Skip to main content

Abstract

Methanol can be generated from a wide range of carbon and hydrogen sources. Currently, large-scale production is dominated by the conversion of fossil resources, mainly natural gas and coal, to carbon monoxide and hydrogen (synthesis gas) as the intermediate for catalytic methanol synthesis. Although they are not yet economically competitive, more ecologically friendly processes have been attempted using regenerative carbon and hydrogen sources such as biomass, (recycled) CO2, and hydrogen from electrolysis using regenerative power sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Chapter 4

  1. G.A. Olah, A. Goeppert, G.K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  2. Q. Zhang, D. He, Q. Zhu, J. Natural Gas Chemistry 12, 81–89 (2003)

    Google Scholar 

  3. R.A. Periana, G. Bhalla, W. Tenn, K. Young, X.Y. Liu, O. Mironov, J. Cj, J. Mol. Catalysis A: Chemical 220(1), 7–25 (2004)

    Google Scholar 

  4. R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schüth, Angew. Chem. Int. 48, 6909–6912 (2009)

    Google Scholar 

  5. T.V. Choudary, D.W. Goodman, Catalysis 19, 164–183 (2006)

    Google Scholar 

  6. H.F. Abbas, W.M.A. Wan Daud, Int. J. Hydrogen Energy 35, 1160–1190 (2010)

    Google Scholar 

  7. N. Muradov, Int. J. Hydrogen Energy 26, 1165–1175 (2001)

    Google Scholar 

  8. N. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 30, 225–237 (2005)

    Google Scholar 

  9. M. Merkx, D. Kopp, M. Sazinsky, J. Blazyk, J. Müller, S.J. Lippard, Angew. Chem. 113, 2860–2888 (2001)

    Google Scholar 

  10. S.I. Chan, Y.-J. Lu, P. Nagababu, S. Maji, M.-C. Hung, M.M. Lee, I.-J. Hsu, P.D. Minh, J.C.-H. Lai, K.Y. Ng et al., Angew. Chem. Int. Ed. 52, 3731–3735 (2013)

    Google Scholar 

  11. Y. Dongi, S. Meyer, Int. J. Hydrogen Energy 22, 971–977 (1997)

    Google Scholar 

  12. G.A. Olah, G.K.S. Prakash, US 7704369, 2010

    Google Scholar 

  13. L.J. Frost, J. Hartvigsen, S. Elangovan, Formation of Synthesis Gas Using Solar Concentrator Photovoltaics (SCPV) and High Temperature Co-electrolysis (HTCE) of CO2 and H2O, OTC-20408-PP 2010 Offshore Technology Conference held in Houston, May 2010

    Google Scholar 

  14. J.G. van Bennekom, R.H. Venderbosch, H.J. Heeres in BiodieselFeedstocks, Production and Applications ed. by Z. Fang (InTech, 2012)

    Google Scholar 

  15. P.D. Vaidya, A.E. Rodrigues, Chem. Eng. Technol. 32, 1463–1469 (2009)

    Google Scholar 

  16. W.O. Oduru, D.J. Redman, S.C.E. Tsang, EP 2279160 A1, 2011

    Google Scholar 

  17. www.isis-innovation.com, 22 May 2013

References to Section 4.1

  1. J. Schulte, Process 5, 8–10 (2011)

    Google Scholar 

  2. DERA-German Minerals Resources Agency, Annual Report (2012) p.12

    Google Scholar 

  3. http://commons.wikimedia.org/wiki/File:HydroFrac_de.svg. 17 July 2013

    Google Scholar 

  4. BP, Statistical Review of World Energy (2013) p. 21

    Google Scholar 

  5. EIA Annual Energy Outlook 2013, AEO 2013 Early Release Presentation Washington, 5 Dec 2012

    Google Scholar 

  6. http://commons.wikimedia.org/wiki/File:HydroFrac_de.svg, 17 July 2013

  7. US Energy Information Administration, 09 May 2011

    Google Scholar 

  8. BP, Statistical Review of World Energy (2013) p. 27

    Google Scholar 

  9. International Energy Agency (IEA), World Energy Outlook (2012)

    Google Scholar 

  10. BP, Statistical Review of World Energy (2013) pp. 31–34

    Google Scholar 

  11. C. Higman, M. van der Burgt, Gasification (GPP Gulf Professional Publishing, Elsevier, Amsterdam [etc.], 2008)

    Google Scholar 

  12. R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz (eds), Winnacker-Küchler: Chemische Technik—Prozesse und Produkte, 5th edn, vol. 4 (Wiley-VCH, Weinheim, 2006) p. 807

    Google Scholar 

  13. A. Bandi, M. Specht, Gewinnung von Methanol aus Biomasse, Expertise im Auftrag der Union zur Förderung von Oel- und Proteinpflanzen e.V. (UFOP), Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg (ZSW), Stuttgart, 2004

    Google Scholar 

  14. M. Mittelbach, Methanolgewinnung aus Biogas, Machbarkeitsstudie im Auftrag von Ökostrom Mureck GmbH, Land Steiermark, Graz, 2005

    Google Scholar 

  15. M. Specht, A. Bandi, The Methanol-Cycle—Sustainable Supply of Liquid Fuels, Center for Solar Energy and Hydrogen Research (ZSW), Themes 98/99 (Stuttgart, 1999) pp. 59–65

    Google Scholar 

  16. X. Yin, D.Y.C. Leung, J. Chang, J. Wang, Y. Fa, C. Wu, Energy Fuels 19, 305–310 (2005)

    Google Scholar 

  17. M. Specht, A. Bandi, F. Baumgart, C.N. Murray, J. Greetz, in Greenhouse Gas Control Technologies, ed. by B. Eliasson, P.W.F. Riemer, A. Wokann (Pergamon, Amsterdam, 1999)

    Google Scholar 

  18. K.N. Wyatt, Catalytic Production of Methanol from Biogas. GB 2,375,353, 2002

    Google Scholar 

  19. F. Asinger, Methanol- Chemie- und Energierohstoff (Akademie, Berlin, 1987) pp. 17–19

    Google Scholar 

  20. Food and Agriculture Organization of the United Nations, Global Forest Ressources AssessmentProgress towards sustainable forest management, FAO Foresty Paper 147, Rome, 2005

    Google Scholar 

  21. F. Behrend, Y. Neubauer, M. Oevermann, B. Wilmes, N. Zobel, Chem. Eng. Technol. 31(5), 667–677 (2008)

    Google Scholar 

  22. http://foris.fao.org/static/data/fra2005/maps/2.2.jpg, 30 May 2013

  23. M. Kaltschmitt, H. Hartmann, H. Hofbauer, H. (eds), Energie aus Biomasse: Grundlage, Techniken und Verfahren (Springer, Berlin Heidelberg, 2009) p. 377 ff

    Google Scholar 

  24. N. Dahmen, E. Dinjus, Chem. Ing. Tech. 82(8), 1147–1152 (2010)

    Google Scholar 

  25. Chemrec—Company Presentation, Transformative Biorefinery Technology for Forest, Biofuels and Power Industries, 2010

    Google Scholar 

  26. R. Rauch, Advanced biofuels by gasification—Status of R&D work in Güssing, Conference Highlights aus der Bioenergieforschung V, Wieselburg, 2011

    Google Scholar 

  27. Uhde Company Profile, online: www.uhde.eu, 25 Dec 2011

  28. http://www.bioliq.de/, 30 May 2013

  29. http://www.biodme.eu/, 30 May 2013

  30. T. Rostrup-Nielsen, P.E. Højlund, F. Jøensen, J. Madsen, Polygeneration—integration of gasoline synthesis and IGCC power production using Topsøe′s TIGAS Process, in Risø International Energy Conference (Roskilde, 2007) pp. 56–68

    Google Scholar 

  31. http://www.methanol.org/, 30 Dec 2011

  32. State of Europe’s Forest, The MCPFE Report on Sustainable Forest Management in Europe, Warsaw, 2007, p. 182

    Google Scholar 

  33. ZMP GmbH, Bonn, www.zmp.de, 23 June 2008

  34. http://www.biogasportal.info/, 26 Dec 2011

  35. Fachagentur Nachwachsender Rohstoffe e.V. Biogas Basisdaten Deutschland, 2008

    Google Scholar 

  36. Fachagentur Nachwachsender Rohstoffe e.V. Bestandsentwicklung der Biogasanlagen in Deutschland, 2011

    Google Scholar 

  37. Broschüre des Fachverbandes Biogas Multitalent Biogas, Berlin, 2008

    Google Scholar 

  38. S. Majer, A. Gröngröft, Ökologische und ökonomische Bewertung der Produktion von Biomethanol für die Biodieselherstellung, DBFZ-Studie, Leipzig, 2010

    Google Scholar 

  39. Statistisches Bundesamt Deutschland, Pressemitteilung Nr. 050 vom 08.02.2011

    Google Scholar 

  40. R. Rölle, Stoffliche Verwertung von Klärschlamm durch Vergasung, Tagungsband der 6 (AWL-Tech, Sinsheim, 2002)

    Google Scholar 

  41. S. Lechtenböhmer, S. Nanning, B. Hillebrand, H.-G. Buttermann, Einsatz von Sekundärbrennstoffen (Umweltbundesamt, Dessau, 2006). Texte 07/06

    Google Scholar 

  42. H. Charisius, Technol. Rev. 1, 38 (2010)

    Google Scholar 

References to Section 4.2

  1. T. Wurzel, Lurgi MegaMethanol® technology-Delivering the building blocks for the future fuel and monomer demand. Oil Gas Eur. Mag. 2, 92–96 (2007)

    Google Scholar 

  2. C. Higman, M. van der Burgt, Gasification (GPR, 2006)

    Google Scholar 

  3. G.A. Olah, A. Goeppert, G.K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy, 2nd edn (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  4. C. Sing, K. Liu, C. Song, V. Subramani (eds.), Hydrogen and Syngas Production and Purification Technologies (AIChE, Wiley, Copyright 2010 by American Institute of Chemical Engineers)

    Google Scholar 

References to Section 4.3

  1. K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, J. Nat. Gas Sci. Eng. 3, 423–459 (2011)

    Google Scholar 

  2. W. Hilsebein, “Gas to Methanol”, Lurgi Presentation (2006)

    Google Scholar 

  3. P. Häussinger, R. Lohmüller, A. Watson, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  4. N. Ringer, JJ&A Methanol Forum, Houston, 2010

    Google Scholar 

  5. J.J. Philipson, Catalyst Handbook (Wolfe Scientific Books, London, 1970), p. 46

    Google Scholar 

  6. C. Ratnasamy, J.P. Wagner, Catal. Rev. 51, 325–440 (2009)

    Google Scholar 

  7. K. Aasberg-Petersen, T.S. Christensen, I. Dybkjaer, J. Sehested, M. Ostberg, R.M. Coertzen, M.J. Keyser, A.P. Steynberg, Studies in Surface Science and Catalysis. Fischer-Tropsch Technology (Elsevier, Amsterdam, 2004) pp. 258–405

    Google Scholar 

  8. J.T. Richardson, J.D. Ortego, N. Coute, M.V. Twigg, Catal. Lett. 41, 17–20 (1996)

    Google Scholar 

  9. P. Broadhurst, in Hydrocarbon Processing, Mar 2006

    Google Scholar 

  10. P. Broadhurst, Hydrocarbon Eng. 11(71–72), 74–75 (2006)

    Google Scholar 

  11. M.C. Annesini, V. Piemonte, L. Turchetti, Chemical Engineering Transactions (2007) pp. 21–26

    Google Scholar 

  12. P.E.J. Abbott, M. McKenna, GB2407818, 2005

    Google Scholar 

  13. G. Jones, J.G. Jakobsen, S.S. Shim, J. Kleis, M.P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnemann et al., J. Catal. 259, 147–160 (2008)

    Google Scholar 

  14. A. Yamaguchi, E. Iglesia, J. Catal. 274, 52–63 (2010)

    Google Scholar 

  15. J. Wei, E. Iglesia, Angew. Chem. Int. Ed. 43, 3685–3688 (2004)

    Google Scholar 

  16. J. Wei, E. Iglesia, Phys. Chem. Chem. Phys. 6, 3754–3759 (2004)

    Google Scholar 

  17. J. Wei, E. Iglesia, J. Catal. 225, 116–127 (2004)

    Google Scholar 

  18. J. Wei, E. Iglesia, J. Catal. 224, 370–383 (2004)

    Google Scholar 

  19. J. Wei, E. Iglesia, J. Phys. Chem. B 108, 7253–7262 (2004)

    Google Scholar 

  20. J. Wei, E. Iglesia, J. Phys. Chem. B 108, 4094–4103 (2004)

    Google Scholar 

  21. J. Rostrup-Nielsen, J. Catal. 144, 38–49 (1993)

    Google Scholar 

  22. D. Qin, J. Lapszewicz, Catal. Today 21, 551–560 (1994)

    Google Scholar 

  23. S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nørskov, Nature 427, 426–429 (2004)

    Google Scholar 

  24. F.B. Rasmussen, J. Sehested, H.T. Teunissen, A.M. Molenbroek, B.S. Clausen, Appl. Catal. A 267, 165–173 (2004)

    Google Scholar 

  25. J. Sehested, A. Carlsson, T.V.W. Janssens, P.L. Hansen, A.K. Datye, J. Catal. 197, 200–209 (2001)

    Google Scholar 

  26. Catalyst Brochure Clariant Deutschland GmbH http://www.catalysts.clariant.com/bu/catalysis/internet.nsf/023cfbb98594ad5bc12564e400555162/2345da075fc114efc1257ad0002d2c00?OpenDocument

  27. Haldor Topsøe A/S, R-67-7H, can be found under http://www.topsoe.com/business_areas/ammonia/processes/~/media/PDF%20files/Steam_reforming/Topsoe_steam_reforming_cat_r%2067%207h.ashx

  28. Haldor Topsøe A/S, RK-200 Series, can be found under http://www.topsoe.com/business_areas/ammonia/processes/~/media/PDF%20files/Steam_reforming/Topsoe_steam_reforming_cat_rk%20200_series.ashx

  29. Johnson Matthey Group, Katalco. Steam reforming catalysts Natural gas, associated gas and LPG, can be found under http://www.jmcatalysts.com/ptd/pdfs-uploaded/Steam%20Reforming%20Feb%2007.pdf

  30. S. Zhao, Y. Cai, J. Ladebeck, US7378369, 2008

    Google Scholar 

  31. Private Communication Clariant Deutschland GmbH

    Google Scholar 

  32. H. Yamashita, A. Kato, S. Uno, M. Mizumoto, S. Matsuda, EP0130835, 1984

    Google Scholar 

  33. G. Burgfels, K. Kochloefl, US4906603, 1990

    Google Scholar 

  34. K. Aasberg-Petersen, C.H. Christensen, C.S. Nielsen, I. Dybkjær, Fuel Chem. Div. Prepr. 47, 96–97 (2002)

    Google Scholar 

  35. J.R. Rostrup-Nielsen in Catalysis, Science and Technology ed. by J.R. Anderson, M. Boidart (Springer, Berlin, 1984) p. 1

    Google Scholar 

  36. C.H. Bartholomew, Appl. Catal. A 212, 17–60 (2001)

    Google Scholar 

  37. F.B. Rasmussen, J. Sehested, H.T. Teunissen, A.M. Molenbroek, B.S. Clausen, Appl. Catal. A 267, 165–173 (2004)

    Google Scholar 

  38. J. Sehested, Catal. Today 111, 103–110 (2006)

    Google Scholar 

  39. J. Sehested, J. Catal. 223, 432–443 (2004)

    Google Scholar 

  40. J. Sehested, J. Catal. 217, 417–426 (2003)

    Google Scholar 

  41. J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, J. Catal. 217, 65–139 (2003)

    Google Scholar 

  42. J. Boon, E. van Dijk, Adiabatic Diesel Pre-reforming. Literature Survey, can be found under http://www.ecn.nl/docs/library/report/2008/e08046.pdf

  43. Haldor Topsøe A/S, RKNGR: Topsøe RKNGR Prereforming Leaflet (2001), can be found under http://www.topsoe.com

  44. D. Shekhawat, D.A. Berry, T.H. Gardner, J.J. Spivey, Catal. Rev. 19, 184–254 (2006)

    Google Scholar 

  45. Shanghai YOSO Chem&Tech Co., Ltd., Naphtha Steam Pre-reforming Catalyst (ys-z501), can be found under http://yosochem.en.busytrade.com/selling_leads/info/2256262/Naphtha-Steam-Pre-reforming-Catalyst-ys-z501-.html

  46. Johnson Matthey Group, Katalco. Delivering world-class methanol plant performance, can be found under http://www.jmcatalysts.com/ptd/pdfs-uploaded/Methanol%20Top%20level%20Feb%2007.pdf

  47. S. Muschelknautz, P. Fritz, Syngas and Hydrogen Production for Chemical and Refinery Applications based on Natural Gas and other Feedstocks, ACHEMA, 2012

    Google Scholar 

  48. Süd-Chemie (now Clariant AG), Syngas Technical Manual (2006)

    Google Scholar 

  49. Süd-Chemie (now Clariant AG), Catalyst Brochure, ReforMax Catalysts for Primary Reforming, Product Bulletin (2011)

    Google Scholar 

  50. M.N. Pedernera, J. Piña, D.O. Borio, V. Bucalá, Chem. Eng. J. 94, 29–40 (2003)

    Google Scholar 

  51. B. Hartvigsen, Haldor Topsøe A/S Steam Reforming Technology User Conference, 2007

    Google Scholar 

  52. R. Elshout, Energy, Systems Engineering. Hydrogen Production by Steam Reforming, posted in Chemical Engineering Processing 2010

    Google Scholar 

  53. M.N. Pedernera, J. Piña, D.O. Borio, V. Bucalá, Chem. Eng. J. 94, 29–40 (2003)

    Google Scholar 

  54. Nexant PERP Study, 2008

    Google Scholar 

  55. J.R. Rostrup-Nielsen in Handbook of Heterogeneous Catalysis ed. by G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  56. http://commons.wikimedia.org/wiki/File:Straight-tube_heat_exchanger_1-pass.PNG. Last modified 28 May 2006

  57. http://en.wikipedia.org/wiki/Heat_exchanger. Page was last modified on 6 June 2013

  58. T. Wurzel, Oil Gas Eur. Mag. 92 (2007)

    Google Scholar 

  59. P.K. Bakkerud, Catal. Today 106, 30–33 (2005)

    Google Scholar 

  60. Haldor Topsøe A/S, RKS-2-7H Secondary reforming catalyst, can be found under http://www.topsoe.com/business_areas/ammonia/~/media/PDF%20files/Steam_reforming/Secondary_reforming_catalyst_RKS%202%207H.ashx

  61. Made-in-China.com, Secondary Reforming Catalyst (SPR-202), can be found under http://www.made-in-china.com/showroom/suncatalysts/product-detailJqNxAhnVvEcK/China-Secondary-Reforming-Catalyst-SPR-202-.html

  62. H. Göhna, Nitrogen 224, 31–38 (1996)

    Google Scholar 

  63. J. Wagner, MegaMethanol Technology, most economical and reliable technology for the new generation of Methanol plants. Süd-Chemie Conference "Defing the Future", Bahrein, 2004

    Google Scholar 

  64. H. Schlichting, Update on lurgi syngas technologies. Gasification Technologies, San Francisco, 2003

    Google Scholar 

  65. Anon, Nitrogen + Syngas, 316, 50–61 (2012)

    Google Scholar 

References to Section 4.4

  1. DOE, US department of Energy, Gasification 2010, worldwide database

    Google Scholar 

  2. T. Kolb, Brennstoffe 2, Karlsruhe, Karlsruher Institut für Technologie, Engler-Bunte-Institut, Chemische Energieträger und Brennstofftechnologie, Vorlesungsscript (2011)

    Google Scholar 

  3. A.-G. Collot, Matching gasifiers to coals (International Energy Agency, 2002)

    Google Scholar 

  4. C. Higman, Gasification (Elsevier, Burlington, 2003)

    Google Scholar 

  5. D.W. van Krevelen, Coal: Typology, Physics, Chemistry, Constitution (Elsevier, Delft, 1993)

    Google Scholar 

  6. A. Faaij, Modern biomass conversion technologies. Mitig. Adapt. Strat. Glob. Change 11, 335–367 (2006)

    Google Scholar 

  7. G. Schaub, Brennstoffe 1—Grundlagen, flüssige Brennstoffe, Erdölverarbeitung, BioBrennstoffe, Karlsruhe, Karlsruher Institut für Technologie, Engler-Bunte-Institut, Chemische Energieträger und Brennstofftechnologie, Vorlesungsscript, 2011

    Google Scholar 

  8. American Coal Foundation, Coal’s Past, Present, and Future (Online), http://teachcoal.org/. Accessed 2011

  9. Gasification Technology Council, GasificationAn investment in our future (Online), www.gasification.org. Accessed 2010

