Skip to main content

The Family Sulfolobaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

All members of the Sulfolobaceae isolated so far are thermoacidophiles adapted to low pH environments and high temperature. They are ubiquitous and have been isolated from terrestrial volcanic and thermal active areas, such as hot acidic solfataric or mud springs. The thermoacidophilic lifestyle requires unique adaptation strategies since organisms have to cope simultaneously with two challenges: high temperatures including wide temperature fluctuations (>60 up to >100 °C) and low pH values (<4).

Family members of the Sulfolobaceae are characterized by a diverse metabolism ranging from an aerobic, facultative anaerobic, or obligate anaerobic and a chemolithoautotrophic or chemoorganoheterotrophic lifestyle. Based on their growth in low ionic strength environments (low pH), the optimal growth occurs at low NaCl concentration, with the exception of Acidianus, which can grow up to 4 % (w/v) NaCl.

The family consists of the five genera Sulfolobus (ten species), Acidianus (seven species), Metallosphaera (three species), Stygioglobus, and Sulfurisphaera (one species each).

The Sulfolobaceae are a rich source for the isolation of plasmids and numerous n’ (enzymes stable and active under harsh conditions) for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed H et al (2005) The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390:529–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed H, Tjaden B, Hensel R, Siebers B (2004) Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? Biochem Soc Trans. 32(Pt 2):303–4.

    CAS  PubMed  Google Scholar 

  • Ajon M et al (2011) UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol Microbiol 82:807–817

    CAS  PubMed  Google Scholar 

  • Aravind L, Koonin EV (1999) DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res. 1;27(23):4658–70.

    CAS  Google Scholar 

  • Alber B et al (2006) Malonyl-coenzyme a reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alber BE et al (2008) 3-Hydroxypropionyl-coenzyme a synthetase from metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation. J Bacteriol 190:1383–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albers SV, Driessen AM (2002) Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey. Arch Microbiol 177:209–216

    CAS  PubMed  Google Scholar 

  • Albers SV, Driessen AM (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:145–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426

    CAS  PubMed  Google Scholar 

  • Albers SV et al (1999) Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J Bacteriol 181:4285–4291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albers SV et al (2003) Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol 185:3918–3925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albers SV et al (2009) SulfoSYS (sulfolobus systems biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon sulfolobus solfataricus under temperature variation. Biochem Soc Trans 37:58–64

    CAS  PubMed  Google Scholar 

  • Andersson AF et al (2006) Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biol 7:R99

    PubMed Central  PubMed  Google Scholar 

  • Anemüller S et al (1985) The respiratory system of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium. FEBS Lett 193:83–87

    Google Scholar 

  • Aravind L (1999) DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 27:4570–4658

    Google Scholar 

  • Arnold HP, Zillig W et al (2000a) A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267:252–266

    CAS  PubMed  Google Scholar 

  • Arnold HP, Ziese U et al (2000b) SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology 272:409–416

    CAS  PubMed  Google Scholar 

  • Auernik KS et al (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bandeiras TM et al (2002) Acidianus ambivalens type-II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN. FEBS Lett 531:273–277

    CAS  PubMed  Google Scholar 

  • Bandeiras TM et al (2003) The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase. Biochim Biophys Acta 1557:13–19

    CAS  PubMed  Google Scholar 

  • Bandeiras TM et al (2009) The cytochrome ba complex from the thermoacidophilic crenarchaeote Acidianus ambivalens is an analog of bc(1) complexes. Biochim Biophys Acta 1787:37–45

    CAS  PubMed  Google Scholar 

  • Bandeiras TM et al. (2013) In-House SAD Phasing of an unique thermophilic Rieske Ferredoxin containing a stabilizing disulfide bridge. Acta Crystallogr Sect F Struct Biol Cryst Commun. 1;69(Pt 5):555–8.

    Google Scholar 

  • Bardy SL, Jarrell KF (2002) FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett 208:53–59

    CAS  PubMed  Google Scholar 

  • Bartolucci S et al (1987) Malic enzyme from archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties. J Biol Chem 262:7725–7731

    CAS  PubMed  Google Scholar 

  • Bathe S, Norris PR (2007) Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73:2491–2497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baumeister W, Lembke G (1992) Structural features of archeabacterial cell envelopes. J Bioenerg Biomem 24:567–575

    CAS  Google Scholar 

  • Bell SD (2005) Archaeal transcriptional regulation–variation on a bacterial theme? Trends Microbiol 13:262–265

    CAS  PubMed  Google Scholar 

  • Bell SD, Jackson SP (1998a) Transcription and translation in archaea a mosaic of eukaryal and bacterial features. Trends Microbiol 6:222–228

    CAS  PubMed  Google Scholar 

  • Bell SD, Jackson SP (1998b) Transcription in archaea. Cold Spring Harb Symp Quant Biol 63:41–51

    CAS  PubMed  Google Scholar 

  • Bell SD, Jackson SP (2001) Mechanism and regulation of transcription in archaea. Curr Opin Microbiol 4:208–213

    CAS  PubMed  Google Scholar 

  • Bell SD et al (1999) Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci USA 96:13662–13667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg IA et al (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318:1782–1786

    CAS  PubMed  Google Scholar 

  • Berg IA et al (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    CAS  PubMed  Google Scholar 

  • Berkner S et al (2007) Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 35:88

    Google Scholar 

  • Berkner S et al (2010) Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 14:249–259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bettstetter M et al (2003) AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology 315:68–79

    CAS  PubMed  Google Scholar 

  • Bize A et al (2008) Viruses in acidic geothermal environments of the Kamchatka peninsula. Res Microbiol 159:358–366

    CAS  PubMed  Google Scholar 

  • Blackwood JK et al (2011) Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex. Nucleic Acids Res 40:3183–3196

    PubMed Central  PubMed  Google Scholar 

  • Blombach F et al (2009) Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol Direct 4:39

    PubMed Central  PubMed  Google Scholar 

  • Breton JL et al (1995) Identification of the iron-sulfur clusters in a ferredoxin from the archaeon Sulfolobus acidocaldarius. Evidence for a reduced [3Fe-4S] cluster with pH-dependent electronic properties. Eur J Biochem 233:937–946

    CAS  PubMed  Google Scholar 

  • Brierley C, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 18:183–188

    Google Scholar 

  • Brinkman AB et al (2002) The Sulfolobus solfataricus Lrp-like Protein LysM Regulates Lysine biosynthesis in response to Lysine availability. J Biol Chem 277:29537–29549

    CAS  PubMed  Google Scholar 

  • Brito JA et al (2009) Structural and functional insights into sulfide:quinone oxidoreductase. Biochem 48:5613–5622

    CAS  Google Scholar 

  • Brock TD et al (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    CAS  PubMed  Google Scholar 

  • Brouns SJ et al (2006) Identification of the missing links in prokaryotic pentose oxidation pathways. J Biol Chem 281:27378–27388

    CAS  PubMed  Google Scholar 

  • Cadillo-Quiroz H et al (2012) Patterns of gene flow define species of thermophilic Archaea. PLoS Biol 10:e1001265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Camacho ML et al (1995) Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: Enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett 134:85–90

    CAS  PubMed  Google Scholar 

  • Cardona S et al (2001) The glycogen-bound polyphosphate kinase from Sulfolobus acidocaldarius is actually a Glycogen synthase. Appl Environ Microbiol 67:4773–4780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L et al (2005a) The genome of Sulfolobus acidocaldarius, a model organism of the crenarchaeota. J Bacteriol 187:4992–4999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZW et al (2005b) Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Appl Environ Microbiol 71:621–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu H-M, Wang AH (2007) Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes. Proteins 66:996–1003

    CAS  PubMed  Google Scholar 

  • Cielo CB et al (2010) Structure of ST0929, a putative glycosyl transferase from Sulfolobus tokodaii. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:397–400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins MD, Langworthy TA (1983) Respiratory quinone composition of some acidophilic bacteria. Syst Appl Microbiol 4:295–304

    CAS  PubMed  Google Scholar 

  • Constantinesco F et al (2002) NurA, a novel 5’-3’ nuclease gene linked to rad50 and mre11 homologs of thermophilic Archaea. EMBO Rep 3:537–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constantinesco F et al (2004) A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosper MM et al (2002) The [4Fe-4S](2+) cluster in reconstituted biotin synthase binds S-adenosyl-l-methionine. J Am Chem Soc 124:14006–14007

    CAS  PubMed  Google Scholar 

  • Danson MJ et al (1985) Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase. FEBS Lett 179:120–124

    CAS  Google Scholar 

  • De Pascale D et al (2001) Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production. J Mol Cat B Enzym 11:777–786

    Google Scholar 

  • De Rosa M et al (1977) Caldariellaquinone, a unique benzo(b)thiophen-4,7-quinone from Caldariella acidophila, an extremely thermophilic and acidophilic bacterium. J Chem Soc Perkin 1 1:653–657

    Google Scholar 

  • Deatherage JF et al (1983) Three-dimensional arrangement of the cell wall protein of Sulfolobus acidocaldarius. J Mol Biol 167:823–852

    CAS  PubMed  Google Scholar 

  • Deng L et al (2009) Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13:735–746

    CAS  PubMed  Google Scholar 

  • Di Lernia I et al (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416

    PubMed  Google Scholar 

  • Elferink MG et al (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol 39:1494–1503

    CAS  PubMed  Google Scholar 

  • Ellen AF et al (2010) Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 14:87–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellen AF et al (2011) The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. J Bacteriol 193:4380–4387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esser D et al (2012) Change of carbon source causes dramatic effects in the phospho-proteome of the Archaeon Sulfolobus solfataricus. J Proteome Res 11:4823–4833

    CAS  PubMed  Google Scholar 

  • Ettema TJ et al (2004) Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. J Bacteriol 186:7754–7762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ettema TJ et al (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway. Extremophiles 12:75–88

    CAS  PubMed  Google Scholar 

  • Fang TY et al (2006) Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J Agric Food Chem 54:7105–7112

    CAS  PubMed  Google Scholar 

  • Frazão C et al (2008) Crystallographic analysis of the intact metal centres [3Fe-4S](1+/0) and [4Fe-4S](2+/1+) in a Zn(2+) -containing ferredoxin. FEBS Lett 582:763–767

    PubMed  Google Scholar 

  • Frols S et al (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 70:938–952

    PubMed  Google Scholar 

  • Fuchs T et al (1996a) 16S rDNA-based phylogeny of the archaeal order sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb nov. Syst Appl Microbiol 19:56–60

    CAS  Google Scholar 

  • Fuchs T et al (1996b) Metallosphaera prunae, sp nov, a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Google Scholar 

  • Fujii T et al (1996) Novel zinc-binding centre in thermoacidophilic archaeal ferredoxins. Nat Struct Biol 3:834–837

    CAS  PubMed  Google Scholar 

  • Geiduschek EP, Ouhammouch M (2005) Archaeal transcription and its regulators. Mol Microbiol 56:1397–1407

    CAS  PubMed  Google Scholar 

  • Giuffrè A et al (1997) Functional properties of the quinol oxidase from Acidianus ambivalens and the possible catalytic role of its electron donor. Eur J Biochem 250:383–388

    PubMed  Google Scholar 

  • Gleissner M et al (1997) The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J Biol Chem 272:8417–8426

    CAS  PubMed  Google Scholar 

  • Gogliettino M et al (2010) A highly selective oligopeptide binding protein from the archaeon Sulfolobus solfataricus. J Bacteriol 192:3123–3131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes C et al (1998a) Di-cluster, seven-iron ferredoxins from hyperthermophilic sulfolobales. J Biol Inorg Chem 3:499–507

    CAS  Google Scholar 

  • Gomes C et al (1998b) Evidence for a novel type of iron cluster in the respiratory chain of the archaeon sulfolobus metallicus. FEBS Lett 432:99–102

    CAS  PubMed  Google Scholar 

  • Gomes C et al (1999) The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex. Biochim Biophys Acta 1411:134–141

    CAS  PubMed  Google Scholar 

  • Gomes C et al (2001) A New Type-II NADH dehydrogenase from the archaeon Acidianus ambivalens: characterization and in vitro reconstitution of the respiratory chain. J Bioenerg Biomembr 3(3):1–8

    Google Scholar 

  • Gotz D et al (2007) Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8:R220

    PubMed Central  PubMed  Google Scholar 

  • Greve B et al (2004) Genomic comparison of archaeal conjugative plasmids from sulfolobus. Archaea 1:231–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greve B et al (2005) Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus. Archaea 1:319–325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grochowski LL, White RH (2008) Promiscuous anaerobes. Ann N Y Acad Sci 1125:190–214

    CAS  PubMed  Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the Archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grogan D (2004) Stability and repair of DNA in hyperthermophilic archaea. Curr Issues Mol Biol 6:137–144

    CAS  PubMed  Google Scholar 

  • Grogan D et al (1990) Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599

    CAS  PubMed  Google Scholar 

  • Grogan D et al (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grohmann D, Werner F (2011) Recent advances in the understanding of archaeal transcription. Curr Opin Microbiol 14:328–334

    CAS  PubMed  Google Scholar 

  • Gueguen Y et al (2001) Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol Lett 194:201–206

    CAS  PubMed  Google Scholar 

  • Haile JD, Kennelly PJ (2011) The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Arch Biochem Biophys 511:56–63

    CAS  PubMed  Google Scholar 

  • Haldenby S et al (2009) RecA family proteins in archaea: RadA and its cousins. Biochem Soc Trans 37:102–107

    CAS  PubMed  Google Scholar 

  • Happonen LJ et al (2010) Familial relationships in hyperthermo- and acidophilic archaeal viruses. J Virol 84:4747–4754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Häring M et al (2005a) Independent virus development outside a host. Nature 436:1101–1102

    PubMed  Google Scholar 

  • Häring M et al (2005b) Viral diversity in Hot springs of pozzuoli, italy, and characterization of a unique archaeal virus, acidianus bottle-shaped virus, from a New family, the ampullaviridae. J Bacteriol 79:9904–9911

    Google Scholar 

  • Häring M et al (2005c) Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core. J Bacteriol 187:3855–3858

    PubMed Central  PubMed  Google Scholar 

  • He ZG et al (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48:159–163

    CAS  PubMed  Google Scholar 

  • Heath C et al (2007) The 2-oxoacid dehydrogenase multi-enzyme complex of the archaeon Thermoplasma acidophilum − recombinant expression, assembly and characterization. FEBS J 274:5406–5415

    CAS  PubMed  Google Scholar 

  • Henche A-L et al (2012a) Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ Microbiol 14:779–793

    CAS  PubMed  Google Scholar 

  • Henche AL et al (2012b) Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ Microbiol 14:3188–3202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiller A et al (2003) New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioener Biomem 35:121–131

    CAS  Google Scholar 

  • Hinrichs M et al (1999) Functional characterization of an extremely thermophilic ATPase in membranes of the crenarchaeon Acidianus ambivalens. Biol Chem 380:1063–1069

    CAS  PubMed  Google Scholar 

  • Hirata A et al (2008) The X-ray crystal structure of RNA polymerase from archaea. Nature 451:851–854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hochstein L, Stan-Lotter H (1992) Purification and properties of an ATPase from Sulfolobus solfataricus. Arch Biochem Biophys 295:153–160

    CAS  PubMed  Google Scholar 

  • Hopkins BB, Paull TT (2008) The P. furiosus mre11/rad50 complex promotes 5’ strand resection at a DNA double-strand break. Cell 135:250–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M et al (eds) A handbook on the biology of bacteria, vol 3, 3rd edn, Archaea. Bacteria: firmicutes, actinomycetes. Springer, New York, pp 23–51

