Skip to main content

Super-Resolution Patterning and Photolithography Based on Surface Plasmon Polaritons

  • Chapter
  • First Online:
Book cover Novel Optical Technologies for Nanofabrication

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1763 Accesses

Abstract

Surface plasmonic polaritons (SPPs)-based photo-nanolithography is a recently developed photolithography technology, capable of making breaking diffraction-limit deep-subwavelength patterns with compatible infrastructure instrumentations, materials, and processing with those used in the conventional photolithography technology. The physics origin of the superior capability of the SPPs-based photolithography is based on the unique properties of “optical frequency, but X-ray wavelength” of the surface evanescent waves induced at the interface of a metal and a dielectric material. This chapter reviews progress of different major implementation schemes of the SPPs-based photolithography in recent years, which include categories of prism-coupled SPPs nanolithography, grating-coupled SPPs nanolithography, superlens imaging nanolithography, SPPs direct writing nanolithography, and so on. The SPPs-based photolithography is currently a fast-growing research area in which new ideas and improvements about the technology continue to emerge. It is believed that it will have significant potential in the next-generation photolithography technology of nano features, large area, fast speed, and cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothschild M, Bloomstein TM, Curtin JE et al (1999) 157 nm: deepest deep-ultraviolet yet. J Vac Sci Technol B 17:3262–3266

    Article  CAS  Google Scholar 

  2. Gwyn CW, Stulen R, Sweeney D et al (1998) Extreme ultraviolet lithography. J Vac Sci Technol B 16:3142–3149

    Article  CAS  Google Scholar 

  3. Silverman JP (1998) Challenges and progress in x-ray lithography. J Vac Sci Technol B 16:3137–3141

    Article  CAS  Google Scholar 

  4. Johnson KS, Thywissen JH, Dekker NH et al (1998) Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280:1583–1586

    Article  CAS  Google Scholar 

  5. Vieu C, Carcenac F, Pepin A et al (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117

    Article  CAS  Google Scholar 

  6. Soshnikov IP, Afanas’ev DE, Cirlin GE et al (2011) Fabrication of ordered GaAs nanowhiskers using electron-beam lithography. Semiconductors 45:822–827

    Article  CAS  Google Scholar 

  7. Luo C, Li Y, Susumu S (2012) Fabrication of high aspect ratio subwavelength gratings based on X-ray lithography and electron beam lithography. Opt Laser Technol 44:1649–1653

    Article  CAS  Google Scholar 

  8. Manheller M, Trellenkamp S, Waser R et al (2012) Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography. Nanotechnology 23:125302–125302

    Article  CAS  Google Scholar 

  9. Near R, Tabor C, Duan J et al (2012) Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett 12:2158–2164

    Article  CAS  Google Scholar 

  10. Melngailis J, Mondelli AA, Berry IL et al (1998) A review of ion projection lithography. J Vac Sci Technol B 16:927–957

    Article  CAS  Google Scholar 

  11. Altun AO, Jeong J-H, Rha J-J et al (2007) Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography. Nanotechnology 18:465302–465302

    Article  CAS  Google Scholar 

  12. Wu MC, Aziz A, Witt JDS et al (2008) Structural and functional analysis of nanopillar spin electronic devices fabricated by 3D focused ion beam lithography. Nanotechnology 19:485305

    Article  CAS  Google Scholar 

  13. Lu K, Zhao J (2010) Focused ion beam lithography and anodization combined nanopore patterning. J Nanosci Nanotechnol 10:6760–6768

    Article  CAS  Google Scholar 

  14. Oshima A, Okubo S, Oyama TG et al (2012) Nano- and micro-fabrications of polystyrene having atactic and syndiotactic structures using focused ion beams lithography. Radiat Phys Chem 81:584–588

    Article  CAS  Google Scholar 

  15. Piner RD, Zhu J, Xu F et al (1999) “Dip-pen” nanolithography. Science 283:661–663

    Article  CAS  Google Scholar 

  16. Mirkin CA (2007) The power of the pen: development of massively parallel dip-pen nanolithography. ACS Nano 1:79–83

    Article  CAS  Google Scholar 

  17. Basnar B, Willner I (2009) Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces. Small 5:28–44

    Article  CAS  Google Scholar 

  18. Nafday OA, Lenhert S (2011) High-throughput optical quality control of lipid multilayers fabricated by dip-pen nanolithography. Nanotechnology 22:225301

    Article  Google Scholar 

  19. McAlpine MC, Friedman RS, Lieber DM (2003) Nanoimprint lithography for hybrid plastic electronics. Nano Lett 3:443–445