  10. R. Cheeley, Coal Gasification for DRI Production—An Indian Solution. Steel Times Int. (2010)

    Google Scholar 

  11. O. Turna, Lurgi GmbH, personal communication (based on process calculations)

    Google Scholar 

  12. H.J. Mühlen, F. Sowa, K.H. van Heek, Comparison of the gasification behavior of a West and East German brown coal. Fuel Process. Technol. 36, 185–191 (1993)

    Google Scholar 

  13. R.F. Probstein, R.E. Hicks, Synthetic fuels (McGraw-Hill Book, New York, 1990)

    Google Scholar 

  14. SFA-Pacific, Gasification: Worldwide Use and Acceptance, US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Gasification Technology council, 2000

    Google Scholar 

  15. O. Turna, Utilization of Sasol-Lurgi fixed bed bottom gasifcation for syngas production, Sasol Technology, R&D division, 2000

    Google Scholar 

  16. E. Supp, How to produce methanol from coal (Springer-Verlag, 1989)

    Google Scholar 

  17. G. Baron, Entwicklungsprobleme bei der technischen Vergasung fester Brennstoffe unter erhöhtem Druck nach dem Lurgi-Verfahren für die Erzeugung von normgerechtem Stadtgas, Universität (TH) Karlsruhe, Dissertation, 1963

    Google Scholar 

  18. D.E. Woodmansee, Modeling of fixed bed gas producer performance. Energy Commun. 2, 13–44 (1976)

    Google Scholar 

  19. M. Hobbs, Modeling Countercurrent Fixed-bed Coal Gasification. Brigham Young University, PhD, Brigham, 1990

    Google Scholar 

  20. P.R. Desai, C.Y. Wen, Computer Modeling of the MERC Fixed Bed Gasifier (U.S. Department of Energy, Morgantown, West Virginia, 1978)

    Google Scholar 

  21. N.R. Amundson, L.E. Arri, Char Gasification in a Countercurrent Reactor. AIChE J. 24, 87 (1978)

    Google Scholar 

  22. R. Stillman, Simulation of a Moving Bed Gasifier for a Western Coal. IBM J. Res. Dev. 240(s.1) 23 (1979)

    Google Scholar 

  23. H. Yoon, Modeling and Analysis of Moving Bed Coal Gasifiers, Universtiy of Delaware, Newark, PhD, 1978

    Google Scholar 

  24. Y.S. Cho, B. Joseph, Heterogeneous model for moving-bed coal gasification reactor. Ind. Eng. Chem. Process Des. Dev. 20, 314 (1981)

    Google Scholar 

  25. M. Kim, B. Joseph, Dynamic behavior of moving-bed coal gasifiers. Ind. Chem. Process Des. Dev. 22, 212 (1983)

    Google Scholar 

  26. W. Yu, M. Denn, Radial effects in moving-bed coal gasifiers. Chem. Eng. Sci. 38, 1467 (1983)

    Google Scholar 

  27. J.R. Bunt, F.B. Waanders, An understanding of lump coal physical property behaviour (density and particle size effects) impacting on a commercial-scale Sasol-Lurgi FBDB™ gasifier. Fuel 87, 2856–2865 (2008)

    Google Scholar 

  28. H.-P. Schilling, B. Bonn, U. Krauss, Coal gasification: existing processes and new developments (Graham & Trotman, London, 1981)

    Google Scholar 

  29. F. Rodriguez-Reinoso, Controlled gasification of carbon and pore structure development. NATO advanced study institute, Cadarache (Kluwer Academic Publishers, France, 1990)

    Google Scholar 

  30. K.J. Daniel, Transist Model of a Fixed-Bed Gasifier, presented at AIChE, 88th National meeting, 1980

    Google Scholar 

  31. K. Hedden, Die Bedeutung der Reaktionsfähigkeit des Brennstoffs für koksbeheizte Schachtöfen. Chem. Eng. Sci. 14, 317–330 (1961)

    Google Scholar 

  32. A. Kristiansen, Understanding coal gasification (IEA Coal Research, London, 1996)

    Google Scholar 

  33. M.F. Ifran, M.R. Usman, K. Kusakabe, Coal gasification in CO2 atmosphere and its kinetics since 1948: a brief review. Energy 36, 12–40 (2011)

    Google Scholar 

  34. C.Y. Wen, Coal Conversion Technology (Addisoon-Wesley Publishing, Reading, Massachusetts, 1979)

    Google Scholar 

  35. N.M. Laurendeau, Heterogeneous kinetics of coal cahr gasification and combustion. Prog. Energy Combust. Sci. 4, 221–270 (1978)

    Google Scholar 

  36. J.L. Johnson, Kinetics of bitumious coal char gasification with gases containing steam and hydrogen, Kinetics of coal gasification (Wiley, New York, 1979)

    Google Scholar 

  37. S. Kajitani, N. Suzuki, M. Ashizawa, S. Hara, CO2 gasification rate analysis of coal char in entrained flow gasifier. Fuel 85, 162–169 (2006)

    Google Scholar 

  38. H. Marsh, Introducing in Coal Science (Butterwoth, London, 1989)

    Google Scholar 

  39. C. Natterman, Research on the pressurised gasification of coal with steam and carbon dioxide, Erdöl und Kohle. Erdgas, Petrochemie vereinigt mit Brennstoff-Chemie, 47, 287–295 (1994)

    Google Scholar 

  40. R. Kandiyoti, A. Herod, K. Bartle, Solid Fuels and Heavy Hydrocarbon Liquids (Elsevier, Oxford, UK, 2006)

    Google Scholar 

  41. F. Kapteijn, J.A. Moulijn, Kinetics of catalysed and uncatalysed coal gasification, in Carbon and Coal GasificationScience and Technology, Alvor, Portugal, 20–31 May 1985

    Google Scholar 

  42. Z. Ma, A study on the intrinsic kinetics of steam gasification of Jincheng coal char. Fuel Process. Technol. 31, 69–76 (1992)

    Google Scholar 

  43. G. Liu, Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures. Fuel 79, 1145–1154 (2000)

    Google Scholar 

  44. Q. Xu, S. Pang, T. Levi, Reaction kinetics and producer gas compositions of steam gasification of coal and biomass blend chars, part 2: mathematical modelling and model validation. s.l. Chem. Eng. Sci. 10, 2232–2240 (2011)

    Google Scholar 

  45. M. Weeda, H.H. Abcouwer, F. Kapteijin, J.A. Moulijn, Steam gasification kinetics and burn-off behaviour for a bituminous coal derived char in the presence of H2. Fuel Process. Technol. 36, 235–242 (1993)

    Google Scholar 

  46. A. Megaritis, Y. Zhuo, R. Messenböck, Pyrolysis and gasification in a bench-scale high-pressure fluidized-bed reactor. Energy Fuels 12, 144–151 (1998)

    Google Scholar 

  47. J.R. Arthur, Reactions between Carbon and Oxygen. Chem. Soc. J. Faraday Trans. 47, 164–178 (1951)

    Google Scholar 

  48. G. Schaub, Experimentelle und Mathematische Simulation der Kohlevergasung in Festbettreaktoren, Frankfurt a. M., Interner Bericht, Lurgi GmbH (1986)

    Google Scholar 

  49. C.P.P. Singh, D.N. Saraf, Simulation of high-temperature water-gas shift reactors. Ind. Eng. Chem. Process Des. Dev. 16(3), 313–319 (1977)

    Google Scholar 

  50. O. Levenspiel, Chemical reaction engineering, 3rd edn (Wiley, New York, 1999)

    Google Scholar 

  51. M. Bearns, Chemische Technik (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  52. G. Schaub, Gas production from coal, wood and other solid feedstocks, in Ullmann’s Encycloedia of Industrial Chemistry (VCH Verlagsgesellschaft, Weinheim, 1989)

    Google Scholar 

  53. E. Supp, How to produce methanol from coal Berlin, Springer, 1990

    Google Scholar 

  54. A. Guenther, Gasification of biomass for 2nd generation fuels, Achema presentation, 2012

    Google Scholar 

  55. M. Taijma, J. Tsunoda, Status of the EaGLE gasification pilotplant. Paper presented at the Gasification technologies conference San Francisco, 2002

    Google Scholar 

  56. Z. Yu, G. Yu, Opposed multiburner gasification technology, seven new projects in China. Paper presented at the gasification technology conference San Francisco, 2007

    Google Scholar 

  57. H. Hiller, Gasproduction (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  58. W. Renzenbrink, K.J. Wolf, J. Ewers, RWE’s Cero-CO2 IGCC power plant: first steps towards commercial implementation. Paper presented at the 2nd International Freiberg conference on IGCC and XTL technologies, 2007

    Google Scholar 

  59. O. Turna, Moving Bed gasification of coal and substitutes, Dechema Kolloqium, Frankfurt, 4 April 2008

    Google Scholar 

  60. R. Pardemann, B. Meyer, Stand und Perspekiven der Kohlenutzung in Kraftwerken mit Vergasung. CIT 11, 1805–1819 (2011)

    Google Scholar 

  61. L. Plass, M. Wagner, Production of Synthetic Biofuels for the Bure Project in France, 4th BTL Conference, Berlin, 1/2 Dec 2010

    Google Scholar 

  62. Prenflo Krupp-Koppers, Clean Power Generation from Coal (Essen, Krupp-Koppers, 1996)

    Google Scholar 

  63. R. Abraham, Kohlevergasung: Stand und Ausblick, DGMK, 75. Sitzung, Arbeitskreis Kohle, Hamburg, 27.10.2011

    Google Scholar 

  64. Siedlungsabfall, Technische Anleitung zur Verwertung, Behandlung und sonstigen Entsorgung von Siedlungsabfällen, (Dritte Allgemeine Verwaltungsvorschrift zum Abfallgesetz) vom 14. Mai 1993, (BAnz. Nr. 99a vom 29.05.1993)

    Google Scholar 

  65. S. Schwinghammer, Mark+: The next Generation of Lurgi’s FBDB™ Gasifier, Coal Asia Conference, New Delhi, 27–28. Feb 2012

    Google Scholar 

  66. Siemens gasification and IGCC update, Gasification Technologies conference, 2 Nov 2010

    Google Scholar 

  67. http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/4-gasifiers/4-1-2-3_shell.html. Accessed 2013

  68. J. Ciferno, J. Marano, Benchmarking Biomass Gasification technologies for fuels, Chemicals and Hydrogen Production, National Energy Technology Laboratory (2002)

