgan JE, Diem JE, Hendrick DJ, Bozelka BE, Stankus RP, Jones R, Salvaggio JE, Weill H (1986) Immunologic investigations in asbestos-exposed workers. Chest 89:162S–165S

    Article  Google Scholar 

  143. Barbers RG, Shih WW, Saxon A (1982) In vitro depression of human lymphocyte mitogen response (phytohaemagglutinin) by asbestos fibres. Clin Exp Immunol 48:602–610

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Miller K, Weintraub Z, Kagan E (1979) Manifestations of cellular immunity in the rat after prolonged asbestos inhalation. I. Physical interactions between alveolar macrophages and splenic lymphocytes. J Immunol 123:1029–1038

    CAS  PubMed  Google Scholar 

  145. Miller K, Kagan E (1981) Manifestations of cellular immunity in the rat after prolonged asbestos inhalation. II. Alveolar macrophage-induced splenic lymphocyte proliferation. Environ Res 26:182–194

    Article  CAS  PubMed  Google Scholar 

  146. Scheule RK, Holian A (1989) IgG specifically enhances chrysotile asbestos-stimulated superoxide anion production by the alveolar macrophage. Am J Respir Cell Mol Biol 1:313–318

    Article  CAS  PubMed  Google Scholar 

  147. Begin R, Cantin A, Masse S, Cote Y, Fabi D (1988) Effects of cyclophosphamide treatment in experimental asbestosis. Exp Lung Res 14:823–836

    Article  CAS  PubMed  Google Scholar 

  148. Kuhn C 3rd, Boldt J, King TE Jr, Crouch E, Vartio T, McDonald JA (1989) An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 140:1693–1703

    Article  PubMed  Google Scholar 

  149. Kuhn C, McDonald JA (1991) The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 138:1257–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Gauldie J, Sime PJ, Xing Z, Marr B, Tremblay GM (1999) Transforming growth factor-beta gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr Top Pathol 93:35–45

    Article  CAS  PubMed  Google Scholar 

  151. Uhal BD, Joshi I, True AL, Mundle S, Raza A, Pardo A, Selman M (1995) Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am J Physiol 269:L819–L828

    CAS  PubMed  Google Scholar 

  152. Phan SH (2002) The myofibroblast in pulmonary fibrosis. Chest 122:286S–289S

    Article  PubMed  Google Scholar 

  153. Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z (2005) TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Wu J, Liu W, Koenig K, Idell S, Broaddus VC (2000) Vitronectin adsorption to chrysotile asbestos increases fiber phagocytosis and toxicity for mesothelial cells. Am J Physiol Lung Cell Mol Physiol 279:L916–L923

    CAS  PubMed  Google Scholar 

  155. Spees JL, Pociask DA, Sullivan DE, Whitney MJ, Lasky JA, Prockop DJ, Brody AR (2007) Engraftment of bone marrow progenitor cells in a rat model of asbestos-induced pulmonary fibrosis. Am J Respir Crit Care Med 176:385–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Arden MG, Adamson IY (1992) Collagen synthesis and degradation during the development of asbestos-induced pulmonary fibrosis. Exp Lung Res 18:9–20

    Article  CAS  PubMed  Google Scholar 

  157. Lasky JA, Tonthat B, Liu JY, Friedman M, Brody AR (1998) Upregulation of the PDGF-alpha receptor precedes asbestos-induced lung fibrosis in rats. Am J Respir Crit Care Med 157:1652–1657

    Article  CAS  PubMed  Google Scholar 

  158. Pfau JC, Li S, Holland S, Sentissi JJ (2011) Alteration of fibroblast phenotype by asbestos-induced autoantibodies. J Immunotoxicol 8:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mossman BT (1990) In vitro studies on the biologic effects of fibers: correlation with in vivo bioassays. Environ Health Perspect 88:319–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fisher GL, Gallo MA (eds) (1987) Asbestos toxicity. Marcel Dekker, New York

    Google Scholar 

  161. Brody AR, George G, Hill LH (1983) Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid. Lab Invest 49:468–475

    CAS  PubMed  Google Scholar 

  162. Harington JS, Miller K, Macnab G (1971) Hemolysis by asbestos. Environ Res 4:95–117

    Article  CAS  PubMed  Google Scholar 

  163. Jaurand MC, Thomassin JH, Baillif P, Magne L, Touray JC, Bignon J (1980) Chemical and photoelectron spectrometry analysis of the adsorption of phospholipid model membranes and red blood cell membranes on to chrysotile fibres. Br J Ind Med 37:169–174

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Reiss B, Solomon S, Weisburger JH, Williams GM (1980) Comparative toxicities of different forms of asbestos in a cell culture assay. Environ Res 22:109–129

    Article  CAS  PubMed  Google Scholar 

  165. Chamberlain M, Brown RC (1978) The cytotoxic effects of asbestos and other mineral dust in tissue culture cell lines. Br J Exp Pathol 59:183–189

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Gallagher JE, George G, Brody AR (1987) Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes. Am Rev Respir Dis 135:1345–1352

    Article  CAS  PubMed  Google Scholar 

  167. Hesterberg TW, Ririe DG, Barrett JC, Nettesheim P (1987) Mechanisms of cytotoxicity of asbestos fibres in rat tracheal epithelial cells in culture. Toxicol In Vitro 1:59–65

    Article  CAS  PubMed  Google Scholar 

  168. Palekar LD, Brown BG, Coffin DL (1985) Correlation between in vitro tumorigenesis, in vitro CHO cytotoxicity and in vitro V79 cytotoxicity after exposure to mineral fibers. In: Waters MD, Sandu SF, Lewtas J, Claxton J, Strauss G, Nesnow S (eds) Short-term bioassay in the analysis of the complex environmental mixtures IV. Plenum Press, New York, pp 155–169

