Skip to main content

Physiological and Pathological Role of Reactive Oxygen Species in the Immune Cells

  • Chapter
  • First Online:
Immunology of Aging

Abstract

Production of reactive oxygen, chlorine, and nitrogen species is a pivotal and effective mechanism utilized by different immune cells to respond to invading pathogens. During the last decades the molecular pathways involved in the production of reactive species and their intersection with the cellular molecular sensors (nicotinamide adenine dinucleotide phosphate-oxidase, inflammasomes, Toll-like receptor) have been elucidated. At the same time, it has also been recognized that excessive or chronic production of reactive species, as occurred in chronic inflammatory, degenerative, and autoimmune diseases, is detrimental to the immune system. This integrated view of both the physiological and pathological role of reactive species in maintaining the cellular redox balance is coming to light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders MW, Robotham JL, Sheu SS (2006) Mitochondria: new drug targets for oxidative stress-induced diseases. Expert Opin Drug Metab Toxicol 2(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Cederbaum AI (2001) Mitochondrial catalase and oxidative injury. Biol Signals Recept 10(3–4):189–199

    Article  PubMed  CAS  Google Scholar 

  • Balce DR, Li B, Allan ER et al (2011) Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood 118(15):4199–4208

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  • Bargagli R (2000) Trace metals in Antarctica related to climate change and increasing human impact. Rev Environ Contam Toxicol 166:129–173

    PubMed  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  PubMed  CAS  Google Scholar 

  • Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23(1):38–89

    Article  PubMed  CAS  Google Scholar 

  • Blanchard C, Rothenberg ME (2009) Biology of the eosinophil. Adv Immunol 101:81–121

    PubMed  CAS  Google Scholar 

  • Bouayed J, Bohn T (2010) Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3(4):228–237

    Article  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  PubMed  CAS  Google Scholar 

  • Cathcart MK (2004) Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol 24(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Chan RC, Wang M, Li N et al (2006) Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cell responses involved in T-helper differentiation. J Allergy Clin Immunol 118(2):455–465

    Article  PubMed  CAS  Google Scholar 

  • Chance B (1961) The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway. J Biol Chem 236:1569–1576

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    PubMed  CAS  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  PubMed  CAS  Google Scholar 

  • Ciz M, Denev P, Kratchanova M et al (2012) Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid Med Cell Longev 2012:181295

    Article  PubMed  Google Scholar 

  • Czech MP, Lawrence JC Jr, Lynn WS (1974) Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc Natl Acad Sci U S A 71(10):4173–4177

    Article  PubMed  CAS  Google Scholar 

  • Dang PM, Dewas C, Gaudry M et al (1999) Priming of human neutrophil respiratory burst by granulocyte/macrophage colony-stimulating factor (GM-CSF) involves partial phosphorylation of p47(phox). J Biol Chem 274(29):20704–20708

    Article  PubMed  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    PubMed  CAS  Google Scholar 

  • Dunne DW, Resnick D, Greenberg J et al (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A 91(5):1863–1867

    Article  PubMed  CAS  Google Scholar 

  • El Benna J, Hayem G, Dang PM et al (2002) NADPH oxidase priming and p47phox phosphorylation in neutrophils from synovial fluid of patients with rheumatoid arthritis and spondylarthropathy. Inflammation 26(6):273–278

    Article  PubMed  Google Scholar 

  • Elbim C, Bailly S, Chollet-Martin S et al (1994) Differential priming effects of proinflammatory cytokines on human neutrophil oxidative burst in response to bacterial N-formyl peptides. Infect Immun 62(6):2195–2201

    PubMed  CAS  Google Scholar 

  • El-Sonbaty SM, El-Hadedy DE (2012) Combined effect of cadmium, lead, and UV rays on Bacillus cereus using comet assay and oxidative stress parameters. Environ Sci Pollut Res Int. Epub

    Google Scholar 

  • Erlemann KR, Rokach J, Powell WS (2004) Oxidative stress stimulates the synthesis of the eosinophil chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid by inflammatory cells. J Biol Chem 279(39):40376–40384

    Article  PubMed  CAS  Google Scholar 

  • Fabriek BO, van Bruggen R, Deng DM et al (2009) The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113(4):887–892

    Article  PubMed  CAS  Google Scholar 

  • Fariss MW, Chan CB, Patel M et al (2005) Role of mitochondria in toxic oxidative stress. Mol Interv 5(2):94–111

    Article  PubMed  CAS  Google Scholar 

  • Fisher AB (2009) Redox signaling across cell membranes. Antioxid Redox Signal 11(6):1349–1356

    Article  PubMed  CAS  Google Scholar 

  • Gougerot-Pocidalo MA, el Benna J, Elbim C et al (2002) Regulation of human neutrophil oxidative burst by pro- and anti-inflammatory cytokines. J Soc Biol 196(1):37–46

    PubMed  CAS  Google Scholar 

  • Grant GE, Rokach J, Powell WS (2009) 5-Oxo-ETE and the OXE receptor. Prostaglandins Other Lipid Mediat 89(3–4):98–104

    Article  PubMed  CAS  Google Scholar 

  • Grant GE, Rubino S, Gravel S et al (2011) Enhanced formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by cancer cells in response to oxidative stress, docosahexaenoic acid and neutrophil-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid. Carcinogenesis 32(6):822–828

    Article  PubMed  CAS  Google Scholar 

  • Guzik TJ, Griendling KK (2009) NADPH oxidases: molecular understanding finally reaching the clinical level? Antioxid Redox Signal 11(10):2365–2370

    Article  PubMed  CAS  Google Scholar 

  • Hazen SL, Hsu FF, Duffin K et al (1996) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J Biol Chem 271(38):23080–23088

    Article  PubMed  CAS  Google Scholar 

  • Holmes B, Page AR, Good RA (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46(9):1422–1432

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Chihara J (1999) Eosinophil activation by eotaxin–eotaxin primes the production of reactive oxygen species from eosinophils. Allergy 54(12):1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Janero DR, Hreniuk D, Sharif HM (1991) Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): lethal peroxidative membrane injury. J Cell Physiol 149(3):347–364

    Article  PubMed  CAS  Google Scholar 

  • Jendrysik MA, Vasilevsky S, Yi L et al (2011) NADPH oxidase-2 derived ROS dictates murine DC cytokine-mediated cell fate decisions during CD4 T helper-cell commitment. PLoS One 6(12):e28198

    Article  PubMed  CAS  Google Scholar 

  • Kadota S, Fantus IG, Deragon G et al (1987) Stimulation of insulin-like growth factor II receptor binding and insulin receptor kinase activity in rat adipocytes. Effects of vanadate and H2O2. J Biol Chem 262(17):8252–8256

    PubMed  CAS  Google Scholar 

  • Katsuyama M, Matsuno K, Yabe-Nishimura C (2012) Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr 50(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8(3):223–246

    PubMed  Google Scholar 

  • Kirkham P (2007) Oxidative stress and macrophage function: a failure to resolve the inflammatory response. Biochem Soc Trans 35(Pt 2):284–287

    PubMed  CAS  Google Scholar 

  • Korantzopoulos P, Kolettis TM, Galaris D et al (2007) The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int J Cardiol 115(2):135–143

    Article  PubMed  Google Scholar 

  • Kotsias F, Hoffmann E, Amigorena S et al (2013) Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal 18(6):714–729

    Article  PubMed  CAS  Google Scholar 

  • Krieger M, Herz J (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 63:601–637

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy JK, Chu T, Eisenbarth SC (2013) Beyond pattern recognition: NOD-like receptors in dendritic cells. Trends Immunol 34:224–233

    Article  PubMed  CAS  Google Scholar 

  • Laihia JK, Jansen CT (1997) Up-regulation of human epidermal Langerhans’ cell B7-1 and B7-2 co-stimulatory molecules in vivo by solar-simulating irradiation. Eur J Immunol 27(4):984–989

    Article  PubMed  CAS  Google Scholar 

  • Le SB, Hailer MK, Buhrow S et al (2007) Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282(12):8860–8872

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366(1–2):53–67

    PubMed  CAS  Google Scholar 

  • Leto TL, Morand S, Hurt D et al (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11(10):2607–2619

    Article  PubMed  CAS  Google Scholar 

  • Liu WF, Ma M, Bratlie KM et al (2011) Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32(7):1796–1801

    Article  PubMed  Google Scholar 

  • Matsumoto A, Naito M, Itakura H et al (1990) Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc Natl Acad Sci U S A 87(23):9133–9137

    Article  PubMed  CAS  Google Scholar 

  • Mishra D, Mehta A, Flora SJ (2008) Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes. Chem Res Toxicol 21(2):400–407

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273

    Article  PubMed  CAS  Google Scholar 

  • Muster B, Kohl W, Wittig I et al (2010) Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells. PLoS One 5(7):e11910

    Article  PubMed  Google Scholar 

  • Netzer N, Goodenbour JM, David A et al (2009) Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462(7272):522–526

    Article  PubMed  CAS  Google Scholar 

  • Newkirk MM, Goldbach-Mansky R, Lee J et al (2003) Advanced glycation end-product (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Res Ther 5(2):R82–R90

    Article  PubMed  CAS  Google Scholar 

  • Omori K, Ohira T, Uchida Y et al (2008) Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase. J Leukoc Biol 84(1):292–301

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Derhovanessian E, Larbi A (2010) Immunosenescence and cancer. Crit Rev Oncol Hematol 75(2):165–172

    Article  PubMed  Google Scholar 

  • Peled A, Gonzalo JA, Lloyd C et al (1998) The chemotactic cytokine eotaxin acts as a granulocyte-macrophage colony-stimulating factor during lung inflammation. Blood 91(6):1909–1916

    PubMed  CAS  Google Scholar 

  • Petreccia DC, Nauseef WM, Clark RA (1987) Respiratory burst of normal human eosinophils. J Leukoc Biol 41(4):283–288

    PubMed  CAS  Google Scholar 

  • Pickrell AM, Fukui H, Moraes CT (2009) The role of cytochrome c oxidase deficiency in ROS and amyloid plaque formation. J Bioenerg Biomembr 41(5):453–456

    Article  PubMed  CAS  Google Scholar 

  • Poli G, Leonarduzzi G, Biasi F et al (2004) Oxidative stress and cell signalling. Curr Med Chem 11(9):1163–1182

    Article  PubMed  CAS  Google Scholar 

  • Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187

    PubMed  CAS  Google Scholar 

  • Rutault K, Alderman C, Chain BM et al (1999) Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic Biol Med 26(1–2):232–238

    Article  PubMed  CAS  Google Scholar 

  • Rybicka JM, Balce DR, Khan MF et al (2010) NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes. Proc Natl Acad Sci U S A 107(23):10496–10501

    Article  PubMed  CAS  Google Scholar 

  • Sheng KC, Pietersz GA, Tang CK et al (2010) Reactive oxygen species level defines two functionally distinctive stages of inflammatory dendritic cell development from mouse bone marrow. J Immunol 184(6):2863–2872

    Article  PubMed  CAS  Google Scholar 

  • Shult PA, Graziano FM, Wallow IH et al (1985) Comparison of superoxide generation and luminol-dependent chemiluminescence with eosinophils and neutrophils from normal individuals. J Lab Clin Med 106(6):638–645

    PubMed  CAS  Google Scholar 

  • Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311(1152):617–631

    Article  PubMed  CAS  Google Scholar 

  • Song L, Lee C, Schindler C (2011) Deletion of the murine scavenger receptor CD68. J Lipid Res 52(8):1542–1550

    Article  PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C et al (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24(36):7779–7788

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  PubMed  CAS  Google Scholar 

  • Straumann A, Safroneeva E (2012) Eosinophils in the gastrointestinal tract: friends or foes? Acta Gastroenterol Belg 75(3):310–315

    PubMed  CAS  Google Scholar 

  • Sundaram S, Ghosh J (2006) Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival. Biochem Biophys Res Commun 339(1):93–98

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Lucas AH, Eaton JW (1993) Inflammatory responses to implanted polymeric biomaterials: role of surface-adsorbed immunoglobulin G. J Lab Clin Med 122(3):292–300

    PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344

    Article  PubMed  CAS  Google Scholar 

  • Underhill DM, Goodridge HS (2012) Information processing during phagocytosis. Nat Rev Immunol 12(7):492–502

    Article  PubMed  CAS  Google Scholar 

  • VanderVen BC, Hermetter A, Huang A et al (2010) Development of a novel, cell-based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry A 77(8):751–760

    PubMed  Google Scholar 

  • Winterbourn CC, Vissers MC, Kettle AJ (2000) Myeloperoxidase. Curr Opin Hematol 7(1):53–58

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Tsaprailis G, Chen QM (2005) Proteomic identification of insulin-like growth factor-binding protein-6 induced by sublethal H2O2 stress from human diploid fibroblasts. Mol Cell Proteomics 4(9):1273–1283

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Rao X, Deiuliis J et al (2013) A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62(1):149–157

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Tardivel A, Thorens B et al (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Santambrogio MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urbanska, A.M., Zolla, V., Verzani, P., Santambrogio, L. (2014). Physiological and Pathological Role of Reactive Oxygen Species in the Immune Cells. In: Massoud, A., Rezaei, N. (eds) Immunology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39495-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39495-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39494-2

  • Online ISBN: 978-3-642-39495-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics