Skip to main content

Abiotic Stress Tolerance Induced by Endophytic PGPR

  • Chapter
  • First Online:
Symbiotic Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 37))

Abstract

Abiotic stresses, like shortage of water, soil salinity, and extreme temperatures, are a main threat over worldwide agriculture. Plant growth promoter rhizobacteria (PGPR) refers to several bacterial endophytes with alleged positive effects on plant health and growth. Their use has been pursued mainly for agricultural applications to increase yields since three decades ago. Among such purported positive effects is the increase in plants’ resistance to abiotic stresses, both by producing some phytohormones and by inhibiting the production of others. However, albeit the considerable amount of literature produced in the meantime, the progress either in effective yield increases by inoculation with PGPR or in the understanding of the mechanisms involved in the purported beneficial effects has been rather scarce. This review focuses in revising the advancement made in the study of the different mechanisms involved in PGPR beneficial effects related to the diverse abiotic stresses and in finding the reason why the limited success in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait Barka E, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mold of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    Article  Google Scholar 

  • Ait Barka E, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Article  Google Scholar 

  • Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  PubMed  Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Bagg A, Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51:509–518

    PubMed  CAS  Google Scholar 

  • Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez J-P, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42:279–285

    Article  CAS  Google Scholar 

  • Bastián F, Cohen AC, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Beckett M, Loreto F, Velikova V, Brunetti C, Di Ferdinando M, Tattini M, Calfapietra C, Farrant JM (2012) Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration. Plant Cell Environ 35:2061–2074. doi:10.1111/j.1365-3040.2012.02536.x

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  PubMed  CAS  Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to filtration of UV-B radiation by enhancing UV-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    PubMed  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobia. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  PubMed  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161

    Article  PubMed  CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  PubMed  CAS  Google Scholar 

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001a) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

    Article  PubMed  Google Scholar 

  • Cassán F, Lucangeli C, Bottini R, Piccoli P (2001b) Azospirillum spp. metabolize [17,17-2H2]gibberellin A20 to [17,17-2H2]gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol 42:763–767

    Article  PubMed  Google Scholar 

  • Cho SM, Kang BR, Kim JJ, Kim YC (2012) Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol J 28:202–206

    Article  CAS  Google Scholar 

  • Choudhary DV, Johri BD (2009) Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  PubMed  CAS  Google Scholar 

  • Cohen AC, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia C, Bottini R, Piccoli P (2009) Participation of abscisic acid and gibberellins produced by entophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  PubMed  CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Creus C, Sueldo R, Barassi C (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  PubMed  CAS  Google Scholar 

  • Crozier A, Arruda P, Jasmim JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54:2833–2837

    PubMed  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  PubMed  CAS  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  PubMed  CAS  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28

    Article  PubMed  CAS  Google Scholar 

  • de-Bashan L, Hernandez JP, Bashan Y (2011) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Deka BHP, Dileep KBS (2002) Plant disease suppression and growth promotion by a fluorescent Pseudomonas strain. Folia Microbiol 47:137–143

    Article  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth promoting effects and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Heidelberg

    Google Scholar 

  • Dobbelaere SA, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strain altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Döbereiner J, Mariel IE, Nery M (1976) Ecological distribution of Spirillum lipoferum Beinjerick. Can J Microbiol 22:1464–1473

    Article  PubMed  Google Scholar 

  • Egamberdiyeva D, Höflich G (2004) Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ 56:293–301

    Article  Google Scholar 

  • Escoriaza G, Sansberro P, García Lampasona S, Gatica M, Bottini R, Piccoli P (2013) In vitro cultures of Vitis vinifera L. cv. Chardonnay synthesize the phytoalexin nerolidol upon infection by Phaeoacremonium parasiticum. Phytopatol Mediterr (in press)

    Google Scholar 

  • Feng J, Barker AV (1992) Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses. Part II. J Plant Nutr 15:2471–2490

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Álvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493

    Article  PubMed  CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Fulchieri M, Frioni L (1994) Azospirillum inoculation on maize (Zea mays): effect on yield in a field experiment in central argentina. Soil Biol Biochem 26:921–923

    Article  Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellins content of corn seedling roots. Plant Cell Physiol 34:1305–1309

    CAS  Google Scholar 

  • Gil M, Pontin M, Berli F, Bottini R, Piccoli P (2012) Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry 77:89–98

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Granier C, Tardieu F (1999) Water deficit and spatial pattern of leaf development. Variability in responses can be stimulated using a simple model of leaf development. Plant Physiol 119:609–619

    Article  PubMed  CAS  Google Scholar 

  • Grassmann J, Hippeli S, Elstner EF (2002) Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem 40:471–478

    Article  CAS  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Reyes de la Cruz H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hadas R, Okon Y (1987) Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol Fertil Soils 5:241–247

    Article  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Huang J, Zhu J-K (2004) Plant responses to stress: abscisic acid and water stress. In: Goodman RM (ed) Encyclopedia of plant and crop science. Dekker, New York, NY

    Google Scholar 

  • Jain DK, Patriquin DG (1985) Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can J Microbiol 31:206–210

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kloepper JW, Zablotowiez RM, Tipping EM, Lifshitz R (1991) Inorganic plant growth promotion mediated by bacterial rhizosphere colonizer. In: Keister KL, Gregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus species. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  PubMed  CAS  Google Scholar 

  • Levanony H, Bashan Y (1989) Enhancement of cell division in wheat root tips and growth of root elongation zone induced by Azospirillum brasilense Cd. Can J Bot 67:2213–2216

    Article  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182

    Article  PubMed  CAS  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, VelásquezBecerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium Rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Article  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725

    Article  PubMed  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick B (2004) Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp 245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Moreno D, Berli F, Piccoli PN, Bottini R (2011) Gibberellins and abscisic acid promote carbon allocation in roots and berry of grapevines. J Plant Growth Regul 30:220–228

    Article  CAS  Google Scholar 

  • Muthukumarasamy R, Govindarajan M, Vadivelu M, Revathi G (2006) N-fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants. Microbiol Res 161:238–245

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393

    Article  CAS  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    Article  PubMed  CAS  Google Scholar 

  • Okon Y, Labandera-González C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A, Sosa L, Cornejo P, Masuelli R, Bottini R (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64:207–210

    Article  CAS  Google Scholar 

  • Quiroga AM, Berli F, Moreno D, Cavagnaro JB, Bottini R (2009) Abscisic acid sprays significantly increase yield per plant in vineyard-grown wine grape (Vitis vinifera L.) cv. Cabernet Sauvignon through increased berry set with no negative effects on anthocyanin content and total polyphenol index of both juice and wine. J Plant Growth Regul 28:28–35

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Hu CH, Locy R, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Ryu CM, Murphy JF, Reddy MS, Kloepper JW (2007) A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J Microbiol Biotechnol 17:280–286

    PubMed  CAS  Google Scholar 

  • Sansberro P, Mroginski L, Bottini R (2004) Abscisic acid promotes growth of Ilex paraguariensis plants by alleviating diurnal water stress. Plant Growth Regul 42:105–111

    Article  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of pseudomonads for improving growth, yield and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Travaglia C, Cohen AC, Reinoso H, Castillo C, Bottini R (2007) Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J Plant Growth Regul 26:285–289

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Bottini R (2009) Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop Pasture Sci 60:1131–1136

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Cohen AC, Luna C, Castillo C, Bottini R (2010) Exogenous ABA increases yield in field-grown wheat with a moderate water restriction. J Plant Growth Regul 29:366–374

    Article  CAS  Google Scholar 

  • Van Loon LC, Glick DR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin

    Google Scholar 

  • Vögeli U, Chappell J (1988) Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol 88:1291–1296

    Article  PubMed  Google Scholar 

  • Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Davies WJ (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure de water status in the soil. Plant Cell Environ 12:73–81

    Article  CAS  Google Scholar 

  • Zhang SQ, Outlaw WH Jr (2001) Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Environ 24:1045–1054

    Article  CAS  Google Scholar 

  • Zhang H, Xie X, Kim M-S, Kornyeyev DA, Holaday S, Pare PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Bottini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piccoli, P., Bottini, R. (2013). Abiotic Stress Tolerance Induced by Endophytic PGPR. In: Aroca, R. (eds) Symbiotic Endophytes. Soil Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_8

Download citation

Publish with us

Policies and ethics