    Google Scholar 

  • Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378

    CAS  Google Scholar 

  • Huber G et al (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archeabacteria. Syst Appl Microbiol 12:38–47

    Google Scholar 

  • Hügler M et al (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    PubMed  Google Scholar 

  • Iwasaki T (2010) Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. Archaea 842639

    Google Scholar 

  • Iwasaki T et al (1995) Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. Strain 7. J Biol Chem 270:30881–30892

    CAS  PubMed  Google Scholar 

  • Iwasaki T et al (1996) Redox-linked ionization of sulredoxin, an archaeal Rieske-type [2Fe-2S] protein from Sulfolobus sp. strain 7. J Biol Chem 271:27659–27663

    CAS  PubMed  Google Scholar 

  • Jackson S (1999) Transcription initiation in archaea facts, factors and future aspects. Mol Microbiol 31:1295–1305

    Google Scholar 

  • Jackson SP, Bell SD (1998) Transcription in archaea. Cold Spring Harb Symp Quant Biol 63:41–52

    PubMed  Google Scholar 

  • Jan RL et al (1999) A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 4:1809–1816

    Google Scholar 

  • Janssen S et al (2001) Ferredoxins from the archaeon Acidianus ambivalens: overexpression and characterization of the non-zinc-containing ferredoxin FdB. Biol Chem 382:1501–1507

    CAS  PubMed  Google Scholar 

  • Jarrell KF, Albers SV (2012) The archaellum: an old structure with a new name. Trends Microbiol 20:307–312

    CAS  PubMed  Google Scholar 

  • Joshua CJ et al (2011) Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J Bacteriol 193:1293–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang HK et al (2008) Enzymatic synthesis of dimaltosyl-Î2-cyclodextrin via a transglycosylation reaction using TreX, a Sulfolobus solfataricus P2 debranching enzyme. Biochem Biophys Res Commun 366:98–103

    CAS  PubMed  Google Scholar 

  • Karavaĭko GI et al (1995) Sulfurococcus yellowstonii sp. nov/–a new species of iron- and sulfur-oxidizing thermoacidophilic Archaeobacterium. Mikrobiologiia 63:668–682

    Google Scholar 

  • Kawarabayasi Y et al (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140

    CAS  PubMed  Google Scholar 

  • Keeling PJ et al (1996) Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35:141–144

    CAS  PubMed  Google Scholar 

  • Kelman Z, White MF (2005) Archaeal DNA replication and repair. Curr Opin Microbiol 8:669–676

    CAS  PubMed  Google Scholar 

  • Kennelly PJ (2003) Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 370:373–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerscher L et al (1982) Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid: ferredoxin oxidoreductases. Eur J Biochem 128:223–230

    CAS  PubMed  Google Scholar 

  • Kim D, Forst S (2001) Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147:1197–1212

    CAS  PubMed  Google Scholar 

  • Kim VTT et al (2007) Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae. J Microbiol Biotechnol 17:792–799

    CAS  PubMed  Google Scholar 

  • Kletzin A (1989) Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171:1638–1643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kletzin A et al (1999) Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea. Genetics 152:1307–1314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kletzin A et al (2005) A Rieske ferredoxin typifying a subtype within rieske proteins: spectroscopic, biochemical and stability studies. FEBS Lett 579:1020–1026

    CAS  PubMed  Google Scholar 

  • Kobayashi K et al (1996) Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 60:1882–1885

    CAS  PubMed  Google Scholar 

  • Koenig H et al (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303

    CAS  Google Scholar 

  • Koerdt A et al (2010) Crenarchaeal biofilm formation under extreme conditions. PLoS One 5:e14104

    PubMed Central  PubMed  Google Scholar 

  • Koerdt A et al (2011) Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 10:4105–4119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koerdt A et al (2012) Complementation of Sulfolobus solfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm formation. Extremophiles 16:115–125

    CAS  PubMed  Google Scholar 

  • Komorowski L et al (2002) The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases. Biol Chem 383:1791–1799

    CAS  PubMed  Google Scholar 

  • Konishi J et al (1987) Purification and properties of the ATPase solubilized from membranes of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. J Biochem 102:1379–1387

    CAS  PubMed  Google Scholar 

  • Koonin EV et al (2007) Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and “Korarchaeota”. Biol Direct 2:38

    PubMed Central  PubMed  Google Scholar 

  • Koretke KK et al (2000) Evolution of two-component signal transduction. Mol Biol Evol 17:1956–1970

    CAS  PubMed  Google Scholar 

  • Korkhin Y et al (2009) Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol 7:e1000

    Google Scholar 

  • Kounosu A et al (2010) Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:842–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouril T et al (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369

    CAS  PubMed  Google Scholar 

  • Kurosawa N et al (1998a) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 20:451–456

    Google Scholar 

  • Kurosawa N et al (1998b) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456

    PubMed  Google Scholar 

  • Kurosawa N et al (2003) Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov based on phylogenetic evidence and DNA G+C content. Int J Syst Evol Microbiol 53:1607–1608

    CAS  PubMed  Google Scholar 

  • Kvaratskhelia M, White MF (2000) Two Holliday junction resolving enzymes in Sulfolobus solfataricus. J Mol Biol 297:923–932

    CAS  PubMed  Google Scholar 

  • Kyrpides NC et al (1999) Transcription in archaea. Proc Natl Acad Sci USA 96:8545–8550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lama L et al (1990) Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol Lett 12:431–432

    CAS  Google Scholar 

  • Lamble HJ et al (2003) Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-Keto-3-deoxygluconate aldolase. J Biol Chem 278:34066–34072

    CAS  PubMed  Google Scholar 

  • Lamble HJ et al (2004) Gluconate dehydratase from the promiscuous Entner-Doudoroff pathway in Sulfolobus solfataricus. FEBS Lett 576:133–136

    CAS  PubMed  Google Scholar 

  • Lamble HJ et al (2005) Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579:6865–6869

    CAS  PubMed  Google Scholar 

  • Lanzendorfer M et al (1994) Structure and function of the DNA-dependent RNA polymerase of Sulfolobus. Syst Appl Microbiol 16:156–164

    Google Scholar 

  • Lanzotti V et al (1986) 1H and 13C NMR assignment of benzothiophenquinones from the sulfur-oxidizing archaebacterium Sulfolobus solfataricus. Eur J Biochem 160:37–40

    CAS  PubMed  Google Scholar 

  • Lassak K et al (2012) Molecular analysis of the crenarchaeal flagellum. Mol Microbiol 83:110–124

    CAS  PubMed  Google Scholar 

  • Leigh JA et al (2011) Model organisms for genetics in the domain archaea: methanogens, halophiles, thermococcales and sulfolobales. FEMS Microbiol Rev 35:577–608

    CAS  PubMed  Google Scholar 

  • Lemos R et al (2001) Acidianus ambivalens complex II typifies a novel family of succinate dehydrogenases. Biochem Biophys Res Commun 281:141–150

    CAS  PubMed  Google Scholar 

  • Leng J et al (1995) Isolation and cloning of a protein-serine/threonine phosphatase from an archaeon. J Bacteriol 177:6510–6517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin Z et al (2006) Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci USA 103:10328–10333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S (2008) Archaeal and bacterial sulfur oxygenase-reductases: genetic diversity and physiological function microbial sulfur. Metabolism 217–224

    Google Scholar 

  • Liu LJ et al (2011) Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. Int J Syst Evol Microbiol 61:2395–2400

    CAS  PubMed  Google Scholar 

  • Lower BH, Kennelly PJ (2002) The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein. J Bacteriol 184:2614–2619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lower BH, Kennelly PJ (2003) Open reading frame sso2387 from the archaeon Sulfolobus solfataricus encodes a polypeptide with protein-serine kinase activity. J Bacteriol 185:3436–3445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lower BH et al (2000) The archaeon Sulfolobus solfataricus contains a membrane-associated protein kinase activity that preferentially phosphorylates threonine residues in vitro. J Bacteriol 182:3452–3459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lower BH et al (2004) A phosphoprotein from the archaeon Sulfolobus solfataricus with protein-serine/threonine kinase activity. J Bacteriol 186:463–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lübben M, Schäfer G (1987) A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 164:533–540

    PubMed  Google Scholar 

  • Lübben M et al (1986) Investigations of the bioenergetic system in Sulfolobus acidocaldarius DSM 639. Syst Appl Microbiol 7:425–426

    Google Scholar 

  • Lübben M et al (1987) The plasma membrane ATPase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 167:211–219

    PubMed  Google Scholar 

  • Lübben M et al (1992) An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J 11:805–812

    PubMed Central  PubMed  Google Scholar 

  • Lundgren M, Bernander R (2007) Genome-wide transcription map of an archaeal cell cycle. Proc Natl Acad Sci USA 104:2939–2944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma X et al (2011) Single-stranded DNA binding activity of XPBI, but not XPBII, from Sulfolobus tokodaii causes double-stranded DNA melting. Extremophiles: life under extreme conditions 15:67–76

    CAS  Google Scholar 

  • Makarova KS et al (2007) Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33

    PubMed Central  PubMed  Google Scholar 

  • Martins LO et al (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63:896–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martusewitsch E et al (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182:2574–2581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maruta K et al (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181

    CAS  PubMed  Google Scholar 

  • Minami Y et al (1985) Amino acid sequence of a ferredoxin from the thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Presence of an N(6)-monomethyllysine and phyletic consideration of archaebacteria. J Biochem 97:745–753

    CAS  PubMed  Google Scholar 

  • Mizanur RM et al (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126:15993–15998

    CAS  PubMed  Google Scholar 

  • Mukai K et al (1997) Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 49:26–30

    CAS  Google Scholar 

  • Müller FH et al (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 53:1147–1160

    PubMed  Google Scholar 

  • Nicolaus B et al (1988) Trehalose in archaebacteria. Syst Appl Microbiol 10:215–217

    CAS  Google Scholar 

  • Nicolaus B et al (1992) Quinone composition in Sulfolobus solfataricus grown under different conditions. Syst Appl Microbiol 15:18–20

    CAS  Google Scholar 

  • Nunn CEM et al (2010) Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius. J Biol Chem 285:33701–33709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orell A et al (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotech Adv 28:839–848