    Article  CAS  Google Scholar 

  20. Battaglia C, Escarre J, Soederstroem K et al (2011) Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett 11:661–665

    Article  CAS  Google Scholar 

  21. Higashiki T, Nakasugi T, Yoneda I (2011) Nanoimprint lithography and future patterning for semiconductor devices. J Micro-Nanolith Mems Moems 10:043008

    Article  Google Scholar 

  22. Qin F, Meng Z-M, Zhong X-L et al (2012) Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nanoimprint lithography technique. Opt Express 20:13091–13099

    Article  CAS  Google Scholar 

  23. Blaikie RJ, McNab SJ (2001) Evanescent interferometric lithography. Appl Optics 40:1692–1698

    Article  CAS  Google Scholar 

  24. Chua JK, Murukeshan VM, Tan SK et al (2007) Four beams evanescent waves interference lithography for patterning of two dimensional features. Opt Express 15:3437–3451

    Article  CAS  Google Scholar 

  25. Chua JK, Murukeshan VM (2009) UV laser-assisted multiple evanescent waves lithography for near-field nanopatterning. Micro Nano Lett 4:210–214

    Article  CAS  Google Scholar 

  26. Sreekanth KV, Chua JK, Murukeshan VM (2010) Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference. Appl Optics 49:6710–6717

    Article  Google Scholar 

  27. Ebbesen TW, Lezec HJ, Ghaemi HF et al (1998) Extraordinary optical transmission through subwavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  28. Weeber J-C, Krenn JR, Dereux A et al (2001) Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys Rev B 64:045411

    Article  CAS  Google Scholar 

  29. Shalaev VM, Kawata S (2007) Nanophotonics with surface plasmons. Elsevier, Amsterdam

    Google Scholar 

  30. Xie Z, Yu W, Wang T et al (2011) Plasmonic nanolithography: a review. Plasmonics 6:565–580

    Article  Google Scholar 

  31. Luo X, Yan L (2012) Surface plasmon polaritons and its applications. IEEE Photonic J 4:590–595

    Article  Google Scholar 

  32. Srituravanich W, Fang N, Sun C et al (2004) Plasmonic nanolithography. Nano Lett 4:1085–1088

    Article  CAS  Google Scholar 

  33. Srituravanich W, Fang N, Durant S et al (2004) Sub-100 nm lithography using ultrashort wavelength of surface plasmons. J Vac Sci Technol B 22:3475–3478

    Article  CAS  Google Scholar 

  34. Srituravanich W, Durant S, Lee H et al (2005) Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask. J Vac Sci Technol B 23:2636–2639

    Article  CAS  Google Scholar 

  35. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon sub-wavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  36. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  37. Grigorenko AN, Geim AK, Gleeson HF et al (2005) Nanofabricated media with negative permeability at visible frequencies. Nature 438:335–338

    Article  CAS  Google Scholar 

  38. Stefan AM (2007) Plamonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  39. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie 23A:2135–2136

    Google Scholar 

  40. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift Fur Physik 216:398–410

    Article  CAS  Google Scholar 

  41. Ritchie RH, Arakawa ET, Cowan JJ et al (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21:1530–1532

    Article  CAS  Google Scholar 

  42. Zayats AV, Smolyaninov II (2003) Near-field photonics: surface plasmon polaritons and localized surface plasmons. J Opt A-Pure Appl Opt 5:S16–S50

    Article  CAS  Google Scholar 

  43. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  CAS  Google Scholar 

  44. Thio T, Pellerin KM, Linke RA et al (2001) Enhanced light transmission through a single subwavelength aperture. Opt Lett 26:1972–1974

    Article  CAS  Google Scholar 

  45. Lezec HJ, Degiron A, Devaux E et al (2002) Beaming light from a subwavelength aperture. Science 297:820–822

    Article  CAS  Google Scholar 

  46. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW et al (2010) Light passing through subwavelength apertures. Rev Mod Phys 82:729–787

    Article  Google Scholar 

  47. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  CAS  Google Scholar 

  48. Fang N, Zhang X (2003) Imaging properties of a metamaterial superlens. Appl Phys Lett 82:161–163

    Article  CAS  Google Scholar 

  49. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, Berlin

    Book  Google Scholar 

  50. Guo X, Du J, Guo Y et al (2006) Large-area surface-plasmon polariton interference lithography. Opt Lett 31:2613–2615

    Article  Google Scholar 

  51. Xiong W, Du JG, Fang L et al (2008) 193 nm interference nanolithography based on SPP. Microelectron Eng 85:754–757

    Article  CAS  Google Scholar 

  52. Sreekanth KV, Murukeshan VM (2010) Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning. J Opt Soc Am A-Opt Image Sci Vis 27:95–99