    Chapter  Google Scholar 

  169. Kliment CR, Clemens K, Oury TD (2009) North American erionite-associated mesothelioma with pleural plaques and pulmonary fibrosis: a case report. Int J Clin Exp Pathol 2:407–410

    PubMed  Google Scholar 

  170. Marsh JP, Mossman BT (1988) Mechanisms of induction of ornithine decarboxylase activity in tracheal epithelial cells by asbestiform minerals. Cancer Res 48:709–714

    CAS  PubMed  Google Scholar 

  171. Ghio AJ, Kadiiska MB, Xiang QH, Mason RP (1998) In vivo evidence of free radical formation after asbestos instillation: an ESR spin trapping investigation. Free Radic Biol Med 24:11–17

    Article  CAS  PubMed  Google Scholar 

  172. Petruska JM, Leslie KO, Mossman BT (1991) Enhanced lipid peroxidation in lung lavage of rats after inhalation of asbestos. Free Radic Biol Med 11:425–432

    Article  CAS  PubMed  Google Scholar 

  173. Aljandali A, Pollack H, Yeldandi A, Li Y, Weitzman SA, Kamp DW (2001) Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals. J Lab Clin Med 137:330–339

    Article  CAS  PubMed  Google Scholar 

  174. Pociask DA, Sime PJ, Brody AR (2004) Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest 84:1013–1023

    Article  CAS  PubMed  Google Scholar 

  175. Schapira RM, Ghio AJ, Effros RM, Morrisey J, Dawson CA, Hacker AD (1994) Hydroxyl radicals are formed in the rat lung after asbestos instillation in vivo. Am J Respir Cell Mol Biol 10:573–579

    Article  CAS  PubMed  Google Scholar 

  176. Eberhardt MK, Roman-Franco AA, Quiles MR (1985) Asbestos-induced decomposition of hydrogen peroxide. Environ Res 37:287–292

    Article  CAS  PubMed  Google Scholar 

  177. Weitzman SA, Graceffa P (1984) Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys 228:373–376

    Article  CAS  PubMed  Google Scholar 

  178. Zalma R, Bonneau L, Jaurand MC, Guignard J, Pezerat H (1987) Formation of oxy-radicals by oxygen reduction arising from the surface activity of asbestos. Can J Chem 65:2338–2341

    Article  CAS  Google Scholar 

  179. Dai J, Churg A (2001) Relationship of fiber surface iron and active oxygen species to expression of procollagen, PDGF-A, and TGF-beta(1) in tracheal explants exposed to amosite asbestos. Am J Respir Cell Mol Biol 24:427–435

    Article  CAS  PubMed  Google Scholar 

  180. Kamp DW, Israbian VA, Yeldandi AV, Panos RJ, Graceffa P, Weitzman SA (1995) Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos. Toxicol Pathol 23:689–695

    Article  CAS  PubMed  Google Scholar 

  181. Goodglick LA, Kane AB (1990) Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res 50:5153–5163

    CAS  PubMed  Google Scholar 

  182. Kostyuk VA, Potapovich AI (1998) Antiradical and chelating effects in flavonoid protection against silica-induced cell injury. Arch Biochem Biophys 355:43–48

    Article  CAS  PubMed  Google Scholar 

  183. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhu S, Manuel M, Tanaka S, Choe N, Kagan E, Matalon S (1998) Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ Health Perspect 106(Suppl 5):1157–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Iguchi H, Kojo S, Ikeda M (1996) Nitric oxide (NO) synthase activity in the lung and NO synthesis in alveolar macrophages of rats increased on exposure to asbestos. J Appl Toxicol 16:309–315

    Article  CAS  PubMed  Google Scholar 

  186. Oury TD, Day BJ, Crapo JD (1996) Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab Invest 75:617–636

    CAS  PubMed  Google Scholar 

  187. Tanaka S, Choe N, Hemenway DR, Zhu S, Matalon S, Kagan E (1998) Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat. J Clin Invest 102:445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Quinlan TR, BeruBe KA, Hacker MP, Taatjes DJ, Timblin CR, Goldberg J, Kimberley P, O’Shaughnessy P, Hemenway D, Torino J, Jimenez LA, Mossman BT (1998) Mechanisms of asbestos-induced nitric oxide production by rat alveolar macrophages in inhalation and in vitro models. Free Radic Biol Med 24:778–788

    Article  CAS  PubMed  Google Scholar 

  189. Quinlan TR, Marsh JP, Janssen YM, Borm PA, Mossman BT (1994) Oxygen radicals and asbestos-mediated disease. Environ Health Perspect 102(Suppl 10):107–110

    Article  PubMed  PubMed Central  Google Scholar 

  190. Abidi P, Afaq F, Arif JM, Lohani M, Rahman Q (1999) Chrysotile-mediated imbalance in the glutathione redox system in the development of pulmonary injury. Toxicol Lett 106:31–39

    Article  CAS  PubMed  Google Scholar 

  191. Kaiglova A, Kovacikova Z, Hurbankova M (1999) Impact of acute and subchronic asbestos exposure on some parameters of antioxidant defense system and lung tissue injury. Ind Health 37:348–351

    Article  CAS  PubMed  Google Scholar 

  192. Janssen YM, Marsh JP, Absher MP, Hemenway D, Vacek PM, Leslie KO, Borm PJ, Mossman BT (1992) Expression of antioxidant enzymes in rat lungs after inhalation of asbestos or silica. J Biol Chem 267:10625–10630

    CAS  PubMed  Google Scholar 

  193. Quinlan TR, Marsh JP, Janssen YM, Leslie KO, Hemenway D, Vacek P, Mossman BT (1994) Dose-responsive increases in pulmonary fibrosis after inhalation of asbestos. Am J Respir Crit Care Med 150:200–206

