Skip to main content

Functional Diversity of Endophytic Bacteria

  • Chapter
  • First Online:
Symbiotic Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 37))

  • 2267 Accesses

Abstract

Bacterial endophytes colonize the inner tissues of plants but do not cause detrimental effects on them. Moreover, some endophytic bacteria are useful to overcome certain environmental stresses by the plants. Thus, it has been proposed that endophytic plant growth-promoting bacteria (PGPB) may act increasing the acquisition of nutritional resources, preventing the proliferation of pathogenic microorganisms, or altering plant hormone levels. However, bacterial endophytes are a subpopulation of the bacterial soil community combined with seed borne bacteria that prosper during the plant growth. Therefore, endophytic bacteria encompass a much more diverse community than the PGPB, but their diversity has been scarcely investigated. In this chapter, the affiliation and diversity of endophytic bacteria is presented with particular emphasis in two functional groups, diazotrophs and methanotrophs. Though with different intensities, diazotrophs and methanotrophs are two of the functional groups of endophytes more studied due to their biotechnological and ecological implications. Albeit no methanotrophs have been isolated as endophytes, their presence has been evidenced by enrichments and molecular detection, and its diversity seems to be restricted to a few genera. Most of the isolated endophytic diazotrophs are affiliated to the Proteobacteria. However, a wider diversity has been observed according to the nifH gene, which encodes for the nitrogenase reductase subunit, sequences retrieved from plant tissues, though a restricted fraction of these genes seems to be actually expressed. The study of these two groups illustrates the complexity of the endophytic bacterial communities and evidences the need of further studies to understand the interactions among bacterial endophytes and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, Yoneyama T (2005) Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr 51:303–308

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    Article  CAS  Google Scholar 

  • Baldani J, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997a) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Baldani VLD, Oliveira E, Balota E, Baldani JI, Kirchhof G, Dobereiner J (1997b) Burkholderia brasilensis sp. nov., uma nova especie de bacteria diazotrofica endofitica. An Acad Bras Cienc 69:116

    Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Dobereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Bowman J (2006) The methanotrophs—the families Methylococcaceae and Methylocystaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Strackebrandt E (eds) The prokaryotes. Springer, New York, NY, pp 266–289

    Chapter  Google Scholar 

  • Burbano CS, Liu Y, Rösner KL, Massena Reis B, Caballero-Mellado J, Reinhold-Hurek B, Hurek T (2011) Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environ Microbiol Rep 3:383–389

    Article  PubMed  CAS  Google Scholar 

  • Calhoun A, King GM (1998) Characterization of root-associated methanotrophs from three freshwater macrophytes: Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia. Appl Environ Microbiol 64:1099

    PubMed  CAS  Google Scholar 

  • Cavalcante V, Dobereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with the sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  PubMed  CAS  Google Scholar 

  • Demba Diallo M, Reinhold-Hurek B, Hurek T (2008) Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiol Ecol 65:220–228

    Article  PubMed  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou SB et al (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  PubMed  CAS  Google Scholar 

  • Elbeltagy A, Ando Y (2008) Expression of nitrogenase gene (nifH) in roots and stems of rice, Oryza sativa, by endophytic nitrogen-fixing communities. Afr J Biotechnol 7:1950–1957

    CAS  Google Scholar 

  • Eller G, Frenzel P (2001) Changes in activity and community structure of methane oxidizing bacteria over the growth period of rice. Appl Environ Microbiol 67:2395–2403

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  PubMed  CAS  Google Scholar 

  • Ferrando L, Tarlera S (2009) Activity and diversity of methanotrophs in the soil water interface and rhizospheric soil from a flooded temperate rice field. J Appl Microbiol 106:306–316

    Article  PubMed  CAS  Google Scholar 

  • Ferrando L, Fernandez Manay J, Fernandez Scavino A (2012) Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties. FEMS Microbiol Ecol 80:696–708

    Article  PubMed  CAS  Google Scholar 

  • Flores-Mireles AL, Winans SC, Holguin G (2007) Molecular characterization of diazotrophic and denitrifying bacteria associated to mangrove roots. Appl Environ Microbiol 73:7308–7321

    Article  PubMed  CAS  Google Scholar 

  • Gilbert B, Abmus B, Hartman A, Frenzel P (1998) In situ localization of two methanotrophic strains in the rhizosphere of rice plants. FEMS Microbiol Ecol 25:117–128

    CAS  Google Scholar 

  • Gottel NR, Castro HF, Kerley M, Yang Z et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Biotechnol 183:2634–2645

    CAS  Google Scholar 

  • Hallmann JA, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • Ikeda S, Kaneko T, Okubo T, Rallos LEE, Eda S, Mitsui H, Sato S, Nakamura Y, Tabata S, Minamisawa K (2009) Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microbial Ecol 58:703–714

    Article  CAS  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugarcane and other Graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396

    Article  PubMed  CAS  Google Scholar 

  • Kip N, Fritz C, Langelaan ES, Pan Y, Bodrossy L, Pancotto V, Jetten MSM, Smolders AJP, Op den Camp HJM (2012) Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences 9:47–55

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q (2012) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 93:1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Lindner AS, Pacheco A, Aldrich HC, Costello A, Uz I, Hodson DJ (2007) Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int J Syst Evol Microbiol 57:1891–1900

    Article  PubMed  CAS  Google Scholar 

  • Loaces I, Ferrando L, Fernández Scavino A (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  PubMed  Google Scholar 

  • Lucero ME, Unc A, Cooke P, Dowd S, Sun S (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS One 6:e17693

    Article  PubMed  CAS  Google Scholar 

  • Lüke C, Bodrossy L, Lupotto E, Frenzel P (2011) Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis. Environ Microbiol Rep 3:518–525

    Article  PubMed  Google Scholar 

  • Manter DK, Delgado JÁ, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Martínez Romero E (2006) Dinitrogen-fixing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Strackebrandt E (eds) The prokaryotes. Springer, New York, NY, pp 793–817

    Chapter  Google Scholar 

  • Minamisawa K, Nishioka K, Miyaki T, Ye B, Miyamoto T, You M, Saito A, Saito M, Barraquio WL, Teaumroong N, Sein T, Sato T (2004) Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from Gramineous plants. Appl Environ Microbiol 70:3096–3102

    Article  PubMed  CAS  Google Scholar 

  • Njoloma J, Tanaka K, Shimizu T, Nishiguchi T, Zakria M, Akashi R, Oota M, Akao S (2006) Infection and colonization of aseptically micropropagated sugarcane seedlings by nitrogen-fixing endophytic bacterium, Herbaspirillum sp. B501gfp1. Biol Fertil Soils 43:137–143

    Article  Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Dobereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in root, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21:197–200

    Article  Google Scholar 

  • Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils 46:807–816

    Article  Google Scholar 

  • Palus JA, Borneman J, Ludden PW, Triplett EW (1996) A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–142

    Article  CAS  Google Scholar 

  • Parmentier FJW, van Huissteden J, Kip N, Op den Camp HJM, Jetten MSM, Maximov TC, Dolman AJ (2011) The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra. Biogeosciences 8:1267–1278

    Article  CAS  Google Scholar 

  • Patriquin DG, Dobereiner J (1978) Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol 24:734–742

    Article  PubMed  CAS  Google Scholar 

  • Phillips LA, Armstrong SA, Headley JV, Greer CW, Germida JJ (2010) Shifts in root-associated microbial communities of Typha latifolia growing in naphthenic acids and relationship to plant health. Int J Phytoremediation 12:745–760

    Article  PubMed  CAS  Google Scholar 

  • Prakamhang J, Boonkerd N, Teaumroong N (2010) Rice endophytic diazotrophic bacteria. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 317–322

    Chapter  Google Scholar 

  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra IC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S et al (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:25

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, De-Ley J (1993) Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigenes sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584

    Article  Google Scholar 

  • Ringelberg D, Foley K, Reynolds CM (2012) Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media. Can J Microbiol 58:67–80

    Article  PubMed  CAS  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104

    Article  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140

    Article  PubMed  CAS  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Seo WT, Lim WJ, Kim EJ, Yun HD, Lee YH, Cho KM (2010) Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. J Appl Biol Chem 53:493–503

    CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif- mutant strains. Mol Plant Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  CAS  Google Scholar 

  • Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Tonouchi A, Takada M, Suko T, Suzuki S, Kimura Y, Matsuyama N, Fujita T (2008) Characterization of cultivable methanotrophs from paddy soils and rice roots. Soil Sci Plant Nutr 54:876–885

    Article  CAS  Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  Google Scholar 

  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes Environ 23:89–93

    Article  PubMed  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    PubMed  CAS  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    Article  PubMed  CAS  Google Scholar 

  • Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565

    Article  PubMed  CAS  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2010) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463. doi:10.1099/ijs.0.028118-0

    Article  PubMed  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Ma K, Lu Y (2009) Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars. Microb Ecol 57:58–68

    Article  PubMed  CAS  Google Scholar 

  • Zakria M, Udonishi K, Ogawa T, Yamamoto A, Saeki Y, Akao S (2008) Influence of inoculation technique on the endophytic colonization of rice by Pantoea sp. isolated from sweet potato and by Enterobacter sp. isolated from sugarcane. Soil Sci Plant Nutr 54:224–236

    Article  Google Scholar 

  • Zhang L, Hurek T, Reinhold-Hurek B (2007) A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. Microb Ecol 53:456–470

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to ANII (Agencia Nacional de Investigación e Innovación), CSIC (Comisión Sectorial de Investigación Científica), and PEDECIBA (Programa de Desarrollo de las Ciencias Básicas) for their finantial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Fernández-Scavino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrando, L., Fernández-Scavino, A. (2013). Functional Diversity of Endophytic Bacteria. In: Aroca, R. (eds) Symbiotic Endophytes. Soil Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_10

Download citation

Publish with us

Policies and ethics