    CAS  Google Scholar 

  • Orita I et al (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J Bacteriol 188:4698–4704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palm P et al (1991) Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology 185:242–250

    CAS  PubMed  Google Scholar 

  • Park HS et al (2007) TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-α-glucanotransferase activities. Biosci Biotechnol Biochem 71:1348–1352

    CAS  PubMed  Google Scholar 

  • Park JT et al (2008) Oligomeric and functional properties of a debranching enzyme TreX from the archaeon Sulfolobus solfataricus P2. Biocat Biotrans 26:76–85

    CAS  Google Scholar 

  • Parker JL, White MF (2005) The endonuclease Hje catalyses rapid, multiple turnover resolution of Holliday junctions. J Mol Biol 350:1–6

    CAS  PubMed  Google Scholar 

  • Peeters E et al (2009) Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol Microbiol 71:972–988

    CAS  PubMed  Google Scholar 

  • Peng X et al (2000) Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. J Mol Biol 303:449–454

    CAS  PubMed  Google Scholar 

  • Peng X et al (2008) Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival. Microbiology 154:383–391

    CAS  PubMed  Google Scholar 

  • Peng N et al (2012) A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol 78:5630–5637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira MM et al (2004) Respiratory chains from aerobic thermophilic prokaryotes. J Bioener Biomem 36:93–105

    CAS  Google Scholar 

  • Perevalova AA, Bidzhieva SKh, Kublanov IV, Hinrichs KU, Liu XL, Mardanov AV, Lebedinsky AV, Bonch-Osmolovskaya EA (2010) Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov. Int J Syst Evol Microbiol. 60(Pt 9):2082–8

    Google Scholar 

  • Pina M et al (2011) The archeoviruses. FEMS Microbiol Rev 35:1035–1054

    CAS  PubMed  Google Scholar 

  • Plumb JJ et al (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423

    PubMed  Google Scholar 

  • Prangishvili D et al (1998) Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus. Plasmid 40:190–202

    CAS  PubMed  Google Scholar 

  • Prangishvili D et al (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prokofeva MI, Kostrikina NA, Kolganova TV, Tourova TP, Lysenko AM, Lebedinsky AV, Bonch-Osmolovskaya EA (2009) Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. Int J Syst Evol Microbiol. 59(Pt 12):3116–22. doi: 10.1099/ijs.0.010355-0. Epub 2009 Jul 30.

    Google Scholar 

  • Protze J et al (2011) An extracellular tetrathionate hydrolase from the thermoacidophilic archaeon Acidianus Ambivalens with an activity optimum at pH 1. Front Microbiol 2:12

    Google Scholar 

  • Prüschenk R et al (1987) Surface structure variants in different species of Sulfolobus. FEMS Microbiol Lett 43:327–330

    Google Scholar 

  • Purschke WG, Schäfer G (2001) Independent replication of the plasmids pRN1 and pRN2 in the archaeon Sulfolobus islandicus. FEMS Microbiol Lett 200:97–102

    CAS  PubMed  Google Scholar 

  • Purschke WG et al (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179:1344–1353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qu Q et al (2004) TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:47890–47897

    CAS  PubMed  Google Scholar 

  • Quaiser A et al (2008) The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius. BMC Mol Biol 9:25

    PubMed Central  PubMed  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    CAS  PubMed  Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    CAS  PubMed  Google Scholar 

  • Redder P et al (2009) Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environ Microbiol 11:2849–2862

    CAS  PubMed  Google Scholar 

  • Reeve JN (2003) Archaeal chromatin and transcription. Mol Microbiol 48:587–598

    CAS  PubMed  Google Scholar 

  • Reimann J et al (2012) Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Mol Microbiol 86:24–36

    CAS  PubMed  Google Scholar 

  • Reiter WD, Zillig W (1990) Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci USA 87:9509–9513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren B et al (2009) Structure and function of a novel endonuclease acting on branched DNA substrates. EMBO J 28:2479–2489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reno ML et al (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA 106:8605–8610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rice G et al (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sci USA 101:7716–7720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards JD et al (2008) The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner. J Mol Biol 376:634–644

    CAS  PubMed  Google Scholar 

  • Roberts JA, White MF (2005) An archaeal endonuclease displays key properties of both eukaryal XPF-ERCC1 and Mus81. J Biol Chem 280:5924–5928

    CAS  PubMed  Google Scholar 

  • Roberts JA et al (2003) An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol Microbiol 48:361–371

    CAS  PubMed  Google Scholar 

  • Rocha R et al (2006) Natural domain design: enhanced thermal stability of a zinc-lacking ferredoxin isoform shows that a hydrophobic core efficiently replaces the structural metal site. Biochemistry 45:10376–10384

    CAS  PubMed  Google Scholar 

  • Rouillon C, White MF (2010) The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem 285:11013–11022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouillon C, White MF (2011) The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol 162:19–26

    CAS  PubMed  Google Scholar 

  • Rudolph J, Oesterhelt D (1995) Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarum. EMBO J 14:667–673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandman K, Reeve JN (2000) Structure and functional relationships of archaeal and eukaryal histones and nucleosomes. Arch Microbiol 173:165–169

    CAS  PubMed  Google Scholar 

  • Sato T, Atomi H (2011) Novel metabolic pathways in Archaea. Curr Opin Microbiol 14:307–314

    CAS  PubMed  Google Scholar 

  • Say RF, Fuchs G (2010) Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464:1077–1081

    CAS  PubMed  Google Scholar 

  • Schäfer G, Meyering-Vos M (1992) The plasma membrane ATPase of archaebacteria. Ann N Y Acad Sci 671:293–309

    PubMed  Google Scholar 

  • Schäfer G et al (1990) Electron transport and energy conservation in the archaebacterium Sulfolobus acidocaldarius. FEMS Microbiol Rev 75:335–348

    Google Scholar 

  • Schäfer G et al (1999) Bioenergetics of the archaea. Microbiol Mol Biol Rev 63:570–620

    PubMed Central  PubMed  Google Scholar 

  • Schleper C et al (1995) A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol 177:4417–4426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Segerer A et al (1986) Acidianus infernus gen nov, sp nov, and Acidianus brierleyi comb nov facultatively aerobic, extremely Acidophilic Thermophilic Sulfur-metabolizing Archaebacteria Inter.1. J Syst Bacteriol 36:559–564

    Google Scholar 

  • Segerer AH et al. (1991) Stygiolobus azoricus gen. nov., sp. nov. Represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the Order Sulfolobales. Int J System Bacteriol 41:495–501

    Google Scholar 

  • Selig M et al (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga toga. Arch Microbiol 167:217–232

    CAS  PubMed  Google Scholar 

  • Seo JS et al (2007) Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J Microbiol Biotechnol 17:123–129

    CAS  PubMed  Google Scholar 

  • She Q et al (1998) Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2:417–425

    CAS  PubMed  Google Scholar 

  • She Q et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen W et al (2006) Properties of recombinant Sulfolobus shibatae Maltooligosyltrehalose synthase expressed in HMS174. Nat Sci 4:52–57

    Google Scholar 

  • Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 695–705

    Google Scholar 

  • Siebers B et al (2011) The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS One 6:e24222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon G et al (2009) Effect of O2 concentrations on Sulfolobus solfataricus P2. FEMS Microbiol Lett 299:255–260

    CAS  PubMed  Google Scholar 

  • Sisignano M et al (2010) A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not on other branched-chain amino acids. Microbiology 156:521–529

    CAS  PubMed  Google Scholar 

  • Smith LD et al (1987) Citrate synthase from the thermophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. FEBS Lett 225:277–281

    CAS  Google Scholar 

  • Smith CM et al (1997) The protein kinase resource. Trends Biochem Sci 22:444–446

    CAS  PubMed  Google Scholar 

  • Soderberg T, Alver RC (2004) Transaldolase of Methanocaldococcus jannaschii. Archaea 1:255–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Google Scholar 

  • Stedman KM et al (2000) pING family of conjugative plasmids from the extremely Thermophilic Archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota. J Bacteriol 182:7014–7020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stedman KM et al (2003) Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Res Microbiol 15:295–302

    Google Scholar 

  • Stetter KO (1989) Order III: Sulfolobales ord. nov. In: Staley J et al (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Suzuki T et al (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44

    PubMed  Google Scholar 

  • Szabo Z, Sani M et al (2007a) Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol 189:4305–4309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabo Z, Stahl AO et al (2007b) Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol 189:772–778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takayanagi S et al (1996) Sulfolobus hakonensis sp nov, a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 46:377–382

    CAS  PubMed  Google Scholar 

  • Teixeira M et al (1995) A Seven-iron Ferredoxin from the Thermoacidophilic Archaeon Desulfurolobus ambivalens. Eur J Biochem 227:322–327

    CAS  PubMed  Google Scholar 

  • Thomm M, Grünberg S, Naji S (2009) Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases. Biochem Soc Trans 37:18–22

    CAS  PubMed  Google Scholar 

  • Thurl S et al (1986) Quinones from archaebacteria. II. Different types of quinones from sulphur-dependent archaebacteria. Biol Chem Hoppe Seyler 367:191–197

    CAS  PubMed  Google Scholar 

  • Uhrigshardt H et al (2001) Purification and characterization of the first archaeal aconitase from the thermoacidophilic Sulfolobus acidocaldarius. Eur J Biochem 268:1760–1771

    CAS  PubMed  Google Scholar 

  • Ulas T et al (2012) Genome-scale reconstruction and analysis of the metabolic network in the Hyperthermophilic Archaeon Sulfolobus solfataricus. PLoS One 7

    Google Scholar 

  • Urich T et al (2005) The sulfur oxygenase reductase from Acidianus ambivalens is an icosatetramer as shown by crystallization and patterson analysis. Biochim Biophys Acta 1747:267–270

    CAS  PubMed  Google Scholar 

  • Urich T et al (2006) X-ray Structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311:996–1000

    CAS  PubMed  Google Scholar 

  • Van Der Oost J, Siebers B (2007) The glycolytic pathways of archaea: evolution by tinkering. In: Garrett RA, Klenk HP (eds) Archaea: evolution, physiology and molecular biology. Blackwell, Singapore, pp 247–259

    Google Scholar 

  • Veith A et al (2009) Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73:58–72

    CAS  PubMed  Google Scholar 

  • Veith A et al (2011) Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens. Front Microbiol 2:12

    Google Scholar 

  • Verhees CH et al (2004) Erratum: the unique features of glycolytic pathways in archaea. Biochem J 377:819–822

    CAS  Google Scholar 

  • Vestergaard G, Aramayo R et al (2008a) Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses. J Virol 82:371–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vestergaard G, Shah S et al (2008b) Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system. J Bacteriol 190:6837–6845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villafane A, Ruhl I, Sannino D, Maezato Y, Blum P, Bini E (2011) CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription. Microbiology 157:2808–2817

    CAS  PubMed  Google Scholar 

  • Wagner M et al (2012) Versatile genetic tool box for the crenarchaeote sulfolobus acidocaldarius. Front Microbiol 3:214

    PubMed Central  PubMed  Google Scholar 

  • Wakagi T, Oshima T (1985) Membrane-bound ATPase of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Biochim Biophys Acta Biomem 817:33–41

    CAS  Google Scholar 

  • Wakagi T, Oshima T (1987) Energy metabolism of a thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Origins Life Evol B 17:391–399

    CAS  Google Scholar 

  • Wang B et al (2010) Archaeal eukaryote-like serine/threonine protein kinase interacts with and phosphorylates a forkhead-associated-domain-containing protein. J Bacteriol 192:1956–1964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitaker RJ et al (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    CAS  PubMed  Google Scholar 

  • White MF (2011) Homologous recombination in the archaea: the means justify the ends. Biochem Soc Trans 39:15–19

    CAS  PubMed  Google Scholar 

  • Wiedenheft B et al (2004) Comparative genomic analysis of hyperthermophilic archaeal fuselloviridae. Viruses 78:1954–1961

    CAS  Google Scholar 

  • Wojtas MN et al (2012) Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Nucleic Acids Res 40:9941–9952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolterink-Van Loo S et al (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 403:421–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woo EJ et al (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem 283:28641–28648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Worthington P et al (2003) Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wurtzel O et al (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, and Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299. doi:10.1016/j.syapm.2010.08.001

    Google Scholar 

  • Yamamoto T et al (2001) Trehalose-producing operon treYZ from Arthrobacter ramosus S34. Biosci Biotech Biochem 65:1419–1423

    CAS  Google Scholar 

  • Yoshida N et al (2006) Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411

    CAS  PubMed  Google Scholar 

  • Zaparty M, Siebers B (2011) Physiology, metabolism and enzymology of thermoacidophiles. In: Horikoshi K et al (eds) Extremophiles handbook. Springer, Tokyo, pp 602–639

    Google Scholar 

  • Zaparty M et al (2010) “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 14:119–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Whitaker RJ (2012) A broadly applicable gene knockout system for the thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection. Microbiology 158:1513–1522

    CAS  PubMed  Google Scholar 

  • Zhang Q et al (1996) 2-Oxoacid:ferredoxin oxidoreductase from the thermoacidophilic Archaeon, Sulfolobus sp. Strain 7. J Biochem 120:587–599

    CAS  PubMed  Google Scholar 

  • Zhang S et al (2008) Archaeal DNA helicase HerA interacts with Mre11 homologue and unwinds blunt-ended double-stranded DNA and recombination intermediates. DNA Repair 7:380–391

    CAS  PubMed  Google Scholar 

  • Zhang Z et al (2012) Archaeal chromatin proteins. Sci China Life Sci 55:377–385

    CAS  PubMed  Google Scholar 

  • Zillig W, Janeković D (1979) DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 96:597–604

    CAS  PubMed  Google Scholar 

  • Zillig W et al (1980) The Sulfolobus-Caldariella group - taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    CAS  Google Scholar 

  • Zillig W et al (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203

    CAS  Google Scholar 

  • Zillig W, Langer D, Klenk HP, Lanzendörfer M, Hüdepohl U, Hain JPP (1992) RNA polymerases and transcription in archaebacteria. Biochem Soc Symp 58:79–88

    CAS  PubMed  Google Scholar 

  • Zillig W et al (1994) Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Syst Appl Microbiol 16:609–628

    CAS  Google Scholar 

  • Zillig W et al (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18:225–236

    CAS  PubMed  Google Scholar 

  • Zillig W et al (1998) Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2:131–140

    CAS  PubMed  Google Scholar 

  • Zimmermann P et al (1999) Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens. Arch Microbiol 172:76–82

    CAS  PubMed  Google Scholar 

  • Zolghadr B et al (2007) Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol Microbiol 64:795–806

    CAS  PubMed  Google Scholar 

  • Zolghadr B et al (2011) The bindosome is a structural component of the Sulfolobus solfataricus cell envelope. Extremophiles 15:235–244

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sonja Fleissner, Benjamin Meyer, Alvaro Orell, Xiaoqing Ma, Julia Kort, Anna Hagemann, Bernadette Rauch, Dominik Esser, Christopher Bräsen, and Theresa Kouril, for technical support. We are grateful for the comments we received from Arnulf Kletzin. SVA received funds from the Max Planck Society, and BS was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium fuer Bildung und Forschung (BMBF) within the Sulfolobus Systems Biology “SulfoSYS” project (SysMO initiative).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja-Verena Albers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Albers, SV., Siebers, B. (2014). The Family Sulfolobaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_329

Download citation

Publish with us

Policies and ethics