    Article  CAS  PubMed  Google Scholar 

  194. Holley JA, Janssen YM, Mossman BT, Taatjes DJ (1992) Increased manganese superoxide dismutase protein in type II epithelial cells of rat lungs after inhalation of crocidolite asbestos or cristobalite silica. Am J Pathol 141:475–485

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Janssen YM, Marsh JP, Absher M, Borm PJ, Mossman BT (1990) Increases in endogenous antioxidant enzymes during asbestos inhalation in rats. Free Radic Res Commun 11:53–58

    Article  CAS  PubMed  Google Scholar 

  196. Shatos MA, Doherty JM, Marsh JP, Mossman BT (1987) Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species. Environ Res 44:103–116

    Article  CAS  PubMed  Google Scholar 

  197. Kliment CR, Englert JM, Gochuico BR, Yu G, Kaminski N, Rosas I, Oury TD (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 284:3537–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kliment CR, Oury TD (2011) Extracellular superoxide dismutase protects cardiovascular syndecan-1 from oxidative shedding. Free Radic Biol Med 50:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tan RJ, Fattman CL, Watkins SC, Oury TD (2004) Redistribution of pulmonary EC-SOD after exposure to asbestos. J Appl Physiol 97:2006–2013

    Article  CAS  PubMed  Google Scholar 

  200. Tan RJ, Lee JS, Manni ML, Fattman CL, Tobolewski JM, Zheng M, Kolls JK, Martin TR, Oury TD (2006) Inflammatory cells as a source of airspace extracellular superoxide dismutase after pulmonary injury. Am J Respir Cell Mol Biol 34:226–232

    Article  CAS  PubMed  Google Scholar 

  201. Driscoll KE (2000) TNFalpha and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol Lett 112–113:177–183

    Article  PubMed  Google Scholar 

  202. Fisher CE, Rossi AG, Shaw J, Beswick PH, Donaldson K (2000) Release of TNFalpha in response to SiC fibres: differential effects in rodent and human primary macrophages, and in macrophage-like cell lines. Toxicol In Vitro 14:25–31

    Article  CAS  PubMed  Google Scholar 

  203. Ouellet S, Yang H, Aubin RA, Hawley RG, Wenckebach GF, Lemaire I (1993) Bidirectional modulation of TNF-alpha production by alveolar macrophages in asbestos-induced pulmonary fibrosis. J Leukoc Biol 53:279–286

    CAS  PubMed  Google Scholar 

  204. Li XY, Lamb D, Donaldson K (1992) Intratracheal injection of crocidolite asbestos depresses the secretion of tumor necrosis factor by pleural leukocytes in vitro. Exp Lung Res 18:359–372

    Article  CAS  PubMed  Google Scholar 

  205. Driscoll KE, Maurer JK, Higgins J, Poynter J (1995) Alveolar macrophage cytokine and growth factor production in a rat model of crocidolite-induced pulmonary inflammation and fibrosis. J Toxicol Environ Health 46:155–169

    Article  CAS  PubMed  Google Scholar 

  206. Brass DM, Hoyle GW, Poovey HG, Liu JY, Brody AR (1999) Reduced tumor necrosis factor-alpha and transforming growth factor-beta1 expression in the lungs of inbred mice that fail to develop fibroproliferative lesions consequent to asbestos exposure. Am J Pathol 154:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu JY, Brass DM, Hoyle GW, Brody AR (1998) TNF-alpha receptor knockout mice are protected from the fibroproliferative effects of inhaled asbestos fibers. Am J Pathol 153:1839–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu JY, Brody AR (2001) Increased TGF-beta1 in the lungs of asbestos-exposed rats and mice: reduced expression in TNF-alpha receptor knockout mice. J Environ Pathol Toxicol Oncol 20:97–108

    Article  CAS  PubMed  Google Scholar 

  209. Tanaka S, Choe N, Iwagaki A, Hemenway DR, Kagan E (2000) Asbestos exposure induces MCP-1 secretion by pleural mesothelial cells. Exp Lung Res 26:241–255

    Article  CAS  PubMed  Google Scholar 

  210. Liu JY, Morris GF, Lei WH, Corti M, Brody AR (1996) Up-regulated expression of transforming growth factor-alpha in the bronchiolar-alveolar duct regions of asbestos-exposed rats. Am J Pathol 149:205–217

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Perdue TD, Brody AR (1994) Distribution of transforming growth factor-beta 1, fibronectin, and smooth muscle actin in asbestos-induced pulmonary fibrosis in rats. J Histochem Cytochem 42:1061–1070

    Article  CAS  PubMed  Google Scholar 

  212. Brody AR (1997) Occupational lung disease and the role of peptide growth factors. Curr Opin Pulm Med 3:203–208

    Article  CAS  PubMed  Google Scholar 

  213. Brody AR, Liu JY, Brass D, Corti M (1997) Analyzing the genes and peptide growth factors expressed in lung cells in vivo consequent to asbestos exposure and in vitro. Environ Health Perspect 105(Suppl 5):1165–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lee TC, Gold LI, Reibman J, Aston C, Begin R, Rom WN, Jagirdar J (1997) Immunohistochemical localization of transforming growth factor-beta and insulin-like growth factor-I in asbestosis in the sheep model. Int Arch Occup Environ Health 69:157–164

    Article  CAS  PubMed  Google Scholar 

  215. Xu YD, Hua J, Mui A, O’Connor R, Grotendorst G, Khalil N (2003) Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 285:L527–L539

    Article  CAS  PubMed  Google Scholar 

  216. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  PubMed  Google Scholar 

  217. Tsunawaki S, Sporn M, Ding A, Nathan C (1988) Deactivation of macrophages by transforming growth factor-beta. Nature 334:260–262