    Google Scholar 

  69. O. Maurstad, An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology (MIT, 2005)

    Google Scholar 

  70. T. Giampaolo, The Gas Turbine Handbook: Principles and Practices, 2nd edn (The Faimont Press, Inc., 2003)

    Google Scholar 

  71. X. Guan et al., Demonstration of Hot Gas Filtration in Advanced Coal Gasification System, Power Systems Development Facility, Southern Company Services, 2007

    Google Scholar 

  72. P. Spath et al., Technoeconomic analysis of hydrogen production from western coal augmented with CO 2 sequestration and coalbed methane recovery (National Renewable Energy Laboratory, 1999)

    Google Scholar 

  73. G. Raggio et al., Coal gasification pilot plant for hydrogen production. Part B: syngas conversion and hydrogen separation, in prepared for the Second International Conference on Clean Coal Technologies for our Future, 2005

    Google Scholar 

  74. T.A. Lynch, Operating Experience at the Wabash River Coal Gasification Repowering Project, in Dynergy Power Corp., prepared for the Gasification Technologies Conference, 1998

    Google Scholar 

  75. M.S. Naijar, D.Y. Jung, High Temperature Desulfurization of Synthesis Gas with Iron Compounds (Texaco Inc., 1993)

    Google Scholar 

  76. Uhde Press Release, No. 02, 2008

    Google Scholar 

  77. Allied Syngas Marketing Document

    Google Scholar 

  78. http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/4-gasifiers/4-3_syngas-detail.html. Accessed 2013

  79. C.A. Callaghan, Worcester Polytechnic Inst., PhD (2006), p. 40

    Google Scholar 

  80. Y. Choi, H.G. Stenger, J. Power Sources 124, 432 (2003)

    Google Scholar 

  81. S. Werner, Friedrich-Alexander-Universität Erlangen, PhD, 2011

    Google Scholar 

  82. G. Brenna, University of Bologna, PhD (2010), p. 40

    Google Scholar 

  83. C. Ratnasamy, J.P. Wagner, Catal. Rev. Sci. Eng 51(3), 325–440 (2009)

    Google Scholar 

  84. E. Grol, W.C. Yang, DOE/NETL Report 401/080509, 2009

    Google Scholar 

  85. J. Wang, J. Spencer, J. Butler, Y. Cai, in 21st North American Catal. Society Meeting, San Francisco, 2009, P-W-88

    Google Scholar 

  86. K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, J. Nat. Gas. Sci. Eng. 3, 423 (2011)

    Google Scholar 

  87. H. Huang, N. Young, P. Williams, S. Taylor, G. Hutchings, Catal. Lett. 110, 243 (2006)

    Google Scholar 

  88. Clariant, Actisorb 300 series brochure, 2011

    Google Scholar 

  89. R. Quinn, T. Mebrahtu, T.A. Dahl, F.A. Lucrezi, B.A. Toseland, Appl. Catal. 264, 103 (2004)

    Google Scholar 

  90. Clariant, Actisorb 400/410 series brochure, 2011

    Google Scholar 

  91. R.L. Cornelissen, S. Clevers, CCS, Chrisgas project, 6th EU framework program, Report Chrisgas, 2009, WP3_D14

    Google Scholar 

  92. C.H. Bartholomew, Appl. Catal. 212, 17–60 (2001)

    Google Scholar 

  93. P. Forzatti, L. Lietti, Catal. Today 52, 165–181 (1999)

    Google Scholar 

  94. L. Kohl, R.B. Mielsen, Gas Purification, 5th edn. (Gulf Publishing Company, Houston, 1997)

    Google Scholar 

  95. H. Hiller, R. Reimert, F. Marschner, H.-J. Renner, W. Broll, E. Supp, M. Brejc, W. Liebner, G. Schaub et al., Gas Production. Ullmanns Enzyklopädie der technischen Chemie, 6. Auflage, Electronic CD-ROM version (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  96. R. Dittmeyer, W. Keim, G. Kreysa, A. Obernholz, Winnacker-Küchler, Chemische Technik, Prozesse und Produkte, Band 3: Anorganische Grundstoffe, Zwischenprodukte, 5. Auflage (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  97. S.A. Newmann, Acid and Sour Gas Treating Processes (Gulf Publishing Company, Houston, 1985)

    Google Scholar 

  98. B. Schreiner, Der Claus-Prozess. Chem. Unserer Zeit 42, 378–392 (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  99. R. Pardemann, B. Meyer, Status and Perspectives of coal utilization in power plants with coal gasification (German article). Chemie Ingenieur Technik 82(11), 1805–1819 (2011)

    Google Scholar 

  100. Lurgi/Air Liquide, The Rectisol Process–Lurgi’s leading technology for purification and conditioning of synthesis gas, Process information sheet 308e/01.11/10, 2012

    Google Scholar 

References to Section 4.5

  1. US Hydrogen Production Capacity, EIA report SR-01AF-CNEAF/2008-04

    Google Scholar 

  2. G. Maisonnier, J. Perrin, R. Steigenberger-Wilckens, S.C. Trümper, European Hydrogen Infrastructure Atlas, Industrial Excess Hydrogen Analysis Part II: Industrial Surplus Hydrogen Markets and Production, Roads2HyCom, Document R2H20006PU.1, 7 Mar 2007

    Google Scholar 

  3. J. Perrin, R. Steigenberger-Wickens, S.C. Trümper, European Hydrogen Infrastructure Atlas, Part III: Industrial Distribution Infrastructure, Roads2HyCom, Document R2H2007PU.1, 3 July 2007

    Google Scholar 

  4. M. Kappas, Klimatologie Klimaforschung im 21. JahrhundertHerausforderung für Natur- und Sozialwissenschaften (Spektrum Akademischer, Heidelberg, 2009) p. 159 ff

    Google Scholar 

  5. J.G. Canadell, C. Le Quéré, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, G. Marland, PNAS 104(47), 18866–18870 (2007)

    Google Scholar 

  6. Global Carbon Dioxide Transport from AIRS Data, July 2008, online: http://photojournal.jpl.nasa.gov/catalog/PIA11194, 31 May 2013

  7. F. Ausfelder, A. Bazzanella, Position Paper on CO2 Utilizaiton and Storage, DECHEMA, Oct 2008

    Google Scholar 

  8. M. Prud’homme, in International Fertilizer Association Annual Meeting, Paris, 2010

    Google Scholar 

  9. G.A. Olah, A. Goeppert, K. Surya Prakash, J. Org. Chem. 74(2), 487–498 (2009)

    Google Scholar 

  10. G.A. Olah, Angew. Chem. Int. Ed., 52, 104–107 (2013) plus references cited therein

    Google Scholar 

  11. J. Strautmann, D. Wolf, T. Riethmann, A. Kather, M. Klostermann, M. Blug, A. Schraven, D. Kruse, Green Chem., 15, (2013) submitted

    Google Scholar 

  12. Press Release, Mitsui Chemicals, Tokyo, 25 Aug 2008

    Google Scholar 

  13. K.C. Tran, Carbon Recycling International, presentation to World Energy Council, 2009

    Google Scholar 

  14. http://www.carbonrecycling.is, 30 May 2013

  15. A. Boddien, M. Beller et al., Science 333, 1733 (2011)

    Google Scholar 

  16. M. Czaun, A. Goeppert, R. May, R. Haiges, G.K.S. Prakash, G.A. Olah, ChemSusChem 4, 1241–1248 (2011)

    Google Scholar 

  17. D. Möller, LIFIS ONLINE, 15 Aug 2011. ISSN: 1864-6972

    Google Scholar 

References to Section 4.5.1

  1. G.A. Olah, A. Goeppert, G.K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2009). 2nd Updated and enlarged Edition

    Google Scholar 

  2. F. Asinger, Methanol: Chemie- und Energierohstoff (Springer, Berlin Heidelberg, 1986)

    Google Scholar 

  3. J. Leclaire, G. Husson, N. Devaux, V. Delorme, L. Charles, F. Ziarelli, P. Desbois, A. Chaumonnot, M. Jacquin, F. Fotiadu, G. Buono, J. Am. Chem. Soc. 132(10), 582–3593 (2010)

    Google Scholar 

  4. J.-L. Wang, C.-X. Miao, X.-Y. Dou, J. Gao, L.-N. He, Curr. Org. Chem. 15(5), 621–646 (2011)

    Google Scholar 

  5. S.N. Riduan, Y. Zhang, Dalton Trans. 39, 3347–3357 (2010)

    Google Scholar 

  6. A. Bar-Evena, E. Noora, N.E. Lewisbc, R. Milo, Design and analysis of synthetic carbon fixation pathways. PNAS 107(19), 8889–8894, 11 May 2010

    Google Scholar 

  7. H.-W. Häring, Industrial Gases Processing (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  8. J. Rolker, M. Seiler, Adv. Chem. Eng. Sci. 1, 280–288 (2011)

    Google Scholar 

  9. A.L. Kohl, R.B. Nielsen, Gas Purification, 4th edn. (Gulf Publishing, Houston, 1997)

    Google Scholar 

  10. C.M. White, B.R. Strazisar, E.J. Granite, J.S. Hoffman, H.W. Pennline, J. Air Waste Manag. Assoc. 53(6), 645–715 (2003)

    Google Scholar 

  11. M. Ramezan, N. Nsakala, G.N. Liljedahl, L.E. Gearhart, R. Hestermann, B. Rederstorff, Carbon Dioxide Capture from Existing Coal Fired Power Plants, DOE/NETL-401/120106 (National Energy Technology Laboratory, 2006). doi:10.1081/SS-200042244

  12. D. Aaron, C. Tsouris, Sep. Sci. Technol. 40(1), 321 (2005)

    Google Scholar 

  13. O. Davidson, H.C. de Coninck, M. Loos, L.A. Meyer (eds.) IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge University Working Group III of the Intergovernmental Panel on Climate Change Press, Cambridge, New York, 2005)

    Google Scholar 

  14. J. Van Straelen, F. Geuzebroek, N. Goodchild, G. Proto-papas, L. Mahony, Int. J. Greenhouse Gas Control 4(1), 316–320 (2010). doi:10.1016/j.ijggc.2009.09.022

    Google Scholar 

  15. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Int. J. Greenhouse Gas Control 2(1), 9–20 (2008). doi:10.1016/S1750-5836(07)00094-1

    Google Scholar 

  16. J. Seagraves, M. Quinlan, J. Corley, Fundamentals of Gas Treating, in Laurance Reid Gas Conditioning Conference (LRGCC), 2010

    Google Scholar 

  17. R.N. Tennyson, R.P. Schaaf, Oil Gas J. 10(1), 78–86 (1977)

    Google Scholar 

  18. B.T. Oyenekan, G.T. Rochelle, Ind. Eng. Chem. Res. 45(1), 2457–2464 (2006). doi:10.1021/ie050548k

    Google Scholar 

  19. J. Oexmann, A. Kather, Int. J. Greenhouse Gas Control 4(1), 36–43 (2010). doi:10.1016/j.ijggc.2009.09.010

    Google Scholar 

  20. B.A. Oyenekan, G.T. Rochelle, AIChE J. 53(1), 3144–3154 (2007). doi:10.1002/aic.11316

    Google Scholar 

  21. G.T. Rochelle, CO2 capture by aqueous absorption/stripping opportunities for better technology, in Workshop on Carbon Sequestration Science, Washington, D.C., 2001

    Google Scholar 

  22. P.V. Danckwerts, Gas-Liquid Reactions (McGraw-Hill, New York, 1970)

    Google Scholar 

  23. Wiley-VCH and LASTWiley-VCH, Ullmann’s Agrochemicals, vol. 1 (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  24. G. Sartori, D.W. Savage, Ind. Eng. Chem. Fundam. 22(1), 239–249 (1983). doi:10.1021/i100010a016

    Google Scholar 

  25. J.-Y. Park, S.J. Yoon, H. Lee, Environ. Sci. Technol. 37(1), 1670–1675 (2003). doi:10.1021/es0260519

    Google Scholar 

  26. F. Bougie, M.C. Iliuta, Chem. Eng. Sci. 65(1), 4746–4750 (2010). doi:10.1016/j.ces.2010.05.021

    Google Scholar 

  27. R.G.F. Albry, M.S. DuPart, Amine Plant Trouble-Shooting and Optimization (Gulf Publishing Co., Houston, 1995) pp. 3–11

    Google Scholar 

  28. K.P. Shen, M.-H. Li, J. Chem. Eng. Data 37(1), 96–100 (1992). doi:10.1021/je00005a025

    Google Scholar 

  29. O.F. Dawodu, A. Meisen, J. Chem. Eng. Data 39(1), 548–552 (1994). doi:10.1021/je00015a034

    Google Scholar 

  30. F.-Y. Jou, A.E. Mather, F.E. Otto, Can. J. Chem. Eng. 73(1), 140–145 (1995). doi:10.1002/cjce.5450730116

    Google Scholar 

  31. J. Gmehling, J. Chem. Eng. Data 38(1), 143–146 (1993). doi:10.1021/je00009a036

    Google Scholar 

  32. G. Senger, G. Wozny, Chem. Ing. Tech. 83(4), 503–510 (2011). doi:10.1002/cite.201000210

    Google Scholar 

  33. M. Seiler, J. Rolker, PCT/EP 2010/051083, 2010

    Google Scholar 

  34. M. Seiler, J. Rolker, DE 102010043838.3, 2010

    Google Scholar 

  35. M. Seiler, T. Pott, WO 2006/048182, 2006

    Google Scholar 

  36. M. Seiler, J. Rolker, R. Schneider, A. Kobus, J. Reich, W. Benesch, H. Brüggemann, WO 2010/139616, 2010

    Google Scholar 

  37. M. Seiler, J. Rolker, R. Schneider, A. Kobus, D. Witthaut, M. Neumann, M. Keup, D. Dembkowski, W. Benesch, H. Winkler, J. Reich, T. Riethmann, EP 2258460, 2010

    Google Scholar 

  38. M. Seiler, J. Rolker, R. Schneider, B. Glöckler, A. Kobus, J. Reich, W. Benesch, H. Brüggemann, T. Riethmann, H. Winkler, WO 2010/089257, 2010

    Google Scholar 

  39. F.-Y. Jou, A.E. Mather, F.E. Otto, Ind. Eng. Chem. Process Des. Dev. 21(1), 539–544 (1982). doi:10.1021/i200019a001

    Google Scholar 

  40. T.R. Aikins, L.E. Parks, J.N. Iyengar, R.B. Fedich, D. Perry, Sterically hindered amines-thirty years of gas treating practice, in Annual Laurance Reid Gas Conditioning Conference, Norman, 20–23 Feb 2011

    Google Scholar 

  41. G.W. Xu, C.-F. Zhang, S.-J. Qin, Y.-W. Wang, Ind. Eng. Chem. Res. 31(1), 921–927 (1992). doi:10.1021/ie00003a038

    Google Scholar 

  42. P.W.J. Derks, Carbon dioxide absorption in piperazine activated N-methyldiethanolamine, Ph.D. Thesis, University of Twente, Nederland, 2006

    Google Scholar 

  43. F.-Y. Jou, F.-E. Otto, A.E. Mather, Ind. Eng. Chem. Res. 33(1), 2002–2005 (1994). doi:10.1021/ie00032a016

    Google Scholar 

  44. J. Seagraves, R.H. Weiland, Treating high CO2 gases with MDEA. Petrol. Technol. Quart. GAS 103–109 (2009)

    Google Scholar 

  45. J.A. Bullin, J.C. Polasek, S.T. Donnelly, The Use of MDEA and Mixtures of Amines for Bulk CO2 Removal (Bryan Research & Engineering, Inc., 2006). http://www.bre.com

  46. R. Notz, I. Tönnies, H.P. Mangalapally, S. Hoch, H. Hasse, Int. J. Greenhouse Gas Control 5(3), 413–421 (2010). doi:10.1016/j.ijggc.2010.03.008

    Google Scholar 

  47. B. Schäfer, A.E. Mather, K.N. Marsh, Fluid Phase Equilib. 194–197, 929–935 (2002). doi:10.1016/S0378-3812(01)00722-1

    Google Scholar 

  48. J. Rolker, M. Seiler, Elements 37. Quaterly Sci. Newsl. Evonik Ind. AG 4, 2011

    Google Scholar 

  49. J. Rolker, T. Lenormant, M. Seiler, Chem. Ing. Tech. 84(6), 849–858 (2012)

    Google Scholar 

  50. P.D. Vaidya, E.Y. Kenig, Chem. Eng. Commun. 194(12), 1543–1565 (2007)

    Google Scholar 

  51. H.E. Benson, J.H. Field, R.M. Jimeson, Chem. Eng. Prog. 50, 356–364 (1954)

    Google Scholar 

  52. Overview of UOP Gas Processing Technologies and Applications, Presentation, 2009. http://www.uop.com/wp-content/uploads/2011/02/UOP-Overview-of-Gas-Processing-Technologies-and-Applications-tech-presentation.pdf

References to Section 4.5.2

  1. A. Earnshaw, N.N. Greenwood, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997)

    Google Scholar 

  2. Z. Jiang, T. Xiao, V.L. Kuznetsov, P.P. Edwards, Phil. Trans. R. Soc. A 368, 3343–3364 (2010)

    Google Scholar 

  3. P. Häussinger, R. Lohmüller, A.M. Watson Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2000)

    Google Scholar 

  4. M.A. Rosen, D.S. Scott, in Proceedings of the Ninth World Hydrogen Energy Conference (Paris, France, 1992), p. 457

    Google Scholar 

  5. N.Z. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 30, 225–237 (2005)

    Google Scholar 

  6. http://www.praxair.com/gases/buy-compressed-hydrogen-gas-or-liquid-hydrogen

  7. S. Muschelknautz, P. Fritz, Syngas and hydrogen production for chemical and refinery applications based on natural gas and other feedstocks, in ACHEMA Congress, Frankfurt/Main, Germany, 2012

    Google Scholar 

  8. http://www.praxair.com/praxair.nsf/AllContent/7E8A75E1CC87FA998525655E000B40DA?OpenDocument&URLMenuBranch=88FFF0AAE2BDB4948525706F00587825 nicht auffindbar

  9. L. Barreto, Int. J. Hydrogen Energy 28, 267–284 (2003)

    Google Scholar 

  10. L. Barreto, A. Makihira, K. Riahi, Medium and Long-term Demand and Supply Prospects for Fuel Cells: The Hydrogen Economy and Perspectives for the 21st Century, Laxenburg, Austria, 2002

    Google Scholar 

  11. J.N. Armor, Catal. Lett. 101, 131–135 (2005)

    Google Scholar 

  12. G. Parkinson, Chem. Eng. 108(10), 29–37 (2001)

    Google Scholar 

  13. B. Suresh, S. Schlag, Y. Inoguchi, Hydrogen Market Report, document 743.5000 A, SRI (Consulting Menlo Park, USA, 2004), p. 6

    Google Scholar 

  14. C. Petit, US News World Rep. 135(22), 54 (2003)

    Google Scholar 

  15. I. Dincer, Int. J. Hydrogen Energy 37, 1954–1971 (2012)

    Google Scholar 

  16. Press Release, Air Products’ Gulf Coast Pipeline Fills Additional Hydrogen Requirement (Air Products & Chemicals, Inc., Lehigh Valley, 2011), can be found under http://www.airproducts.com/company/news-center/2011/08/0809-air-products-gulf-coast-pipeline-fills-additional-hydrogen-requirement.aspx

  17. Brochure, Increase Hydrogen Supply Availability with Cavern Storage, Praxair Information 10/06 P-9808 (Praxair Technology, Inc., Danbury, 2006) can be found under http://www.praxair.pt/praxair.nsf/0/3A0AB529A089B473852571F0006398A3/$file/027847_PRAX_RefinSpec_4_low_res.pdf

  18. J. Perrin, R. Steinberger-Wilckens, S.C. Trümper, European Hydrogen Infrastructure Atlas, Part III Industrial distribution infrastructure, document R2H2007PU.1, 2007, can be found under http://www.roads2hy.com/wp2.html

References to Section 4.5.3

  1. IHS Chemical, CEH Marketing Research Report Hydrogen. Abstract, 2010, can be found under http://www.ihs.com/products/chemical/planning/ceh/hydrogen.aspx

  2. M. Bertau, C. Pätzold, D. Meyer, unpublished results

    Google Scholar 

  3. C. Lange, Bachelor Thesis, Freiberg University of Mining and Technology, 2011

    Google Scholar 

  4. T. Smolinka, M. Günther, J. Garche, Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regernativen Energien, Berlin, 2010

    Google Scholar 

  5. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Electrochim. Acta 82, 384–391 (2012)

    Google Scholar 

  6. K.E. Ayers, E.B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, M. Niedzwiecki, ECS Transactions (ECS, 2010)

    Google Scholar 

  7. A. Goñi-Urtiaga, D. Presvytes, K. Scott, Int. J. Hydrogen Energy 37, 3358–3372 (2012)

    Google Scholar 

  8. M. Laguna-Bercero, J. Power Sources 203, 4–16 (2012)

    Google Scholar 

  9. T. Ishihara, T. Kannou, S. Hiura, N. Yamamoto, T. Yamada, Steam Electrolysis Cell Stack using LaGaO3-Based Electrolyte, Karlsruhe, 2009

    Google Scholar 

  10. W. Suksami, I. Metcalfe, Solid State Ionics 178, 627–634 (2007)

    Google Scholar 

  11. Z. Wang, R. Roberts, G. Naterer, K. Gabriel, Int. J. Hydrogen Energy 37, 16287–16301 (2012)

    Google Scholar 

  12. M.T. Balta, I. Dincer, A. Hepbasli, Int. J. Energy Res. 34, 757–775 (2010)

    Google Scholar 

  13. R.L. Uffen, Proc. Natl. Acad. Sci. U.S.A. 73, 3298–3302 (1976)

    Google Scholar 

  14. S.A. Markov, Energy Procedia 29, 394–400 (2012)

    Google Scholar 

  15. R.L. Uffen, Enzyme Microb. Technol. 3, 197–206 (1981)

    Google Scholar 

References to Section 4.6

  1. R.W. Joyner, F. King, M.A. Thomas, G. Roberts, Catal. Today 10, 417 (1991)

    Google Scholar 

  2. G. Petrini, F. Mortino, A. Bossi, F. Garbassi, Preparation of Catalysts III, in Studies in Surface Science and Catalysis, ed. by P. Grange, P.A. Jacobs, G. Poncelet, vol. 16 (1983) p. 735

    Google Scholar 

  3. Y. Zhang, Q. Sun, J. Deng, D. Wu, S. Chen, Appl. Catal. A. 158, 105 (1997)

    Google Scholar 

  4. P. Gherardi, O. Ruggeri, F. Trifiro, A. Vaccari, G. Del Piero, G. Manara, B. Notari. Preparation of Catalysts III, in Studies in Surface Science and Catalysis, ed. by P. Grange, P.A. Jacobs, G. Poncelet, vol. 16 (1983) p. 723

    Google Scholar 

  5. Y. Zhang, Q. Sun, J. Deng, D. Wu, S. Chen, Appl. Catal. A 158, 105 (1997)

    Google Scholar 

  6. R.H. Hoppener, E.B.M. Doesburg, J.J.F. Scholten, Appl. Catal. 25, 109 (1986)

    Google Scholar 

  7. Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi, J. Phys. Chem. 87, 3747 (1983)

    Google Scholar 

  8. W.L. Marsden, M.S. Wainwright, J.B. Friedrich, Ind. Eng. Chem. Prod. Res. Dev. 19, 551 (1980)

    Google Scholar 

  9. M.S. Wainwright, W.L. Marsden, J.B. Friedrich, GB 066 856, 1981

    Google Scholar 

  10. H.E. Curry-Hyde, D.J. Young, M.S. Wainwright, Appl. Catal. 29, 31–41 (1987)

    Google Scholar 

  11. H.E. Curry-Hyde, M.S. Wainwright, D.J. Young, Methane Conversion. s.l (Elsevier, Amsterdam, 1988) p. 239

    Google Scholar 

  12. W.G. Baglin, G.B. Atkinson, L.J. Nicks, Ind. Eng. Chem. Prod. Res. Dev. 20, 87 (1981)

    Google Scholar 

  13. J.B. Friedrich, M.S. Wainwright, D.J. Young, J. Catal. 14 (1983)

    Google Scholar 

  14. F. Fajula, R.G. Anthony, J.H. Lunsford., J. Catal., 237–256 (1982)

    Google Scholar 

  15. Storch, H., US 1.681.753 A 1, 1928

    Google Scholar 

  16. J. Yoshihara, S.C. Parker, A. Schafer, C.T. Campbell, Catal. Lett. 31, 313 (1995)

    Google Scholar 

  17. J. Gallagher, Y. H. Kiold, GB 1 159 035, 1965

    Google Scholar 

  18. J. Ladebek, J. Koy, T. Regula, US 2005.080.148

    Google Scholar 

  19. D. Waller, D. Stirling, F.S. Stone, M.S. Spencer, Faraday Discuss. 87, 107 (1989)

    Google Scholar 

  20. S.H. Taylor, G.J. Hutchings, A.A. Mirzaei., Chem. Commun. 1373 (1999)

    Google Scholar 

  21. D.M. Whittle, A.A. Mirzaei, J.S.J. Hargreaves, R.W. Joyner, C.J. Kiely, S.H. Taylor, G.J. Hutchings, Phys. Chem. Chem. Phys. 4, 5915 (2002)

    Google Scholar 

  22. B. Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein, R. Schlögl, Chem. Eur. J. 9, 2039 (2003)

    Google Scholar 

  23. B.L. Kniep, T. Ressler, A. Rabis, F. Girgsdies, M. Baenitz, F. Steglich, R. Schlögl, Angew. Chem. Int. Ed. 43, 112 (2004)

    Google Scholar 

  24. M. Behrens, F. Girgsdies, A. Trunschke, R. Schlögl, Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture. Eur. J. Inorg. Chem. 1347–1357 (2009)

    Google Scholar 

  25. M. Behrens, F. Girgsdies, Structural effects of Cu/Zn substitution in the Malachite–Rosasite system. Zeitschrift für Anorganische und Allgemeine Chemie 636, 919–927 (2010)

    Google Scholar 

  26. B. Kniep, Technical University of Berlin, Microstructural modifications of copper Zinc Oxide, PhD Thesis, 2005. opus.kobv.de/tuberlin/…/kniep_benjamin.pdf

  27. C. Baltes, S. Vukojevic, F. Schüth, J. Catal. 258, 334–344 (2008)

    Google Scholar 

  28. K. Yamagishi, Y. Obata, Y. Sugano, Mitsubishi Gas Chemical. ss for manufacturing methanol and process for manufacturing catalyst for methanol synthesis. EP19960106327 (1996)

    Google Scholar 

  29. J.C.J. Bart, R.P.A. Sneeden, Catal. Today 2, 122 (1987)

    Google Scholar 

  30. G.C. Chinchen, P.J. Denny, J.R. Jennings, M.S. Spencer, K.C. Waugh, Appl. Catal. 36, 1 (1988)

    Google Scholar 

  31. S. Gusi, F. Pizzoli, F. Trifiro, A. Vaccari, G.D. Piero, Preparation of Catalysts IV, in Studies in Surface Science and Catalysis, ed. by P. Grange, P.A. Jacbos, G. Poncelet, B. Delmon, vol. 31 (1987)

    Google Scholar 

  32. M. Minelli, G. Moretti, J. Catal. 109, 367 (1988)

    Google Scholar 

  33. G. Sengupta, D.P. Das, M.L. Kundu, S. Dutta, S.K. Roy, R.N. Sahay, K.K. Mishra, Appl. Catal. 55, 165 (1989)

    Google Scholar 

  34. I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Angew. Chem. Int. Ed. 46, 7324–7327 (2007)

    Google Scholar 

  35. L. Ma, T. Tran, M.S. Wainwright, Top. Catal. 22, 295–304 (2003)

    Google Scholar 

  36. H. Topsoe, online: http://www.topsoe.com/business_areas/methanol/~/media/PDF%20files/Methanol/Topsoe_methanol_mk%20121.ashx

  37. Süd Chemie, General Catalyst Catalogue, online: www.clariant.com. www.sudchemie.com]

  38. M. Schneider, K. Kochloefl, J. Ladebeck, US Patent 4,535,071

    Google Scholar 

  39. J. Koy, F. Schmidt, J. Ladebeck, WO03053575

    Google Scholar 

  40. J.B. Hansen, P.E. Højlund Nielsen, in Handbook of Heterogeneous Catalysis, 2nd edn, ed. by H. Knözinger, F. Schüth, J. Weitkamp, G. Ertl (Wiley–VCH, Weinheim, 2008) pp. 2920–2949

    Google Scholar 

  41. M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M.l Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, Sci. online, 18 May 2012

    Google Scholar 

  42. C.Kittel, H. Kroemer (eds.) Thermal Physics (S.R Furphy and Company, New York, 1980) p. 246

    Google Scholar 

  43. W. Liebner, E. Supp. Combined reforming: a most economical way from natural gas to alcohols and synfuels, in VIII International Symposium on Alcohol Fuels, 1988

    Google Scholar 

  44. H.F. Rase, Handbook of commercial catalysts: heterogeneous catalysts (CRC Press LLC, 2000) p. 430

    Google Scholar 

  45. O.A. Hougen, K.M. Watson, R.A. Ragatz, Chemical Process Principles, vol. part 2 (1959)

    Google Scholar 

  46. G. Soave, Chem. Eng. Sci. 27, 1197 (1972)

    Google Scholar 

  47. D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976)

    MATH  Google Scholar 

  48. Y. Lwin, Int. J. Eng. Ed. 16(4), 335–339 (2000)

    Google Scholar 

  49. W.J. Thomas, S. Portalski, Ind. Eng. Chem. 50, 967 (1958)

    Google Scholar 

  50. R.H. Newton, B.F. Dodge, J. Am. Chem. Soc. 56, 1287 (1934)

    Google Scholar 

  51. R.M. Ewell, Ind. Eng. Chem 149 (1940)

    Google Scholar 

  52. V.M. Cherednichenko, Ph. D. Thesis, Korpova, Physico-Chemical Institute, Moscow, 1953

    Google Scholar 

  53. T. Chang, R.W. Rousseau, P.K. Kilpatrick, Ind. Eng. Chem. Process Des. Dev. 25, 477 (1986)

    Google Scholar 

  54. G.H. Graaf, P.J.J.M. Sijtsema, E.J. Stamhuis, G.E.H. Joosten, Chem. Eng. Sci. 11, 2883 (1986)

    Google Scholar 

  55. W. Kotowski, Przem. Chem. 44, 66 (1965)

    Google Scholar 

  56. Kirk-Othmer, Encyclopedia of Chemical Technology, vol. 15. (Wiley, 2005), pp. 398–415

    Google Scholar 

  57. L. Bisset, Chem. Eng. (N.Y.) 21, 155 (1977)

    Google Scholar 

  58. S. Lee, in Handbook of alternative fuel technologies, ed. by J.G. Speight, S.K. Loyalka, S. Lee. s.l. (CRC Press, Taylor & Francis Group, LLC, 2007)

    Google Scholar 

  59. X.-M. Liu, G.Q. Lu, Z.-F. Yan, J. Beltramini, Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind. Eng. Chem. Res. 42, 6518 (2003)

    Google Scholar 

  60. Sinor Synthetic Fuels Report, vol. 6, p. 126 (1999)

    Google Scholar 

  61. P.J.M. Tijm, F.J. Waller, D.M. Brown, Methanol technology developments for the new millenium. Appl. Catal. A 221, 275 (2001)

    Google Scholar 

  62. J.E. Miller, Sandia Report, SAND2007-8012, 2007

    Google Scholar 

  63. H.-W. Lim, M.-J. Park, S.-H. Kang, H.-J. Chae, J.W. Bae, K.-W. Jun, Ind. Eng. Chem. Res. 48, 10448–10455 (2009)

    Google Scholar 

  64. W. Seyfert, G. Luft, Chem. Ing. Tech. 57, 482 (1985)

    Google Scholar 

  65. B.J. Lommerts, G.H. Graaf, A.A.C.M. Beenackers, Chem. Eng. Sci. 55, 5589–559 (2000)

    Google Scholar 

  66. G.H. Graaf, E.J. Stamhuis, A.A.C.M. Beenackers, Kinetics of low-pressure methanol synthesis. Chem. Eng. Sci. 43(12), 3185–3195 (1988)

    Google Scholar 

  67. G.H. Graaf, H. Scholtens, E.J. Stamhuis, A.A.C.M. Beenackers, Chem. Eng. Sci. 45, 773–783 (1990)

    Google Scholar 

  68. A. Brehm, Kinetik homogener Reaktionen—Formalkinetik. gmehling.chemie.uni-oldenburg.de. (Online)

    Google Scholar 

  69. W. Keim, Pure Appl. Chem. 58(6), 825–832 (1986)

    Google Scholar 

  70. E. Ramaroson, R. Kieffer, A. Kiennermann, Appl. Catal. 4, 281 (1982)

    Google Scholar 

  71. E.R.A. Matulewicz, Ph. D. Thesis. s.l. (University of Amsterdam, 1984)

    Google Scholar 

  72. D.J. Elliott, F. Pennella, J. Catal. 119, 359 (1989)

    Google Scholar 

  73. J.B. Hansen, in AIChE National Meeting, Conference Proceedings (1990), p. 109

    Google Scholar 

  74. G.C. Chinchen, Appl. Catal. 36, 1–65 (1988)

    Google Scholar 

  75. J.C.J. Bart, R.C.P. Sneeden, Catal. Today 2, 1–124 (1987)

    Google Scholar 

  76. M.V. Twigg (ed.), Catalyst Handbook, 2nd edn (1989) pp. 441–468

    Google Scholar 

  77. JM, Katalco-51 Apico

    Google Scholar 

  78. I. Løvik, Modelling, estimation and optimizazion of the methanol synthesis with catalyst deactivation, Doctoral Thesis Norwegian University of Science and Technology, 2001

    Google Scholar 

  79. M.R. Rahimpour, J. Fathikalajahi, A. Jahanmiri, Can. J. Chem. Eng. 76, 753–761 (1998)

    Google Scholar 

  80. J. Richardson, Nitrogen Methanol. (1999)

    Google Scholar 

  81. N Ringer, Clariant Produkte Deutschland GmbH. Nitrogen Methanol (2004)

    Google Scholar 

References to Section 4.7

  1. K. Aasberg-Petersen, C.S. Nielsen, I. Dybkjær, J. Perregaard, Large scale methanol production from natural gas, 2013, found at: http://www.topsoe.com/business_areas/methanol/~/media/PDF%20files/Methanol/Topsoe_large_scale_methanol_prod_paper.ashx

  2. E. Supp, How to produce methanol from coal (Springer, New York, 1990)

    Google Scholar 

  3. J. Ott, V. Gronemann, F. Pontzen, E. Fiedler, G. Grossmann, B. Kersebohm, G. Weiss, C. Witte, Ullmann’s Encyclopedia of Technical Chemistry, 7th edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)

    Google Scholar 

  4. Chemsystems PERP Program, ‘Methanol’, Nexant Report 07/08-2, Nov 2008

    Google Scholar 

  5. Adapted from a private communication of Davy Process Technology

    Google Scholar 

  6. U. Zardi, G. Pagani, US Patent 5756048, 1998

    Google Scholar 

  7. I. Dybkjaer, Chem. Econ. Eng. Rev. 13(6), 17–25 (1981)

    Google Scholar 

  8. JM/DPT private communication

    Google Scholar 

  9. ChemSystems, Prospectus 2009/10, Methanol Strategic Business Report, Nexant Inc

    Google Scholar 

  10. I. Takase, K. Niwa, Chem. Econ. Eng. Rev. 17(5), 24–30 (1985)

    Google Scholar 

  11. P.J.A. Tijm, F. Waller, D.M. Brown, Appl. Catal. A, 221, 275–282 (2001)

    Google Scholar 

  12. E. Fiedler, G. Grossmann, D. Kersebohm, G. Weiss, C. Witte, “Methanol.” Ullmann’s Encyclopedia of Industrial Chemistry Release 2003, 6th edn (Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, 2003)

    Google Scholar 

  13. T. Wurzel, in World Methanol Conference, Houston, 15 Mar 2012

    Google Scholar 

  14. S. Lee, Methanol Synthesis from Syngas. In: S. Lee, James G. Speight, Sudarshan K. Loyalka (eds.) Handbook of Alternative Fuel Technologies (CRC Press, 2007), © 2007 by Taylor & Francis Group, LLC

    Google Scholar 

  15. W. Hilsebein, J. Blaurock, in Constructing a MegaMethanol® Plant—Start to finish, Methanol Forum Houston, 14 Oct 2004

    Google Scholar 

  16. Methanol Technologies: Methanol plants keep getting bigger, Nitrogen + Syngas, 316, 2012

    Google Scholar 

  17. L. Connock, Nitrogen + Syngas, 297, 40–55 (2009)

    Google Scholar 

  18. T. Wurzel, Lurgi MegaMethanol® Technology-Delivering the Building Blocks for the Future. Fuel and Monomer demand. Oil Gas Eur. Mag., 2, 92–96 (2007)

    Google Scholar 

  19. B. Höhlein, T. Grube, P. Biedermann, H. Bielawa, G. Erdmann, L. Schlecht, G. Isenberg, R. Edinger, Methanol als Energieträger, Forschungszentrum Jülich (2003)

    Google Scholar 

  20. U. Zardi, G. Pagani, EP-A-O 359 952

    Google Scholar 

  21. Linde, 2013 http://www.linde-engineering.com./de/footer/termsofuse.htmlAccessed. Referenz ist OK

    Google Scholar 

  22. PERP Report, Nexant ChemSystems, 2013 http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/pdfs/lpmeoh-oct2001.pdf

References to Section 4.8

  1. P. Davies, F. Forster Snowdon, G.W. Bridger, D.O. Hughes, P.W. Young, DE 1241429 B, 1963

    Google Scholar 

  2. M. Saito, M. Takeuchi, T. Fujitani, J. Toyir, S. Luo, J. Wu, H. Mabuse, K. Ushikoshi, K. Mori, T. Watanabe, Appl. Organomet. Chem. 14, 763–772 (2000)

    Google Scholar 

  3. K. Ushikoshi, K. Mori, T. Kubota, T. Watanabe, M. Saito, Appl. Organomet. Chem. 14, 819–825 (2000)

    Google Scholar 

  4. J. Toyir, R. Miloua, N.E. Elkadri, M. Nawdali, H. Toufik, F. Miloua, M. Saito, Phys. Proc. 2, 1075–1079 (2009)

    Google Scholar 

  5. M. Saito, Catal. Surv. Jpn. 2, 175–184 (1998)

    Google Scholar 

  6. V. Gronemann, W. Liebner, P. di Zanno, F. Pontzen, M. Rothaemel, Nitrogen+Syngas, 308, 36–39 (2010)

    Google Scholar 

  7. First Commercial Plant for methanol production (Carbon Recycling International), download from http://www.carbonrecycling.is/index.php?option=com_content&view=article&id=14&Itemid=8&lang=en, 25 March 2013

  8. G.A. Olah, A. Goeppert, G.K.S. Prakash, J. Org. Chem. 74, 487–498 (2009)

    Google Scholar 

  9. Mitsui CSR Report 2010 (Mitsui Chemicals Inc.) 2010, download from http://www.mitsuichem.com/csr/report/ebook/2010/index.htm, 9 Dec 2011

  10. V. Gronemann, W. Liebner, P. DiZanno, F. Pontzen, M. Rothaemel, Nitrogen + Syngas, 308, 36–39 (2010)

    Google Scholar 

  11. Bayer Sustainable Development report 2010 (Bayer AG), 2010, download from http://www.sustainability2010.bayer.com/en/sustainable-development-report-2010.pdfx, 12 Dec 2011

  12. Y. Zhang, J. Fei, Y. Yu, X. Zheng, Energy Conv. Mgmt. 47, 3360–3367 (2006)

    Google Scholar 

  13. G. Centi, S. Perathoner, Greenhouse Gases: Sci. Technol. 1(1), 21–35 (2011)

    Google Scholar 

  14. Research and Development of WVCoal (West Virginia Coal Association) 2013, download from http://www.wvcoal.com/Research-Development/iceland-recycles-even-more-co2.html, 25 March 2013

  15. J. Richardson, Nitrogen Methanol, 238, 29ff (1999)

    Google Scholar 

  16. H. Göhna, P. König, Chem. Technol. 24, 36–39 (1994)

    Google Scholar 

  17. J. Wu, S. Luo, J. Toyir, M. Saito, M. Takeuchi, T. Watanabe, Catal. Today 45, 215–220 (1998)

    Google Scholar 

  18. M. Saito, T. Fujitani, M. Takeuchi, T. Watanabe, Appl. Catal. A 138, 311–318 (1996)

    Google Scholar 

  19. D. Rotman, Chem. Week 154(11), 14 (1994)

    Google Scholar 

  20. E. F. Magoon, L. H. Slaugh (Shell Int. Res. Maatschappij B.V.), DE 2154074 B2, 1971

    Google Scholar 

  21. H. Yamada, T. Watanabe (Mitsubishi Gas Chemical Co.), EP 2492008 A1, 2010

    Google Scholar 

  22. A. Passariello (Ammonia Casale S.A.), DE 3238845 A1, 1982

    Google Scholar 

  23. M. Schneider, K. Kochloefl, O. Bock (Süd-Chemie AG), DE 3403491 A1, 1984

    Google Scholar 

  24. J. Koy, F. Schmidt, J. Ladebeck (Süd-Chemie AG), WO 2003053575 A1, 2002

    Google Scholar 

  25. E. Armbruster, O. Frei et al. (Lonza AG), WO 199703937, 1996

    Google Scholar 

  26. M. Takeuchi, H. Mabuse et al., EP 0864380 B1, 1998

    Google Scholar 

  27. S. Asano, T. Nakamura (Mitsubishi Gas Chemical Co.), DE 2365001 A1, 1973

    Google Scholar 

  28. H. Fukui, M. Kobayashi et al. (Direktor General of Agency of Ind. Sci. and Techn., YKK Corp.), DE 69808983 T2, 1998

    Google Scholar 

  29. K. Fujimoto, K. Fujimoto, N. Yamane, US 20100234649 A1, 2007

    Google Scholar 

  30. S.-H. Kang, J.W. Bae et al., US 20110118367 A1, 2009

    Google Scholar 

  31. Data provided by Lurgi AG. Reproduction with kind permission

    Google Scholar 

  32. H. Göhna, P. König et al. (Metallgesellschaft AG), US 5,631,302, 1997

    Google Scholar 

  33. O.-S. Joo, K.-D. Jung, Y. Jung, Carbon Dioxide utilization for global sustainability, in Proceedings of the 7th International Conference on Carbon Dioxide Utilization, 2007

    Google Scholar 

  34. O.-S. Joo, K.-D. Jung, Y. Jung, Stud. Surf. Sci. Catal. 153, 67–72 (2004)

    Google Scholar 

  35. O.-S. Joo, CAMERE Process for carbon dioxide hydrogenation to form methanol, 2013, download from http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/45_4_WASHINGTON%20DC_08-00_0686.pdf, 25 March 2013

  36. Mitsui Seeks Partners for CO2-Based Methanol Plant IHS Chemical Week (1 March 2010), 2010

    Google Scholar 

  37. T. Matsushita, T. Haganuma, D. Fujita (Mitsui Chemicals Inc.), US 20130237618 A1, 2011

    Google Scholar 

  38. T. Matsushita, T. Haganuma, D. Fujita (Mitsui Chemicals Inc.), WO 2011136345 A1, 2011

    Google Scholar 

  39. G. Olah, S. Prakash (The University of Southern California), US 7,608,743, 2009

    Google Scholar 

  40. A. Shulenberger, F. Jonsson, O. Ingolfsson, K.-C. Tran, US 20070244208, 2007

    Google Scholar 

  41. http://www.chemicals-technology.com/projects/george-olah-renewable-methanol-plant-iceland/

  42. J. Słoczyński, R. Grabowski, P. Olszewski, A. Kozłowska, J. Stoch, M. Lachowska, J. Skrzypek, Appl. Catal. A. 310, 127–137 (2006)

    Google Scholar 

  43. D.L. Chiavassa, J. Barrandeguy, A.L. Bonivardi, M.A. Baltanás, Catal. Today 133–135, 780–786 (2008)

    Google Scholar 

  44. D.L. Chiavassa, S.E. Collins, A.L. Bonivardi, M.A. Baltanás, Chem. Eng. J. 150, 204–212 (2009)

    Google Scholar 

  45. G.J. Millar, C.H. Rochester, K.C. Waugh, Catal. Lett. 14, 289–295 (1992)

    Google Scholar 

  46. M. Muhler, E. Törnqvist, L.P. Nielsen, B.S. Clausen, H. Topsøe, Catal. Lett. 25, 1–10 (1994)

    Google Scholar 

  47. Q. Sun, C.-W. Liu, W. Pan, Q.-M. Zhu, J.-F. Deng, Appl. Catal. A 171, 301–308 (1998)

    Google Scholar 

  48. M.S. Spencer, Catal. Lett. 60, 45–49 (1999)

    Google Scholar 

  49. K.-D. Jung, A.T. Bell, J. Catal. 193, 207–223 (2000)

    Google Scholar 

  50. T. Kubota, I. Hayakawa, H. Mabuse, K. Mori, K. Ushikoshi, T. Watanabe, M. Saito, Appl. Organomet. Chem. 15, 121–126 (2001)

    Google Scholar 

  51. W. Curtis Conner, J.L. Falconer, Chem. Rev. 95, 759–788 (1995)

    Google Scholar 

  52. S.E. Collins, M.A. Baltanás, A.L. Bonivardi, J. Catal. 226, 410–421 (2004)

    Google Scholar 

  53. S.E. Collins, M.A. Baltanás, A.L. Bonivardi, Langmuir 21, 962–970 (2005)

    Google Scholar 

  54. S.-H. Kang, J.W. Bae, K.W. Jun, K.-S. Min, S.-L. Song, S.-H. Jeong, EP 2305379 A2, 2009

    Google Scholar 

  55. A. Barber Stiles, DE 2320192 A, 1972

    Google Scholar 

  56. X. Dong, H.-B. Zhang, G.-D. Lin, Y.-Z. Yuan, K.R. Tsai, Catal. Lett. 85, 237–246 (2003)

    Google Scholar 

  57. F. Pontzen, W. Liebner, V. Gronemann, M. Rothaemel, B. Ahlers, Catal. Today 171, 242–250 (2011)

    Google Scholar 

  58. Z. Xu, Z. Qian, L. Mao, K. Tanabe, H. Hattori, Bull. Chem. Soc. Jpn. 64, 1658–1663 (1991)

    Google Scholar 

  59. Y. Nitta, O. Suwata, Y. Ikeda, Y. Okamoto, T. Imanaka, Catal. Lett. 26, 345–354 (1994)

    Google Scholar 

  60. X.-M. Liu, G.Q. Lu, Z.-F. Yan, J. Beltramini, Ind. Eng. Chem. Res. 42, 6518–6530 (2003)

    Google Scholar 

  61. J. Ladebeck, J. Koy, T. Regula, DE 10160486 A1, 2001

    Google Scholar 

  62. A. Erdohelyi, M. Pasztor, F. Solymosi, J. Catal. 98, 166 (1986)

    Google Scholar 

  63. N. Tsubaki, K. Fujimoto, Top. Catal. 22(3–4), 325–335 (2003)

    Google Scholar 

  64. J. Słoczyński, R. Grabowski, A. Kozłowska, M. Lachowska, J. Skrzypek, Pol. J. Chem. 75, 733–742 (2001)

    Google Scholar 

  65. T.C. Schilke, I.A. Fisher, A.T. Bell, J. Catal. 184, 144–156 (1999)

    Google Scholar 

  66. S.E. Collins, D.L. Chiavassa, A.L. Bonivardi, M.A. Baltanás, Catal. Lett. 103, 83–88 (2005)

    Google Scholar 

  67. J. Toyira, P.R. de la Piscina, J.L.G. Fierro, N. Homs, Appl. Catal. B 29, 207–215 (2001)

    Google Scholar 

  68. N. Nomura, T. Tagawa, S. Goto, Appl. Catal. A 166, 321–326 (1998)

    Google Scholar 

  69. M. Saito, T. Fujitani, M. Takeuchi, T. Watanabe, Appl. Catal. A 138, 311–318 (1996)

    Google Scholar 

  70. M. Behrens, J. Catal. 267, 24–29 (2009)

    Google Scholar 

  71. M. Behrens et al., Chem. Commun. 47, 1701–1703 (2011)

    Google Scholar 

  72. M. Behrens et al. App. Catal., A. 392, 93–102 (2011)

    Google Scholar 

  73. M. Saito, M. Takeuchi, T. Watanabe, J. Toyir, S. Luo, J. Wu, Energy Convers. Mgmt. 38, 403–408 (1997)

    Google Scholar 

  74. J. Deng, Q. Sun, Y. Zhang, S. Chen, D. Wu, Appl. Catal. A 139, 75–85 (1996)

    Google Scholar 

  75. Q. Sun, Y.-L. Zhang, H.-Y. Chen, J.-F. Deng, D. Wu, S.-Y. Chen, J. Catal. 167, 92–105 (1997)

    Google Scholar 

  76. R.P.W.J. Struis, S. Stucki, M. Wiedorn, J. Membr. Sci. 113, 93–100 (1996)

    Google Scholar 

  77. R.P.W.J. Struis, M. Quintilii, S. Stucki, J. Membr. Sci. 177, 215–223 (2000)

    Google Scholar 

  78. R.P.W.J. Struis, S. Stucki, Appl. Catal. A 216, 117–129 (2001)

    Google Scholar 

  79. B. Sea, K.-H. Lee, React. Kinet. Catal. Lett. 80, 33–38 (2003)

    Google Scholar 

  80. B. Sea, K.-H. Lee, J. Ind. Eng. Chem. 7, 417–423 (2001)

    Google Scholar 

  81. B. Sea, K.-H. Lee, Bull. Korean Chem. Soc. 22, 1400–1402 (2001)

    Google Scholar 

  82. K. Hagihara, H. Mabuse, T. Watanabe, M. Kawai, M. Saito, Engery Convers. Mgmt. 36, 581–584 (1995)

    Google Scholar 

  83. K. Hagihara, H. Mabuse, T. Watanabe, M. Saito, Catal. Today 36, 33–37 (1997)

    Google Scholar 

  84. H. Mabuse, K. Hagihara, T. Watanabe, M. Saito, Energy Convers. Mgmt. 38, 437–442 (1997)

    Google Scholar 

  85. G.P. van der Laan, A.A.C.M. Beenackers, B. Ding, J.C. Strikwerda, Catal. Today 48, 93–100 (1999)

    Google Scholar 

  86. Q.D. Truong, J.-Y. Liu, C.-C. Chung, Y.-C. Ling, Catal. Commun. 19, 85–89 (2012)

    Google Scholar 

  87. J. Mao, T. Peng, X. Zhang, K. Li, L. Zan, Catal. Commun. 28, 38–41 (2012)

    Google Scholar 

  88. P.L. Richardson, M.L.N. Perdigoto, W. Wang, R.J.G. Lopes, App. Catal. B 126, 200–207 (2012)

    Google Scholar 

  89. S. Wesselbaum, T. vom Stein, J. Klankenmeyer, W. Leitner, Angew. Chem. 124, 7617–7620 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans-Jürgen Wernicke , Ludolf Plass , Ludolf Plass , Ludolf Plass , Ludolf Plass , Hans Jürgen Wernicke , Matthias Seiler , Christoph Kiener , Eric Weingart , Ludolf Plass , Ludolf Plass or Ludolf Plass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wernicke, HJ., Plass, L., Schmidt, F. (2014). Methanol Generation. In: Bertau, M., Offermanns, H., Plass, L., Schmidt, F., Wernicke, HJ. (eds) Methanol: The Basic Chemical and Energy Feedstock of the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39709-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39709-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39708-0

  • Online ISBN: 978-3-642-39709-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics