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Abstract. Modern web browsers implement a private browsing mode
that is intended to leave behind no traces of a user’s browsing activity
on their computer. This feature is in direct tension with support for
extensions, which can silently void this guarantee.

We create a static type system to analyze JavaScript extensions for
observation of private browsing mode. Using this type system, extension
authors and app stores can convince themselves of an extension’s safety
for private browsing mode. In addition, some extensions intentionally
violate the private browsing guarantee; our type system accommodates
this with a small annotation overhead, proportional to the degree of
violation. These annotations let code auditors narrow their focus to a
small fraction of the extension’s codebase.

We have retrofitted type annotations to Firefox’s apis and to a sample
of actively used Firefox extensions. We used the type system to verify
several extensions as safe, find actual bugs in several others (most of
which have been confirmed by their authors), and find dubious behavior
in the rest. Firefox 20, released April 2, 2013, implements a finer-grained
private browsing mode; we sketch both the new challenges in this imple-
mentation and how our approach can handle them.

1 Introduction

Modern web browsers are feature-rich systems, providing a highly customizable
environment for browsing, running web apps, and downloading content. People
use browsers for a wide variety of reasons, and now routinely conduct sensitive
transactions with them. Accordingly, recent browsers have added support for
so-called private browsing mode, in which the browser effectively keeps no record
of the user’s activities: no history or cache is preserved, no cookies are retained,
etc. The precise guarantee provided by private browsing mode is, however, rather
more subtle, since a strict policy of retaining absolutely no record would preclude
standard browsing activities such as downloading any files.

Ensuring the correctness of private browsing mode is therefore challenging on
its own, but the situation is trickier still. Most browsers support extensions,1
written in JavaScript (JS), that allow users to customize the browser with third-
party code—which run with the browser’s full privileges and can hence also save
∗ This work is partially supported by the US National Science Foundation.
1 These are distinct from plugins such as Flash or Java; we exclude plugins here.
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files or other traces of the user’s activity. In short, the presence of extensions
can completely undermine the browser’s privacy efforts.

The extension community is vibrant, with over 60 million daily extension
users, and billions of total installations [16]. The potential privacy harm from
faulty extensions is correspondingly huge. Unfortunately, all three involved
parties—browser authors, extension authors, and end-users—have difficulty prop-
erly protecting end-users from these problems. For browser authors, there is no
universally safe default: running extensions automatically is clearly unsafe, but
disabling them by default would also disable extensions such as AdBlock, which
serve to enhance the overall privacy of the browser! Moreover, users currently
have no way to make an informed decision about which extensions to re-enable.
And worse still, even extension authors do not fully understand what private
browsing mode entails: in the course of this work, for instance, one extension
author we contacted replied, “when I wrote [the extension], the private browsing
stuff didn’t exist (to be honest, I’m only peripherally aware of it now).”

To date, browser vendors—primarily Mozilla and Google, whose browsers fea-
ture the most sophisticated extension support—provide extension authors with
only rather vague guidelines on proper behavior when in private browsing mode.
Mozilla enforces its guidelines via manual code audits on all the extensions up-
loaded to their site. Unfortunately, these audits are a bottleneck in the otherwise-
automated process of publishing an extension [34, 35]. It is also possible for
violations—sometimes flagrant ones [23]—to slip through, and our work finds
more violations, even in extensions that have passed review and been given a se-
curity check. Moreover, if policies ever changed, Mozilla would face the daunting
task of re-auditing thousands of extensions.

Contributions

We propose a new mechanism for verifying that extensions behave properly
in private browsing mode. Our approach uses a lightweight type system for JS
that exposes all potentially privacy-violating actions as type errors: the lack of
type errors proves the extension is privacy-preserving. Authors can tell the type-
checker precisely which errors to ignore, and only these annotations must then
be audited in a security review. This paper makes the following contributions:

– We design a type system that segregates “potentially unsafe” code from
“provably safe” code. Our system is lightweight—we typecheck only the code
that may run in private browsing mode, and extension authors must only
annotate code that is not provably safe. Most utility code is easily safe and
requires no annotation. (Section 4)

– We implement our approach for the extension apis found in Mozilla Firefox.
Ascribing types to Firefox’s apis is non-trivial; the types must match their
quirky idioms with high fidelity in order to be useful. (Section 5)

– We evaluate our system by retrofitting type annotations onto 12 real-world
extensions. Relatively few annotations are needed. We verify six extensions
as safe, finding private-browsing (but not necessarily privacy) violations in
the rest; three were confirmed by their authors as bugs. (Section 6)
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Due to page limits, we necessarily elide detailed examples of our approach;
full details can be found in the companion technical report [20].

2 Background: Extensions and Privacy

Browser extensions define both ui and behavior, the former written in markup
that varies between browsers and the latter written in JavaScript. Though inter-
esting in its own right [18], the ui code is essentially inert markup and therefore
largely irrelevant for our security concerns here. We present a brief overview of
how extensions are written in Firefox and Chrome.

2.1 Classic Firefox Extension Model

Firefox extensions define their functionality in JS, and trigger it via event han-
dlers in the markup of their ui. These event handlers can use the same dom meth-
ods as typical web pages, but in addition, they are given a suite of apis providing
low-level platform features such as file-system access and process management,
as well as access to history and preferences, and many other functions. These
apis are obtained via a factory; for example, the following constructs a file object:
var file = Components

.classes["@mozilla.org/file/local;1"]

.createInstance(Components.interfaces.nsILocalFile);

The Components.classes array contains “contract IDs” naming various avail-
able object types, mapped to factories for constructing instances. As of ver-
sion 13, Firefox defines 847 contract IDs and 1465 interfaces: a huge api surface.

One of these apis, Components.interfaces.nsIPrivateBrowsingService, al-
lows code to check if it is running in private-browsing mode, and to cause the
browser to enter or exit private-browsing mode. The former check is essential
for writing privacy-aware code; the latter methods are particularly troublesome
(see Section 5).

2.2 Chrome and Jetpack Extension Model

The traditional security response to such a situation is to lock down and nar-
row the api surface area. Chrome’s architecture has done so. The back-end of
a Chrome extension is written against a much smaller api: a mere 26 objects
to access bookmarks, cookies, tabs, etc [11]. Though there are no apis to access
the filesystem directly, there are experimental apis for local storage, and exten-
sions have unrestricted access to cross-origin XHR: extensions can still persist
state. This relatively spartan api means Chrome extensions are inherently less
capable than Firefox ones, and despite that they can still violate incognito-mode
guarantees. In particular, an extension can create an implicit channel that leaks
sensitive data from an incognito tab to a concurrent public one; from there the
data can easily be saved to disk. See Section 3.2 for further discussion.



60 B.S. Lerner et al.

In a similar vein, Firefox has been working on a new extension model, known as
“jetpacks” or “SDK addons”. These extensions are a hybrid: they have access to a
small api similar to Chrome’s, but if necessary can get access to the Components
object and access the rest of the platform. Such access is discouraged, in favor
of enhancing the SDK apis to obviate the need.

3 Subtleties of Private Browsing Mode

The intuitive goals of the various private browsing mode implementations are
easy to state, but their precise guarantees are subtly different. In particular,
the security versus usability trade-offs of private browsing mode are particularly
important, and impact the design.

3.1 Usability Trade-Offs in Specifying Private Browsing Mode

Private browsing mode is often described as the browser “not remembering any-
thing” about the current session. One implementation approach might be to pro-
hibit all disk writes altogether. Indeed, the initial planning for Firefox’s private
browsing mode [22] states, “The bullet-proof solution is to not write anything
to disk. This will give users maximum confidence and will remove any possible
criticism of the feature from security experts.”2

However, the high-level intent of private-browsing mode is a statement about
the state of users’ computers after their sessions have terminated; it says nothing
about what happens during their sessions. In particular, a user might reasonably
expect the browser to “work like normal” while browsing, and “forget” everything
about the session afterward. Such a private-browsing implementation might well
handle many forms of persistent state during the session on behalf of the user,
such as history, cookies, or cache. Additionally, a user can ask the browser ex-
plicitly to take certain stateful actions, such as downloading a file or updating
bookmarks. Therefore, simply turning off persistence apis is not an option.

3.2 Mode Concurrency and Switching

How isolated is private browsing? Chrome (and now Firefox; see Section 8) allows
users to have both “normal” and “incognito” windows open concurrently; can
this concurrency be exploited to leak data from private browsing? Similarly, can
an extension hoard data in private browsing mode, and then release it when the
window switches to normal mode?

The mitigation for this attack differs in its details between the two browsers,
but amounts to isolating extensions’ state to within a single window, which is
then the unit of normal or private modes. In particular, all the scripts that imple-
ment the behavior of Firefox windows run in the context of each window.3 When
2 Even these precautions may not suffice: virtual memory might swap private browsing

mode information to persistent storage [3].
3 The Firefox expert might know about “backstage pass” contexts, which can persist.

Such contexts are internal to Gecko and to our knowledge cannot be intentionally
accessed by script. Even if they could, we can reflect this in our typed apis.
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earlier versions of Firefox transition between modes, they close all currently-open
private windows and re-open the public ones from the prior session. Crucially,
this means extensions’ state is effectively destroyed and re-initialized as these
windows are opened, so extensions cannot passively hoard data and have it auto-
matically leak into public mode. Instead, they must actively use apis to persist
their data, and we detect and flag such uses.

In Chrome, extensions are partitioned into two pieces: a background task
running in a standalone context, and content scripts running in the context of
individual pages. The background task can execute privileged operations, but
cannot obtain data about the user’s open pages directly. Instead, the content
script must send such data to the background task over a well-specified api, and
again we can detect and flag such uses.

In short, browsers are engineered such that there is no implicit communica-
tions channel between private-mode windows and public ones. Persisting any
data from one to the other requires explicitly using an api to do so, and our
system is specifically designed to raise warnings about just those apis. Accord-
ingly, for the remainder of this paper, we can safely assume that the presence
or absence of private mode is effectively constant while analyzing an extension,
because it is constant for the duration of any given JS context. (We describe how
our approach may adapt to Firefox’s new design in Section 8.)

4 Our Approach: Type-Based Extension Verification

We assume that the browser vendor has correctly implemented private-browsing
mode and focus on whether extensions violate it. We perform this analysis
through a type system for JS. In particular, any accesses to potentially harm-
ful apis must be syntactically marked in the code, making the reviewers’ job a
simple search, rather than a reading of the entire extension. Furthermore, we
define an affirmative privacy burden: rather than require all developers to an-
notate all code, we require annotations only where code might violate private
browsing expectations. Our type system is based on TeJaS, a type system for
JS [14], with several variations.

4.1 Informal Description

Type systems are program analyses that determine whether a semantic property
holds of a given program, based on that program’s syntactic structure. A type
system is comprised of three parts: a type language for describing the types of
expressions in the program, a type environment assigning types to the predefined
apis, and a type checker that takes as input a program to be checked and the
type environment, and then attempts to validate the program against a set of
rules; programs that pass the typechecker possess the desired semantic property.

Our particular type language defines a type, @Unsafe, which our environment
assigns to the potentially-unsafe apis (e.g., file.create) to prevent them from
being called, and to the potentially-unsafe objects (e.g., localStorage) to pre-
vent their properties from being accessed. This can be quite refined: objects may
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contain a mix of safe and unsafe methods. For example, in our system, it is per-
fectly fine to open and read from existing files, but it is unsafe to create them;
therefore, only the first line below causes an error:
file.create(NORMAL_FILE_TYPE, 0x644);
var w = file.isWritable();

The type checker will complain:
Cannot dereference an @Unsafe value at 1:0-11 (i.e., file.create).

In response, the programmer can: 1) rewrite the code to eliminate the call to
file.create, or 2) prove to the type checker that the code is never called in
private browsing mode, or 3) “cheat” and insert a typecast, which will eliminate
the error report but effectively flag the use for audit. Often, very simple changes
will suffice as proof:
if (WeAreNotInPrivateBrowsingMode()) {

file.create(NORMAL_FILE_TYPE, 0x644);
}
var w = file.isWritable();

(We show in Section 4.4 how to implement WeAreNotInPrivateBrowsingMode().)

4.2 The Type System Guarantee

Extensions that have been annotated with types and pass the typechecker enjoy
a crucial safety guarantee. This guarantee is a direct consequence of TeJaS’s
own type-safety theorem [14], the soundness of Progressive Types [29], and the
correctness of our type environment:

If an extension typechecks successfully, using arbitrary type annota-
tions (including @Unsafe), and if an auditor confirms that any “cheat-
ing” is in fact safe, then it does not violate the private-browsing
mode invariants. Moreover, the auditor must check only the “cheat-
ing” code; all other code is statically safe.

In the following subsections, we explain how the typechecker recognizes the
example above as safe, and make precise what “cheating” is and why it is some-
times necessary.

4.3 Type System Ergonomics

A well-engineered type system should be capable of proving the desired proper-
ties about source code and be flexible enough to prove others, with a minimum
of invasive changes to the code. Typically, these properties are phrased as preser-
vation and progress guarantees: respectively, well-typed programs preserve their
types at each step of execution, and can make progress without runtime error.
Our goal here is a relatively weak progress guarantee: we only prevent extensions
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from calling @Unsafe apis; other runtime errors may still occur, but such errors
cannot cause private-browsing violations.

As a strawman, one inadequate approach to proving privacy-safety might
be to maintain a list of “banned words”—the names of the unsafe apis—and
ensure that the program does not mention them or include any expressions that
might evaluate to them. Such an approach inflexiblly prohibits developers from
naming their functions with these banned words. It also proscribes much of JS’s
expressiveness, such as using objects as dictionaries (lest some subexpression
evaluate to a banned word which is then used as a field name).

Another approach might graft checks for @Unsafe calls onto a more tradi-
tional, stronger progress guarantee. This is costly: for example, consider the
information needed to ensure the (safe) expression 1+o.m("x") makes progress.
The type system must know that o is an object with a field m that is a safe func-
tion that accepts string arguments and returns something that can be added to
1. Conveying such detailed information to the type system often requires sub-
stantial annotation4. But this is overkill in our setting: if any of the facts about
the expression above were false, it would likely cause a runtime error, but still
would not call anything @Unsafe .

Instead, we design a type system that can support such precise types, but that
does not force them upon the developer. We provide a default type in our system
that can type everything except the unsafe apis: code that never calls anything
unsafe does not need any annotation. Using such a type relaxes the progress
guarantee to the weaker one above: nonsensical expressions may now typecheck,
but still will never call @Unsafe apis. Developers that want the stronger progress
guarantee can add precise type annotations gradually to their code. The next
subsection explains how our type system achieves this flexibility.

4.4 The Private-Browsing Type System
Preliminaries. Our type system contains primitive types for numeric, null and
undefined values, variadic function types with distinguished receiver parame-
ters (the type of this within the function), regular expressions, and immutable
records with presence annotations on fields. It also contains type-level functions,
equi-recursive types, and reference cells. On top of this, we add support for (un-
ordered) union and (ordered) intersection types. In particular, the type Bool is
the union of singleton types (True + False).

Safe Types. We define a (slightly-simplified) extension type that includes all
possible JS values [31]:

type Ext = rec e . Num + Bool + Undef + Str + Null + Ref {
__proto__ :! Src { },
__code__ :? [e] e ... => e,

* :? e
}

4 Type inference for objects is of little help, as it is often undecidable [25].
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In words, values of type Ext may be null, boolean, or other base types, or muta-
ble objects whose fields, if present, are also of this type. The __proto__ field is
a read-only object (about whose fields we know nothing), while __code__ (when
present) models JS functions, which are objects with an internal code pointer.

Ext is the default type for all expressions, and any Ext-typed code need not be
annotated, justifying our “lightweight” claims. As Section 4.3 mentioned, devel-
opers are free to add more precise types to their code gradually. Any such types
will be subtypes of Ext, meaning that richly-typed code will successfully interop-
erate with Ext-typed code without having to modify the Ext-typed code further.

Marking APIs with the @Unsafe Type. We define a new primitive type
@Unsafe that is ascribed in our initial type environment to all potentially-harmful
apis. This type is unrelated by subtyping to any other types besides Top, Bot
or intersections or unions that already contain it. Accordingly, any attempts to
use values of this type will cause type errors: because it is distinct from function
types it cannot be applied; because it is distinct from object types it cannot be
dereferenced, etc. @Unsafe values can be assigned to variables or fields, provided
they have also been annotated as @Unsafe.

Checking for Private-Browsing Mode. Our efforts to segregate @Unsafe
values from safe Ext code are overzealous: we do not need to prevent all usages
of @Unsafe values. Recall the revised example from Section 4.1: code that has
checked that it is not in private-browsing mode may use @Unsafe values.

To capture this intuition, we define the typechecking rules for if statements
as follows:

If-True
Γ � c : True

Γ � t : τ

Γ � if c t f : τ

If-False
Γ � c : False

Γ � f : τ

Γ � if c t f : τ

If-Other
Γ � c : Bool

Γ � t : τ Γ � f : τ

Γ � if c t f : τ

For conditionals where we statically know whether the condition is True or
False, we only typecheck the relevant branch: the other branch is statically
known to be dead code. Otherwise, we must typecheck both branches. Under
these rules the dead code could be arbitrarily broken; nevertheless it will never
run. Note that here, “dead code” really means “not live in private-browsing
mode”.

This leads to our key encoding of the nsIPrivateBrowsingService api’s
privateBrowsingEnabled flag. Normally, this flag would have type Bool. But
we only care when it is true; when it is false, it is fine to use @Unsafe values. We
therefore give it the type True. If-True then permits the example in Section 4.1
to typecheck without error.

“Cheating”. As pointed out in Section 3.1, we may want to allow extensions
to use @Unsafe apis even in private-browsing mode, to preserve “normal oper-
ations”. This may be because they do not store “sensitive” information, or be-
cause they are run only in response to explicit user action. Statically determining
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whether information is sensitive is an information-flow problem, a thorny (and
orthogonal) one we deliberately avoid. Moreover, the control flow of browsers is
quite complex [19], making it challenging to link code to the event that triggered
it. We are not aware of any successful efforts to apply static information flow to
real-world JS, and certainly none that also apply to the browser’s control flow.
Instead, we require extension authors to annotate all those uses of @Unsafe val-
ues that cannot statically be shown to be dead code. To do this, we introduce
one last type annotation: cheat τ . When applied to an expression, it asserts the
expression has type τ and does not actually check its type.

Obviously, cheating will let even unsafe extensions typecheck. Therefore all
cheat typecasts must either be manually audited by a human to confirm their
safety, or verified by more sophisticated (perhaps expensive) runtime systems.
For now we assume a human auditor; by having these annotations we let future
researchers focus on the remaining problems of fully-automated audit.

5 Theory to Practice in Firefox

We have laid out our technique that developers would ideally use from the out-
set as they develop new extensions, and the theorem in Section 4.1 ensures that
their efforts would be worthwhile. In this section, we explain the details of in-
stantiating our system for Firefox’s apis. The companion technical report [20]
contains additional details and worked examples.

5.1 Translating Typed Interfaces

Most of Mozilla’s apis are defined in typed interface files (written in a variant
of WebIDL5), which we parse into our type language. The translation begins
smoothly: each interface is translated as a read-only reference to an object type;
this ensures that extensions cannot attempt to delete or redefine built-in meth-
ods. Functions and attributes on interfaces are then translated as fields of the
appropriate type on the translated object types.

However, these IDL files have three problems: they can be overspecific, un-
derspecific, or incomplete. For example, a function declared to expect a string
argument can in fact be given any JS value, as the glue code that marshals JS
values into C++ will implicitly call toString on the value. By contrast, func-
tions such as getElementsByClassName return an nsIDOMNodeList, whereas the
semantics of the method ensure that all the nodes in that list are in fact of
the more specific type nsIDOMElement. Finally, the contents of the Components
object are not specified in any interface, but rather dynamically constructed in
C++ code; similarly, some XUL elements are defined entirely dynamically by XBL
code. We need a mechanism to address each of these difficulties.

Rather than hard-code a list of corrections, we can exploit two existing IDL
features for a flexible resolution. First, IDL permits “partial” interfaces, which

5 http://www.w3.org/TR/WebIDL/

http://www.w3.org/TR/WebIDL/
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are simply inlined into the primary definition at compilation time. Second, IDL
syntax includes “extended attributes” on interface members, functions and their
parameters, which may affect the translation to types: for instance, [noscript]
members are not included in the JS environment, and [array] parameters are of
type Array<τ> rather than τ . For missing types, we create a “type-overrides” file
and add new type definitions there. For over- and under-specific types, we define
a new extended attribute [UseType(τ)] to replace the type specified by the
IDL, and in the type-overrides file define partial interfaces whose sole purpose
is to revise the shortcomings of the input IDL. For example, we define a “DOM-
ElementList” type, and override getElementsByClassName to return it instead.

5.2 Encoding @Unsafe Values and the Flag for Private
Browsing Mode

We define two more IDL attributes, [Unsafe] and [PrivateBrowsingCheck],
and use them to annotate the relevant properties in the Mozilla environment.
Per Section 4, these are translated to the types @Unsafe and True, respectively.

As mentioned in Section 2.1, the nsIPrivateBrowsingService object also
allows extensions to switch Firefox into and out of private browsing mode. Even
though Firefox does not wholly restart, it does effectively recreate all JS contexts.
Nevertheless, we consider exiting private-browsing mode to be poor behavior for
extensions, so we mark these apis as @Unsafe as well. Any benign uses of this
api must now be cheated, and their use justified in a security review.

5.3 Encoding the Components Object

All of Mozilla’s apis are accessed via roughly this idiom:
Components.classes[cID].createInstance(Components.interfaces.interfaceName)

An accurate but imprecise type for this function would simply be nsIJSIID ->
nsISupports: the argument type is an “interface ID”, and the result is the root
type of all the Mozilla interfaces. But this function can return over 1400 differ-
ent types of objects, some (but not all) of which are relevant to private-browsing
mode. We therefore need a more precise return type, and since this function is
used ubiquitously by extension code, we must avoid requiring developer anno-
tations. The key observation is that the set of possible return types is known
a priori, and the specific return type is selected by the provided interface ID
argument. This is known as “finitary overloading” [26], and is encoded in our
system with intersection types.6

6 Case Study: Verifying Firefox Extensions

To evaluate the utility and flexibility of our type system, two of the authors (both
undergraduates with no experience with engineering type systems) retrofitted
6 Firefox 3’s new api, Component.utils.import("script.js", [obj]), is not

amenable to similar static encoding and consequently requires manual audits.
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Extension Size Violates Confirmed Violates
PBM? by author? privacy?

The Middle Mouse Button v1.0 51 No
Print v0.3.4 59 No
Rapidfire v0.5 119 No
Commandrun v0.10.0 147 Yes Yes Yes
Open As Webfolder v0.28 153 Yes No No
CheckFox v0.9.2 188 No
The Tracktor Amazon Price Tracker v1.0.7 232 No
Fireclam v0.6.7 437 Yes No No
Cert Viewer Plus v1.7 974 Yes No Yes
Textarea Cache v0.8.5 1103 No
ProCon Latte Content Filter v3.3 2015 Yes Yes Yes
It’s All Text v1.6.3 2623 Yes Yes Yes
Total 8101 6 3 4

Fig. 1. Extensions analyzed for private-browsing violations: note that not all private-
browsing violations are actual privacy violations. The technical report [20] has more
details on the extensions and annotations, and provides more excerpts.

type annotations onto 12 existing Firefox extensions, chosen from a snapshot of
Firefox extensions as of November 2011. Some were selected because we expected
them to have non-trivial correctness guarantees; the rest based on their brevity
and whether they mentioned unsafe apis. All extensions had passed Mozilla’s
security review: ostensibly they should all comply with private-browsing mode.
We had no prior knowledge of the behavior or complexity of the extensions
chosen beyond their description.

The results are summarized in Fig. 1. We analyzed 6.8K non-comment lines
of code (8.1KLOC including comments and our type definitions), and found
private-browsing violations in 6 of the 12 extensions—of which only 4 truly vi-
olate privacy. Below, we highlight interesting excerpts from some of these ex-
tensions.

6.1 Accommodating Real-World Extension Code

Our type system is designed to be used during the development process rather
than after, but existing extensions were not written with our type system in
mind. We therefore permitted ourselves some local, minimal code refactorings
to make the code more amenable to the type checker. These changes let us avoid
many typecasts, and (arguably) make the code clearer as well; we recommend
them as best practices for writing new code with our type system.

First, we ensured that all variables were declared and that functions were
defined before subsequent uses. Additionally, developers frequently used place-
holder values of the wrong type—null instead of -1, or undefined instead of
null—that we corrected where obvious.

Second, our type system infers the type of variables from the type of their
initializer, for which it infers the strictest type it can. For instance, initializers of
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false, "foo" and null yield types False, /foo/ (the regular expression match-
ing the literal string), and Null respectively—rather than Bool, String, and
whichever particular object type is eventually used. This can be useful: distin-
guishing True from False values lets us elide dead branches of code and thereby
check for private browsing mode, and similarly, distinguishing string literals from
each other enables support for JS objects’ first-class field names [28]. Sometimes,
however, this is overly-specific. For instance, a truly boolean-valued variable
might be initialized to true and later modified to false; if its type was inferred
as True, the subsequent assignment would result in a type error! In such cases,
we therefore manually annotate the initializers with their more general types.

Third, we replaced the idiomatic field-existence check if (!foo.bar) with if
(!("bar" in foo)), as the typechecker will complain when the field does not
exist in the former, whereas the latter has the same dynamic effect but does
not impose any type constraints. (When the field name is known to exist, this
idiom also checks whether the field’s value is not null, zero or false; we did not
rewrite such usages.)

Additionally, we permitted ourselves two other refactorings to accommodate
weaknesses in our current prototype system. First, our system does not model
the marshaling layer of Mozilla’s api bindings; for instance, passing a non-string
value where a string parameter is expected will yield a type error. We therefore
added (""+) to expressions to ensure that they had type Str.

Second, Mozilla apis include QueryInterface methods that convert the pro-
vided value from one interface to another. Code using these functions effectively
changes the type of a variable during the course of execution. Our type system
cannot support that; we refactored such code to use auxiliary variables that
each are of a single type.

6.2 Example Extensions

In the process of making these extensions pass the type checker, we were forced
to cheat 38 call-sites to @Unsafe functions as innocuous. Those 38 call sites are
potential privacy violations appearing in five extensions, of which we think four
truly violate private browsing mode (the other uses @Unsafe functions to setup
initial preferences to constant—and therefore not privacy-sensitive—values). We
have contacted the authors of these extensions, and two have responded, both
confirming our assessment. A sixth extension uses cheats slightly differently, and
the process of typechecking it revealed a large security hole that we reported: it
was confirmed by its author and by Mozilla, and was promptly fixed. We high-
light three of these extensions—one (almost) safe and two not—to highlight how
subtle detecting privacy violations can be. The companion technical report [20,
section VI] contains full details of the necessary annotations.

Almost Safe: Textarea Cache [32]. This extension maintains backups of
the text entered by users into textareas on web pages, to prevent inadvertently
losing the data. Such behavior falls squarely afoul of Mozilla’s prohibition against
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recording data “relating to” web pages in private browsing mode. The developer
was aware of this, and included a check for private-browsing mode in one of
the extension’s core functions:

textareaCache.inPrivateBrowsing = function () {
if (this._PBS) return this._PBS.privateBrowsingEnabled;
else return true; // N.B.: used to be false

};
textareaCache.beforeWrite = function(node) {
if (this.inPrivateBrowsing()) return;
...
this.writeToPref(node);

};

Our system recognizes that inPrivateBrowsing has type () -> True, and there-
fore determines the @Unsafe call on line 9 is dead code. (Note that this is strictly
more expressive than checking for the literal presence of the private-browsing
flag at the call-site of the @Unsafe function: the flag has been wrapped in a
helper function that is defined arbitrarily far from the beforeWrite function,
yet beforeWrite is itself correctly typechecked as safe.) Several other unguarded
code paths, however, result in writing data to disk, and these are all flagged as
type errors by our system. Tracing carefully through these calls reveals that
they are all writing only pre-existing data, and not recording anything from
the private session.

An interesting subtlety arises in this code due to backward-compatibility:
This extension is intended to be compatible with old versions of Firefox that
predate private browsing mode, and in such versions, clearly inPrivateBrowsing
is false. Accordingly, the default on line 4 used to be false, which prevents
the function from having the desired return type. Annotating and typechecking
this code directly revealed this mismatch; once changed to true, the modified
code validates as safe.

A cleaner, alternate solution exists if we allow ourselves to refactor the ex-
tension slightly. As written, the _PBS field is initialized lazily, and so must have
type nsIPrivateBrowsingService + Undef. That Undef prevents the type sys-
tem from realizing the return false is dead code. If we rewrite the initializer
to be eager, then _PBS has type nsIPrivateBrowsingService, which is never
undefined, and again the function typechecks with the desired return type.

Unsafe: ProCon Latte Content Filter [24]. This “featured” (i.e., nomi-
nated as top-quality7) extension maintains keyword-based white- and black-lists
of sites. A user can add URLs to these lists that persist into subsequent brows-
ing sessions; this persistence is achieved by apis that store preferences in the
user’s profile. These apis all are flagged by the typechecker as @Unsafe—and
as we annotated this extension, we determined that these apis were reachable
from within private browsing mode. In other words, the type checker helped
7 https://addons.mozilla.org/en-us/developers/docs/policies/recommended

https://addons.mozilla.org/en-us/developers/docs/policies/recommended
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determine that URLs could be added to these lists even while in private brows-
ing mode, a clear (or possibly deliberate) policy violation. The extension author
confirmed that this behavior is a bug: URLs were not intended to persist past
private browsing mode.

Unsafe: Commandrun [1]. It is obvious that the Commandrun extension
must be unsafe for private browsing. In fact, it is egregiously unsafe, as it allows
an arbitrary website to spawn a process (from a whitelist configured by the user)
and pass it arbitrary data. (Even worse, the version of this extension we analyzed
had a further flaw that would allow websites to bypass the whitelist checking.)
Yet counterintuitively, this extension produces no errors about calling @Unsafe
functions: no such calls are present in the source of the extension! Instead, the
extension creates an object that will launch the process, and then injects that
object into untrusted web content (edited for brevity):

CommandRunHandler = function() {
this.run = /*:cheat @Unsafe*/ function(command, args){ ... };
this.isCommandAllowed = function(command, args){ ... };

};
CommandRun = {
onPageLoad: function(event) {

var win = event.originalTarget.defaultView.wrappedJSObject ;
win.CommandRun = new CommandRunHandler();

} };

The CommandRunHandler.run function (line 2) is annotated as @Unsafe, but it
is never directly called from within this extension, so it does not directly cause
any further type errors.

The true flaw in this extension occurs where the object is leaked to web content
on lines 7 and 8, and our type system does raise an error here. Gecko, by default,
surrounds all web-content objects in security wrappers to prevent inadvertent
tampering with them, but exposes the actual objects via a wrappedJSObject
field on the wrappers. Our type environment asserts that such wrapped objects
must only contain fields of type Ext, but the CommandRunHandler object has
an @Unsafe field, and therefore the assignment on line 8 causes a type error.
The only way to make this code type-check is to cheat either the reference to
wrappedJSObject or to the CommandRunHandler, thereby exposing this flaw to
any auditor. We contacted the author of this extension, who promptly confirmed
and fixed the bugs.

7 Related Work

Our work clearly builds upon a rich area of security research and a growing
body of work analyzing JS. We consider each in turn.
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7.1 Security-Related Efforts

Many recent projects relate to extension security, authoring, or analysis. Several
entail pervasive changes within the browser [5, 8–10]; we focus on techniques that
do not need such support, and briefly describe the most relevant such projects.
None of them handle our present use cases.

ADsafety. The closest relative of our work is ADsafety [27], which uses Te-
JaS [14] to verify the correctness of ADsafe [2]. That work focused primarily
on verifying the ADsafe sandbox itself, and then used a type similar to our
Ext to typecheck “widgets” running within that sandbox. Unlike extensions
here, the environment available to widgets is entirely Ext-typed; indeed, the
whole purpose of a sandbox is to eliminate all references to unsafe values! The
extension-safety problem here is more refined, and permits such unsafe values
in non-private execution.

IBEX. Guha et al. [13] develop Fine, a secure-by-construction language for
writing extensions. Fine is pure, dependently-typed, and bears no resemblance
to idiomatic JS. Extensions must be (re-)written entirely in it in order to be
verified. Accordingly, the barrier to entry in their system is quite high, and they
explicitly do not attempt to model the browser apis available besides the dom.

VEX. Bandhakavi et al. [4] design a system that statically attempts to discover
unsafe information flows in extension code, for instance from unsanitized strings
to calls to eval. By their own admission, their system is neither sound nor
complete: they explicitly check only for five flow patterns in extensions and so
miss any other potential errors, and any errors they raise may still be false
positives. This provides no reliable guarantee for browser vendors. Additionally,
they do not address the conditional safety of api usage which is the hallmark
of the private-browsing mode problem.

Beacon. Karim et al. [17] design an analysis for Mozilla Jetpack extensions
(see Section 2.2) to detect capability leaks, where privileged objects (such as
unmediated filesystem objects) are exposed to arbitrary extension code. While
laudable, this approach does not work for detecting private-browsing violations:
filesystem capabilities are entirely permitted in public mode. Additionally, their
tool is unsound, as it does not model reflective property accesses.

7.2 Language-Level Analyses

Progressive Types. As mentioned, our type system is based on that of Guha
et al. [14], with enhancements that simplify reasoning about our relaxed progress
guarantees. These enhancements are a form of progressive typing [29], in which
the programmers using a type system can choose whether to defer some static
type checks until runtime, in exchange for a easier-to-satisfy type checker.
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Type Systems for JS. TeJaS is one of a handful of type disciplines for JS. The
two most fully-featured are the Closure compiler [12] and Dependent JS [7]. The
former is informally defined, and makes no claims that its type system entails
a soundness guarantee. Further, the type language it uses is too coarse to help
with the problem examined here. Dependent JS, by contrast, uses dependent
types to capture challenging idioms in JS, such as the punning between arrays
and dictionaries, and strong updates that change variables’ types. However, the
largest example the authors checked using Dependent JS is barely larger than
the third-smallest extension we examine. Moreover, their language imposes huge
annotation overheads: the type annotations are comparable in length to the
original program! In short, while powerful, such a system is impractical and
overkill for our purposes, and we can achieve our desired guarantee without the
proof obligations entailed by dependent type systems.

Language-Based Security. Schneider et al. [30] survey the broad area of
language-based security mechanisms. Cappos et al. [6] build a language-based
sandbox for Python, such that even privileged scripts cannot access resources
they should not. And other sandboxes exist for JS along the lines of ADsafe [2, 21,
33] to try to corral web programs. But none of these approaches explicitly address
the modal nature of enforcement that we need for private-browsing guarantees.

Certified Browsers. Jang et al. [15] present an implementation of a browser
kernel implemented in Coq, which allows them to formalize desirable security
properties of the browser kernel such as non-interference between separate tabs,
and the absence of cookie leakages between sites. Their current development
is for a fixed-function browser; enhancing it to support extensions and private-
browsing mode are intriguing avenues of future work.

8 Breaking News: It Gets Worse!

Firefox 20—released on April 2, 2013—has adopted per-window private browsing
granularity (à la Chrome). Unfortunately, existing Firefox apis enable extensions
to access all windows, which now include both public and private ones; we have
confirmed that this allows sensitive data to leak. Moreover, one such api is used
over 6,400 times in our corpus: we expect that extensions using this api—even
those using it safely in earlier Firefox versions—may now inadvertently violate
privacy. We have contacted Mozilla, who indicate that closing this leak (and
others) may not be technically feasible.

However, we believe our approach still works. Instead of ignoring non-private-
browing code, we must analyze it. We can define another type environment in
which inPrivateBrowsing is now False and a different set of apis (e.g., window
enumeration) are marked either as @Unsafe or as returning potentially-@Unsafe
data. Running the type checker in this environment will then flag potential
leakage of private data to public scope.
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