    Article  CAS  PubMed  Google Scholar 

  218. Adamson IY, Prieditis H, Young L (1997) Lung mesothelial cell and fibroblast responses to pleural and alveolar macrophage supernatants and to lavage fluids from crocidolite-exposed rats. Am J Respir Cell Mol Biol 16:650–656

    Article  CAS  PubMed  Google Scholar 

  219. Mossman BT, Faux S, Janssen Y, Jimenez LA, Timblin C, Zanella C, Goldberg J, Walsh E, Barchowsky A, Driscoll K (1997) Cell signaling pathways elicited by asbestos. Environ Health Perspect 105(Suppl 5):1121–1125

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ding M, Dong Z, Chen F, Pack D, Ma WY, Ye J, Shi X, Castranova V, Vallyathan V (1999) Asbestos induces activator protein-1 transactivation in transgenic mice. Cancer Res 59:1884–1889

    CAS  PubMed  Google Scholar 

  221. Robledo RF, Buder-Hoffmann SA, Cummins AB, Walsh ES, Taatjes DJ, Mossman BT (2000) Increased phosphorylated extracellular signal-regulated kinase immunoreactivity associated with proliferative and morphologic lung alterations after chrysotile asbestos inhalation in mice. Am J Pathol 156:1307–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Phan SH, Thrall RS (eds) (1995) Pulmonary fibrosis. Marcel Dekker, New York

    Google Scholar 

  223. Tan RJ, Fattman CL, Niehouse LM, Tobolewski JM, Hanford LE, Li Q, Monzon FA, Parks WC, Oury TD (2006) Matrix metalloproteinases promote inflammation and fibrosis in asbestos-induced lung injury in mice. Am J Respir Cell Mol Biol 35:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yaguchi T, Fukuda Y, Ishizaki M, Yamanaka N (1998) Immunohistochemical and gelatin zymography studies for matrix metalloproteinases in bleomycin-induced pulmonary fibrosis. Pathol Int 48:954–963

    Article  CAS  PubMed  Google Scholar 

  225. Selman M, Pardo A (2004) Matrix metalloproteinases and tissue inhibitors. In: Lynch JP (ed) Lung biology in health and disease: idiopathic pulmonary fibrosis. Marcel Dekker, Inc, New York, pp 451–480

    Google Scholar 

  226. Kinnula VL, Fattman CL, Tan RJ, Oury TD (2005) Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172:417–422

    Article  PubMed  PubMed Central  Google Scholar 

  227. Fu X, Kassim SY, Parks WC, Heinecke JW (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409

    Article  CAS  PubMed  Google Scholar 

  228. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  CAS  PubMed  Google Scholar 

  229. Brody AR, Hill LH (1983) Initial epithelial and interstitial events following asbestos inhalation. In: Wagner WL, Rom WN, Merchant JA (eds) Health issues related to metal and nonmetallic mining. Butterworth, Boston, pp 161–172

    Google Scholar 

  230. Brody AR (1986) Pulmonary cell interactions with asbestos fibers in vivo and in vitro. Chest 89:155S–159S

    Article  CAS  PubMed  Google Scholar 

  231. Brody AR, Hill LH, Warheit DB (1985) Induction of early alveolar injury by inhaled asbestos and silica. Fed Proc 44:2596–2601

    CAS  PubMed  Google Scholar 

  232. Craighead JE, Kane AB (1994) The pathogenesis of malignant and nonmalignant serosal lesions in body cavities consequent to asbestos exposure. In: Jaurand MC, Bignon J (eds) The mesothelial cell and mesothelioma. Marcel Dekker, New York

    Google Scholar 

  233. Robinson C, Walsh A, Larma I, O’Halloran S, Nowak AK, Lake RA (2011) MexTAg mice exposed to asbestos develop cancer that faithfully replicates key features of the pathogenesis of human mesothelioma. Eur J Cancer 47:151–161

    Article  CAS  PubMed  Google Scholar 

  234. Webster I, Goldstein B, Coetzee FS, van Sittert GC (1993) Malignant mesothelioma induced in baboons by inhalation of amosite asbestos. Am J Ind Med 24:659–666

    Article  CAS  PubMed  Google Scholar 

  235. Kannerstein M, Churg J (1980) Mesothelioma in man and experimental animals. Environ Health Perspect 34:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Davis JM (1974) Histogenesis and fine structure of peritoneal tumors produced in animals by injections of asbestos. J Natl Cancer Inst 52:1823–1837

    Article  CAS  PubMed  Google Scholar 

  237. Muhle H, Pott F (2000) Asbestos as reference material for fibre-induced cancer. Int Arch Occup Environ Health 73(Suppl):S53–S59

    Article  CAS  PubMed  Google Scholar 

  238. Rodelsperger K, Woitowitz HJ (1995) Airborne fibre concentrations and lung burden compared to the tumour response in rats and humans exposed to asbestos. Ann Occup Hyg 39:715–725

    Article  CAS  PubMed  Google Scholar 

  239. Davis JM, Cowie HA (1990) The relationship between fibrosis and cancer in experimental animals exposed to asbestos and other fibers. Environ Health Perspect 88:305–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. McConnell EE, Wagner JC, Skidmore JW, Moore JA (1985) A comparative study of the fibrogenic and carcinogenic effects of UICC Canadian chrysotile B asbestos and glass microfibre (JM100). In: Wagner JC (ed) Biological effects of man-made mineral fibers. World Health Organization, Copenhagen, pp 234–252

    Google Scholar 

  241. Wagner JC, Berry GB, Hill RJ, Munday DE, Skidmore JW (1985) Animal experiments with man-made mineral (vitreous) fibers: effects of inhalation and intrapleural inoculation in rats. In: Wagner JC (ed) Biological effects of man-made mineral fibers. World Health Organization, Copenhagen, pp 209–233