    Article  CAS  Google Scholar 

  53. Sreekanth KV, Murukeshan VM (2011) Multiple beams surface plasmon interference generation: a theoretical analysis. Opt Commun 284:2042–2045

    Article  CAS  Google Scholar 

  54. Lim Y, Kim S, Kim H et al (2008) Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film. Ieee J Quant Electron 44:305–311

    Article  CAS  Google Scholar 

  55. Guo X, Dong Q (2010) Coupled surface plasmon interference lithography based on a metal-bounded dielectric structure. J Appl Phys 108:113108

    Article  CAS  Google Scholar 

  56. He M, Zhang Z, Shi S et al (2010) A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique. Opt Express 18:15975–15980

    Article  CAS  Google Scholar 

  57. Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci 72:577–588

    Article  CAS  Google Scholar 

  58. Luo XG, Ishihara T (2004) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84:4780–4782

    Article  CAS  Google Scholar 

  59. Luo XG, Ishihara T (2004) Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express 12:3055–3065

    Article  Google Scholar 

  60. Doskolovich LL, Kadomina EA, Kadomin II (2007) Nanoscale photolithography by means of surface plasmon interference. J Opt A-Pure Appl Opt 9:854–857

    Article  Google Scholar 

  61. Bezus EA, Bykov DA, Doskolovich LL et al (2008) Diffraction gratings for generating varying-period interference patterns of surface plasmons. J Opt A-Pure Appl Opt 10:095204

    Article  Google Scholar 

  62. Bezus EA, Doskolovich LL (2010) Grating-assisted generation of 2D surface plasmon interference patterns for nanoscale photolithography. Opt Commun 283:2020–2025

    Article  CAS  Google Scholar 

  63. Xu T, Zhao Y, Ma J et al (2008) Sub-diffraction-limited interference photolithography with metamaterials. Opt Express 16:13579–13584

    Article  CAS  Google Scholar 

  64. Yang X, Zeng B, Wang C et al (2009) Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer. Opt Express 17:21560–21565

    Article  CAS  Google Scholar 

  65. Xiong Y, Liu Z, Zhang X (2008) Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers. Appl Phys Lett 93:111116

    Article  CAS  Google Scholar 

  66. Yang XF, Fang LA, Zeng BB et al (2010) Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure. J Opt 12:045001

    Article  CAS  Google Scholar 

  67. Yang X, Li W, Zhang D (2012) Subwavelength lithography using metallic grating waveguide heterostructure. Appl Phys A-Mater Sci Process 107:123–126

    Article  CAS  Google Scholar 

  68. Ge W, Wang C, Xue Y et al (2011) Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity. Opt Express 19:6714–6723

    Article  CAS  Google Scholar 

  69. Liu ZW, Wei QH, Zhang X (2005) Surface plasmon interference nanolithography. Nano Lett 5:957–961

    Article  CAS  Google Scholar 

  70. Wei XZ, Luo XG, Dong XC et al (2007) Localized surface plasmon nanolithography with ultrahigh resolution. Opt Express 15:14177–14183

    Article  Google Scholar 

  71. Murukeshan VM, Sreekanth KV (2009) Excitation of gap modes in a metal particle-surface system for sub-30 nm plasmonic lithography. Opt Lett 34:845–847

    Article  CAS  Google Scholar 

  72. Guo XW, Du JL, Luo XG et al (2007) Surface-plasmon polariton interference nanolithography based on end-fire coupling. Microelectron Eng 84:1037–1040

    Article  CAS  Google Scholar 

  73. Liu Z, Wang Y, Yao J et al (2009) Broad band two-dimensional manipulation of surface plasmons. Nano Lett 9:462–466

    Article  CAS  Google Scholar 

  74. Ueno K, Takabatake S, Onishi K et al (2011) Homogeneous nano-patterning using plasmon-assisted photolithography. Appl Phys Lett 99:011107

    Article  CAS  Google Scholar 

  75. Ueno K, Takabatake S, Nishijima Y et al (2010) Nanogap-assisted surface plasmon nanolithography. J Phys Chem Lett 1:657–662

    Article  CAS  Google Scholar 

  76. Fang N, Lee H, Sun C et al (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  Google Scholar 

  77. Lee H, Xiong Y, Fang N et al (2005) Realization of optical superlens imaging below the diffraction limit. New J Phys 7:1–16

    Article  Google Scholar 

  78. Zhang Y, Dong X, Du J et al (2010) Nanolithography method by using localized surface plasmon mask generated with polydimethylsiloxane soft mold on thin metal film. Opt Lett 35:2143–2145

    Article  Google Scholar 

  79. Chaturvedi P, Wu W, Logeeswaran VJ et al (2010) A smooth optical superlens. Appl Phys Lett 96:043102

    Article  CAS  Google Scholar 

  80. Shi Z, Kochergin V, Wang F (2009) Depth-of-focus (DoF) analysis of a 193nm superlens imaging structure. Opt Express 17:20538–20545

    Article  Google Scholar 

  81. Shi Z, Kochergin V, Wang F (2009) 193nm superlens imaging structure for 20nm lithography node. Opt Express 17:11309–11314

    Article  CAS  Google Scholar 

  82. Xu T, Fang L, Ma J et al (2009) Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl Phys B-Lasers Opt 97:175–179

    Article  CAS  Google Scholar 

  83. Blaikie RJ, Melville DOS, Alkalsi MM (2006) Super-resolution near-field lithography using planar silver lenses: a review of recent developments. Microelectron Eng 83:723–729

    Article  CAS  Google Scholar 

  84. Liu Z, Lee H, Xiong Y et al (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686–1686

    Article  CAS  Google Scholar 

  85. Liu Z, Durant S, Lee H et al (2007) Far-field optical superlens. Nano Lett 7:403–408

    Article  CAS  Google Scholar 

  86. Liu Z, Durant S, Lee H et al (2007) Experimental studies of far-field superlens for sub-diffractional optical imaging. Opt Express 15:6947–6954

    Article  Google Scholar 

  87. Zhang X, Liu Z (2008) Superlenses to overcome the diffraction limit. Nat Mater 7:435–441

    Article  CAS  Google Scholar 

  88. Yao N, Wang C, Ren G et al (2012) Demagnifying far field focusing spot to deep subwavelength scale by truncated hyperlens for nanolithography. Superlattice Microst 52:63–69

    Article  CAS  Google Scholar 

  89. Wang W, Xing H, Fang L et al (2008) Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt Express 16:21142–21148

    Article  CAS  Google Scholar 

  90. Han S, Xiong Y, Genov D et al (2008) Ray optics at a deep-subwavelength scale: a transformation optics approach. Nano Lett 8:4243–4247

    Article  CAS  Google Scholar 

  91. Kildishev AV, Shalaev VM (2008) Engineering space for light via transformation optics. Opt Lett 33:43–45

    Article  Google Scholar 

  92. Wang Y, Srituravanich W, Sun C et al (2008) Plasmonic nearfield scanning probe with high transmission. Nano Lett 8:3041–3045

    Article  CAS  Google Scholar 

  93. Erdmanis M, Viegas D, Hautakorpi M et al (2011) Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber. Opt Express 19:13980–13988

    Article  CAS  Google Scholar 

  94. Sun M, Liu R-J, Li Z-Y et al (2007) Enhanced near-infrared transmission through periodic H-shaped arrays. Phys Lett A 365:510–513

    Article  CAS  Google Scholar 

  95. Cho E-H, Kang S-M, Leen JB et al (2010) Polymeric light delivery via a C-shaped metallic aperture. J Opt Soc Am B-Opt Phys 27:1309–1316

    Article  CAS  Google Scholar 

  96. Chen YC, Fang JY, Tien CH (2006) Double-corrugated C-shaped aperture for near-field recording. Jpn J Appl Phys Part 1-Regular Pap Brief Commun Rev Pap 45:1348–1350

    Article  CAS  Google Scholar 

  97. Zhou L, Gan Q, Bartoli FJ et al (2009) Direct near-field optical imaging of UV bowtie nanoantennas. Opt Express 17:20301–20306

    Article  Google Scholar 

  98. Kim Y, Kim S, Jung H et al (2009) Plasmonic nano lithography with a high scan speed contact probe. Opt Express 17:19476–19485

    Article  CAS  Google Scholar 

  99. Murphy-DuBay N, Wang L, Kinzel EC et al (2008) Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture. Opt Express 16:2584–2589

    Article  Google Scholar 

  100. Srituravanich W, Pan L, Wang Y et al (2008) Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotechnol 3:733–737

    Article  CAS  Google Scholar 

  101. Pan L, Park Y-S, Xiong Y et al (2010) Flying plasmonic lens at near field for high speed nano-lithography. Proc SPIE 7637:763713

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, Q., Duan, X., Peng, C. (2014). Super-Resolution Patterning and Photolithography Based on Surface Plasmon Polaritons. In: Novel Optical Technologies for Nanofabrication. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40387-3_6

Download citation

Publish with us

Policies and ethics