    Google Scholar 

  242. Jones RN, Hughes JM, Weill H (1996) Asbestos exposure, asbestosis, and asbestos-attributable lung cancer. Thorax 51(Suppl 2):S9–S15

    Article  PubMed  PubMed Central  Google Scholar 

  243. Billings CG, Howard P (2000) Asbestos exposure, lung cancer and asbestosis. Monaldi Arch Chest Dis 55:151–156

    CAS  PubMed  Google Scholar 

  244. Herberman RB (1985) Multiple functions of natural killer cells, including immunoregulation as well as resistance to tumor growth. Concepts Immunopathol 1:96–132

    CAS  PubMed  Google Scholar 

  245. Manning LS, Bowman RV, Darby SB, Robinson BW (1989) Lysis of human malignant mesothelioma cells by natural killer (NK) and lymphokine-activated killer (LAK) cells. Am Rev Respir Dis 139:1369–1374

    Article  CAS  PubMed  Google Scholar 

  246. Manning LS, Davis MR, Robinson BW (1991) Asbestos fibres inhibit the in vitro activity of lymphokine-activated killer (LAK) cells from healthy individuals and patients with malignant mesothelioma. Clin Exp Immunol 83:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Tsang PH, Chu FN, Fischbein A, Bekesi JG (1988) Impairments in functional subsets of T-suppressor (CD8) lymphocytes, monocytes, and natural killer cells among asbestos-exposed workers. Clin Immunol Immunopathol 47:323–332

    Article  CAS  PubMed  Google Scholar 

  248. Kubota M, Kagamimori S, Yokoyama K, Okada A (1985) Reduced killer cell activity of lymphocytes from patients with asbestosis. Br J Ind Med 42:276–280

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Nishimura Y, Miura Y, Maeda M, Kumagai N, Murakami S, Hayashi H, Fukuoka K, Nakano T, Otsuki T (2009) Impairment in cytotoxicity and expression of NK cell- activating receptors on human NK cells following exposure to asbestos fibers. Int J Immunopathol Pharmacol 22:579–590

    Article  CAS  PubMed  Google Scholar 

  250. Lu LM, Zavitz CC, Chen B, Kianpour S, Wan Y, Stampfli MR (2007) Cigarette smoke impairs NK cell-dependent tumor immune surveillance. J Immunol 178:936–943

    Article  CAS  PubMed  Google Scholar 

  251. de Shazo RD, Morgan J, Bozelka B, Chapman Y (1988) Natural killer cell activity in asbestos workers. Interactive effects of smoking and asbestos exposure. Chest 94:482–485

    Article  Google Scholar 

  252. Bernstein D, Rogers R, Smith P (2005) The biopersistence of Canadian chrysotile asbestos following inhalation: final results through 1 year after cessation of exposure. Inhal Toxicol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  253. Bernstein DM, Rogers RA, Sepulveda R, Donaldson K, Schuler D, Gaering S, Kunzendorf P, Chevalier J, Holm SE (2011) Quantification of the pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite-asbestos following short-term inhalation exposure. Inhal Toxicol 23:372–391

    Article  CAS  PubMed  Google Scholar 

  254. Maltoni C, Minardi F, Morisi L (1982) Pleural mesotheliomas in Sprague–Dawley rats by erionite: first experimental evidence. Environ Res 29:238–244

    Article  CAS  PubMed  Google Scholar 

  255. Ozesmi M, Patiroglu TE, Hillerdal G, Ozesmi C (1985) Peritoneal mesothelioma and malignant lymphoma in mice caused by fibrous zeolite. Br J Ind Med 42:746–749

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Suzuki Y (1982) Carcinogenic and fibrogenic effects of zeolites: preliminary observations. Environ Res 27:433–445

    Article  CAS  PubMed  Google Scholar 

  257. Agency for Toxic Substances and Disease Registry (2003) Report on the expert panel on health effects of asbestos and synthetic vitreous fibers: the influence of fiber length. Agency for Toxic Substances and Disease Registry Division of Health Assessment and Consultation, Atlanta

    Google Scholar 

  258. Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst 67:965–975

    CAS  PubMed  Google Scholar 

  259. Stanton MF, Laynard M, Tegeris A, Miller E, May M, Kent E (1977) Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J Natl Cancer Inst 58:587–603

    Article  CAS  PubMed  Google Scholar 

  260. Hesterberg TW, Barrett JC (1984) Dependence of asbestos- and mineral dust-induced transformation of mammalian cells in culture on fiber dimension. Cancer Res 44:2170–2180

    CAS  PubMed  Google Scholar 

  261. Kogan FM, Nikitina OV (1994) Solubility of chrysotile asbestos and basalt fibers in relation to their fibrogenic and carcinogenic action. Environ Health Perspect 102(Suppl 5):205–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bonneau L, Malard C, Pezerat H (1986) Studies on surface properties of asbestos. II. Role of dimensional characteristics and surface properties of mineral fibers in the induction of pleural tumors. Environ Res 41:268–275

    Article  CAS  PubMed  Google Scholar 

  263. Coffin DL, Peters SE, Palekar LD, Stahel EP (1989) A study of the biological activity of erionite in relation to its chemical and structural characteristics. In: Wehner AP (ed) Biological interactions of inhaled mineral fibers and cigarette smoke. Battelle Memorial Institution, Columbus, pp 313–323

    Google Scholar 

  264. Vasilewa LA, Pylev LN, Wozniak H, Wiecek E (1991) Biological activity of synthetic amphibole asbestos. Pol J Occup Med Environ Health 4:33–41

    CAS  PubMed  Google Scholar 

  265. Adachi S, Kawamura K, Kimura K, Takemoto K (1992) Tumor incidence was not related to the thickness of visceral pleural in female Syrian hamsters intratracheally administered amphibole asbestos or manmade fibers. Environ Res 58:55–65

    Article  CAS  PubMed  Google Scholar 

  266. Rossiter CE, Chase JR (1995) Statistical analysis of results of carcinogenicity studies of synthetic vitreous fibres at Research and Consulting Company, Geneva. Ann Occup Hyg 39:759–769

    Article  CAS  PubMed  Google Scholar 

  267. Barrett JC, Lamb PW, Wiseman RW (1989) Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect 81:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Chamberlain M, Tarmy EM (1977) Asbestos and glass fibres in bacterial mutation tests. Mutat Res 43:159–164

    Article  CAS  PubMed  Google Scholar 

  269. Light WG, Wei ET (1980) Surface charge and a molecular basis for asbestos toxicity. In: Brown RC, Gormley JP, Chamberlain M, Davies R (eds) In vitro effects of mineral dusts. Springer, Berlin, pp 139–146

    Google Scholar 

  270. Reiss B, Solomon S, Tong C, Levenstein M, Rosenberg SH, Williams GM (1982) Absence of mutagenic activity of three forms of asbestos in liver epithelial cells. Environ Res 27:389–397

    Article  CAS  PubMed  Google Scholar 

  271. Oshimura M, Hesterberg TW, Tsutsui T, Barrett JC (1984) Correlation of asbestos-induced cytogenetic effects with cell transformation of Syrian hamster embryo cells in culture. Cancer Res 44:5017–5022

    CAS  PubMed  Google Scholar 

  272. Topinka J, Loli P, Georgiadis P, Dusinska M, Hurbankova M, Kovacikova Z, Volkovova K, Kazimirova A, Barancokova M, Tatrai E, Oesterle D, Wolff T, Kyrtopoulos SA (2004) Mutagenesis by asbestos in the lung of lambda-lacI transgenic rats. Mutat Res 553:67–78

    Article  CAS  PubMed  Google Scholar 

  273. Brown DG, Johnson NF, Wagner MM (1985) Multipotential behaviour of cloned rat mesothelioma cells with epithelial phenotype. Br J Cancer 51:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Jaurand MC, Kaplan H, Thiollet J, Pinchon MC, Bernaudin JF, Bignon J (1979) Phagocytosis of chrysotile fibers by pleural mesothelial cells in culture. Am J Pathol 94:529–538

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Rennard SI, Jaurand MC, Bignon J, Kawanami O, Ferrans VJ, Davidson J, Crystal RG (1984) Role of pleural mesothelial cells in the production of the submesothelial connective tissue matrix of lung. Am Rev Respir Dis 130:267–274

    CAS  PubMed  Google Scholar 

  276. Thiollet J, Jaurand MC, Kaplan H, Bignon J, Hollande E (1978) Culture procedure of mesothelial cells from the rat parietal pleura. Biomedicine 29:69–73

    CAS  PubMed  Google Scholar 

  277. Jaurand MC, Bastie-Sigeac I, Bignon J, Stoebner P (1983) Effect of chrysotile and crocidolite on the morphology and growth of rat pleural mesothelial cells. Environ Res 30:255–269

    Article  CAS  PubMed  Google Scholar 

  278. Paterour MJ, Bignon J, Jaurand MC (1985) In vitro transformation of rat pleural mesothelial cells by chrysotile fibres and/or benzo[a]pyrene. Carcinogenesis 6:523–529

    Article  CAS  PubMed  Google Scholar 

  279. Wang NS, Jaurand MC, Magne L, Kheuang L, Pinchon MC, Bignon J (1987) The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and transmission electron microscopic study. Am J Pathol 126:343–349

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Pass HI, Mew DJ (1996) In vitro and in vivo studies of mesothelioma. J Cell Biochem Suppl 24:142–151

    Article  CAS  PubMed  Google Scholar 

  281. Libbus BL, Craighead JE (1988) Chromosomal translocations with specific breakpoints in asbestos-induced rat mesotheliomas. Cancer Res 48:6455–6461

    CAS  PubMed  Google Scholar 

  282. Fatma N, Khan SG, Aslam M, Rahman Q (1992) Induction of chromosomal aberrations in bone marrow cells of asbestotic rats. Environ Res 57:175–180

    Article  CAS  PubMed  Google Scholar 

  283. Tiainen M, Tammilehto L, Rautonen J, Tuomi T, Mattson K, Knuutila S (1989) Chromosomal abnormalities and their correlations with asbestos exposure and survival in patients with mesothelioma. Br J Cancer 60:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Tiainen M, Tammilehto L, Mattson K, Knuutila S (1988) Nonrandom chromosomal abnormalities in malignant pleural mesothelioma. Cancer Genet Cytogenet 33:251–274

    Article  CAS  PubMed  Google Scholar 

  285. Popescu NC, Chahinian AP, DiPaolo JA (1988) Nonrandom chromosome alterations in human malignant mesothelioma. Cancer Res 48:142–147

    CAS  PubMed  Google Scholar 

  286. Lechner JF, Tokiwa T, LaVeck M, Benedict WF, Banks-Schlegel S, Yeager H Jr, Banerjee A, Harris CC (1985) Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci U S A 82:3884–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Olofsson K, Mark J (1989) Specificity of asbestos-induced chromosomal aberrations in short-term cultured human mesothelial cells. Cancer Genet Cytogenet 41:33–39

    Article  CAS  PubMed  Google Scholar 

  288. Achard S, Perderiset M, Jaurand MC (1987) Sister chromatid exchanges in rat pleural mesothelial cells treated with crocidolite, attapulgite, or benzo 3–4 pyrene. Br J Ind Med 44:281–283

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Rihn B, Coulais C, Kauffer E, Bottin MC, Martin P, Yvon F, Vigneron JC, Binet S, Monhoven N, Steiblen G, Keith G (2000) Inhaled crocidolite mutagenicity in lung DNA. Environ Health Perspect 108:341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Yamaguchi R, Hirano T, Ootsuyama Y, Asami S, Tsurudome Y, Fukada S, Yamato H, Tsuda T, Tanaka I, Kasai H (1999) Increased 8-hydroxyguanine in DNA and its repair activity in hamster and rat lung after intratracheal instillation of crocidolite asbestos. Jpn J Cancer Res 90:505–509

    Article  CAS  PubMed  Google Scholar 

  291. Appel JD, Fasy TM, Kohtz DS, Kohtz JD, Johnson EM (1988) Asbestos fibers mediate transformation of monkey cells by exogenous plasmid DNA. Proc Natl Acad Sci U S A 85:7670–7674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Dubes GR, Mack LR (1988) Asbestos-mediated transfection of mammalian cell cultures. In Vitro Cell Dev Biol 24:175–182

    Article  CAS  PubMed  Google Scholar 

  293. Kenne K, Ljungquist S, Ringertz NR (1986) Effects of asbestos fibers on cell division, cell survival, and formation of thioguanine-resistant mutants in Chinese hamster ovary cells. Environ Res 39:448–464

    Article  CAS  PubMed  Google Scholar 

  294. Lipkin LE (1980) Cellular effects of asbestos and other fibers: correlations with in vivo induction of pleural sarcoma. Environ Health Perspect 34:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Jaurand MC, Fleury J, Monchaux G, Nebut M, Bignon J (1987) Pleural carcinogenic potency of mineral fibers (asbestos, attapulgite) and their cytotoxicity on cultured cells. J Natl Cancer Inst 79:797–804

    CAS  PubMed  Google Scholar 

  296. Moalli PA, MacDonald JL, Goodglick LA, Kane AB (1987) Acute injury and regeneration of the mesothelium in response to asbestos fibers. Am J Pathol 128:426–445

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Branchaud RM, MacDonald JL, Kane AB (1989) Induction of angiogenesis by intraperitoneal injection of asbestos fibers. FASEB J 3:1747–1752

    CAS  PubMed  Google Scholar 

  298. Fraire AE, Greenberg SD, Spjut HJ, Roggli VL, Dodson RF, Cartwright J, Williams G, Baker S (1994) Effect of fibrous glass on rat pleural mesothelium. Histopathologic observations. Am J Respir Crit Care Med 150:521–527

    Article  CAS  PubMed  Google Scholar 

  299. Fraire AE, Greenberg SD, Spjut HJ, Dodson RF, Williams G, Lach-Pasko E, Roggli VL (1997) Effect of erionite on the pleural mesothelium of the Fischer 344 rat. Chest 111:1375–1380

    Article  CAS  PubMed  Google Scholar 

  300. Suzuki Y, Chahinian AP, Ohnuma T (1987) Comparative studies of human malignant mesothelioma in vivo, in xenografts in nude mice, and in vitro. Cell origin of malignant mesothelioma. Cancer 60:334–344

    Article  CAS  PubMed  Google Scholar 

  301. Linden CJ, Johansson L (1988) Progressive growth of a human pleural mesothelioma xenografted to athymic rats and mice. Br J Cancer 58:614–618

    Article  CAS  PubMed  Google Scholar 

  302. Linden CJ, Johansson L (1988) Xenografting of human pleural mesotheliomas to athymic rats and mice. In Vivo 2:345–348

    CAS  PubMed  Google Scholar 

  303. Mossman BT, Craighead JE (1979) Use of hamster tracheal organ cultures for assessing the cocarcinogenic effects of inorganic particulates on the respiratory epithelium. Prog Exp Tumor Res 24:37–47

    Article  CAS  PubMed  Google Scholar 

  304. Mossman BT, Craighead JE, MacPherson BV (1980) Asbestos-induced epithelial changes in organ cultures of hamster trachea: inhibition by retinyl methyl ether. Science 207:311–313

    Article  CAS  PubMed  Google Scholar 

  305. Holtz G, Bresnick E (1988) Ascorbic acid inhibits the squamous metaplasia that results from treatment of tracheal explants with asbestos or benzo[a]pyrene-coated asbestos. Cancer Lett 42:23–28

    Article  CAS  PubMed  Google Scholar 

  306. Lechner JF, Tesfaigzi J, Gerwin BI (1997) Oncogenes and tumor-suppressor genes in mesothelioma – a synopsis. Environ Health Perspect 105(Suppl 5):1061–1067

    Article  PubMed  PubMed Central  Google Scholar 

  307. Fleury-Feith J, Lecomte C, Renier A, Matrat M, Kheuang L, Abramowski V, Levy F, Janin A, Giovannini M, Jaurand MC (2003) Hemizygosity of Nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene 22:3799–3805

    Article  CAS  PubMed  Google Scholar 

  308. Baser ME, De Rienzo A, Altomare D, Balsara BR, Hedrick NM, Gutmann DH, Pitts LH, Jackler RK, Testa JR (2002) Neurofibromatosis 2 and malignant mesothelioma. Neurology 59:290–291

    Article  CAS  PubMed  Google Scholar 

  309. Altomare DA, Vaslet CA, Skele KL, De Rienzo A, Devarajan K, Jhanwar SC, McClatchey AI, Kane AB, Testa JR (2005) A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 65:8090–8095

    Article  CAS  PubMed  Google Scholar 

  310. Altomare DA, Menges CW, Pei J, Zhang L, Skele-Stump KL, Carbone M, Kane AB, Testa JR (2009) Activated TNF-alpha/NF-kappaB signaling via down-regulation of Fas-associated factor 1 in asbestos-induced mesotheliomas from Arf knockout mice. Proc Natl Acad Sci U S A 106:3420–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Vaslet CA, Messier NJ, Kane AB (2002) Accelerated progression of asbestos-induced mesotheliomas in heterozygous p53+/− mice. Toxicol Sci 68:331–338

    Article  CAS  PubMed  Google Scholar 

  312. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, Cox NJ, Dogan AU, Pass HI, Trusa S, Hesdorffer M, Nasu M, Powers A, Rivera Z, Comertpay S, Tanji M, Gaudino G, Yang H, Carbone M (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Ventii KH, Devi NS, Friedrich KL, Chernova TA, Tighiouart M, Van Meir EG, Wilkinson KD (2008) BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 68:6953–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, Creaney J, Lake RA, Zakowski MF, Reva B, Sander C, Delsite R, Powell S, Zhou Q, Shen R, Olshen A, Rusch V, Ladanyi M (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43:668–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C, Bowcock AM (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330:1410–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Fang Y, Fu D, Shen XZ (1806) The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta 2010:1–6

    Google Scholar 

  317. Robinson C, van Bruggen I, Segal A, Dunham M, Sherwood A, Koentgen F, Robinson BW, Lake RA (2006) A novel SV40 TAg transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependent. Cancer Res 66:10786–10794

    Article  CAS  PubMed  Google Scholar 

  318. Wehner AP (1989) Biological interactions of inhaled mineral fibers and cigarette smoke. Battelle Memorial Institute, Columbus

    Google Scholar 

  319. Harvey G, Page M, Dumas L (1984) Binding of environmental carcinogens to asbestos and mineral fibres. Br J Ind Med 41:396–400

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Kimizuka G, Azuma M, Ishibashi M, Shinozaki K, Hayashi Y (1993) Co-carcinogenic effect of chrysotile and amosite asbestos with benzo(a)pyrene in the lung of hamsters. Acta Pathol Jpn 43:149–153

    CAS  PubMed  Google Scholar 

  321. Gerde P, Scholander P (1988) Adsorption of benzo(a)pyrene on to asbestos and manmade mineral fibres in an aqueous solution and in a biological model solution. Br J Ind Med 45:682–688

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Mossman BT, Craighead JE (1981) Mechanisms of asbestos carcinogenesis. Environ Res 25:269–280

    Article  CAS  PubMed  Google Scholar 

  323. Lu YP, Lasne C, Lowy R, Chouroulinkov I (1988) Use of the orthogonal design method to study the synergistic effects of asbestos fibres and 12-O-tetradecanoylphorbol-13-acetate (TPA) in the BALB/3T3 cell transformation system. Mutagenesis 3:355–362

    Article  CAS  PubMed  Google Scholar 

  324. Mossman BT, Craighead JE (1982) Comparative cocarcinogenic effects of crocidolite asbestos, hematite, kaolin and carbon in implanted tracheal organ cultures. Ann Occup Hyg 26:553–567

    CAS  PubMed  Google Scholar 

  325. Harrison PT, Heath JC (1988) Apparent synergy between chrysotile asbestos and N-nitrosoheptamethyleneimine in the induction of pulmonary tumours in rats. Carcinogenesis 9:2165–2171

    Article  CAS  PubMed  Google Scholar 

  326. Warren S, Brown CE, Chute RN, Federman M (1981) Mesothelioma relative to asbestos, radiation, and methylcholanthrene. Arch Pathol Lab Med 105:305–312

    CAS  PubMed  Google Scholar 

  327. Gerde P, Scholander P (1987) A hypothesis concerning asbestos carcinogenicity: the migration of lipophilic carcinogens in adsorbed lipid bilayers. Ann Occup Hyg 31:395–400

    CAS  PubMed  Google Scholar 

  328. Jung M, Davis WP, Taatjes DJ, Churg A, Mossman BT (2000) Asbestos and cigarette smoke cause increased DNA strand breaks and necrosis in bronchiolar epithelial cells in vivo. Free Radic Biol Med 28:1295–1299

    Article  CAS  PubMed  Google Scholar 

  329. Sekhon H, Wright J, Churg A (1995) Effects of cigarette smoke and asbestos on airway, vascular and mesothelial cell proliferation. Int J Exp Pathol 76:411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Churg A, Hobson J, Berean K, Wright J (1989) Scavengers of active oxygen species prevent cigarette smoke-induced asbestos fiber penetration in rat tracheal explants. Am J Pathol 135:599–603

    CAS  PubMed  PubMed Central  Google Scholar 

  331. Hei TK, Hall EJ, Osmak RS (1984) Asbestos, radiation and oncogenic transformation. Br J Cancer 50:717–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Reid A, Berry G, de Klerk N, Hansen J, Heyworth J, Ambrosini G, Fritschi L, Olsen N, Merler E, Musk AW (2007) Age and sex differences in malignant mesothelioma after residential exposure to blue asbestos (crocidolite). Chest 131:376–382

    Article  PubMed  Google Scholar 

  333. Berry G, Wagner JC (1976) Effect of age at inoculation of asbestos on occurrence of mesotheliomas in rats. Int J Cancer 17:477–483

    Article  CAS  PubMed  Google Scholar 

  334. Mossman BT, Gee JB (1989) Asbestos-related diseases. N Engl J Med 320:1721–1730

    Article  CAS  PubMed  Google Scholar 

  335. Mossman B, Light W, Wei E (1983) Asbestos: mechanisms of toxicity and carcinogenicity in the respiratory tract. Annu Rev Pharmacol Toxicol 23:595–615

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judson M. Englert MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Englert, J.M., Kliment, C.R., Oury, T.D. (2014). Experimental Models of Asbestos-Related Diseases. In: Oury, T., Sporn, T., Roggli, V. (eds) Pathology of Asbestos-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41193-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41193-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41192-2

  • Online ISBN: 978-3-642-41193-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics