Skip to main content

Capillary Forces in Atomic Force Microscopy and Liquid Nanodispensing

  • Chapter
  • First Online:
Surface Tension in Microsystems

Part of the book series: Microtechnology and MEMS ((MEMS))

Abstract

Capillary forces are an important issue when performing atomic force microscopy (AFM) in air. The formation of a water meniscus between the tip and the surface often leads to a deterioration of the tip or sample which may affect the spatial resolution of the instrument. The development of dynamic modes allowed decreasing these effects but artefacts due to capillary forces are still present. The presence of a small liquid bridge between the tip and the surface has also been used to locally modify the surface. Several tip-assisted lithography techniques have been developed and may find a wide range of applications in nanociences. In particular, a liquid nanodispensing technique (NADIS) using specific AFM tips allows to deposit directly on the surface liquid droplets with volumes in the femto- to attoliter range. In this chapter, we describe the effect of capillary forces on these AFM-based techniques. After a review of the influence of capillary forces in AFM in static and dynamic modes, we focus on the NADIS technique which provides a unique way to study nanomenisci with controlled size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edn. (John Wiley and sons, New York, 1997)

    Google Scholar 

  2. H. Allouche, M. Monthioux, Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 2. Texture and structure. Carbon 43(6), 1265–1278 (2005)

    Article  Google Scholar 

  3. B. Anczykowski, D. Kruger, H. Fuchs, Cantilever dynamics in quasinoncontact force microscopy: spectroscopic aspects. Phys. Rev. B 53(23), 15485–15488 (1996)

    Article  Google Scholar 

  4. Y. Ando, The effect of relative humidity on friction and pull-off forces measured on submicron-size asperity arrays. Wear 238(1), 12–19 (2000)

    Article  Google Scholar 

  5. J. Arcamone, E. Dujardin, G. Rius, F. Perez-Murano, T. Ondarcuhu, Evaporation of femtoliter sessile droplets monitored with nanomechanical mass sensors. J. Phys. Chem. B 111(45), 13020–13027 (2007)

    Google Scholar 

  6. D.B. Asay, S.H. Kim, Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys. 124(17), 174712 (2006)

    Google Scholar 

  7. A.H. Barber, S.R. Cohen, H.D. Wagner, Static and dynamic wetting measurements of single carbon nanotubes. Phys. Rev. Lett. 92(18), 186103 (2004)

    Article  Google Scholar 

  8. A.H. Barber, S.R. Cohen, H.D. Wagner, External and internal wetting of carbon nanotubes with organic liquids. Phy. Rev. B, 71(11), 115443 (2005)

    Google Scholar 

  9. B. Basnar, I. Willner, Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces. Small 5(1), 28–44 (2009)

    Article  Google Scholar 

  10. C. Bernard, J.P. Aime, S. Marsaudon, R. Levy, A.M. Bonnot, C. Nguyen, D. Mariolle, F. Bertin, A. Chabli, Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn, what we can do. Nanoscale Res. Lett. 2(7), 309–318 (2007)

    Article  Google Scholar 

  11. S. Biggs, R.G. Cain, R.R. Dagastine, N.W. Page, Direct measurements of the adhesion between a glass particle and a glass surface in a humid atmosphere. J. Adhes. Sci. Technol. 16(7), 869–885 (2002)

    Article  Google Scholar 

  12. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  Google Scholar 

  13. L. Bocquet, E. Charlaix, S. Ciliberto, J. Crassous, Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396(6713), 735–737 (1998)

    Article  Google Scholar 

  14. D. Huang, C. Sendner, D. Horinek, R. Netz, L. Bocquet, Water slippage versus contact angle: a quasi-universal relationship. PRL 101(22), 226101 (2008)

    Google Scholar 

  15. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading. Rev. Mod. Phys. 81(2), 739–805 (2009)

    Article  Google Scholar 

  16. K.A. Brakke, The surface evolver software. Exp. Math. 1(2), 141–165 (1992)

    Google Scholar 

  17. H.J. Butt, Capillary forces: influence of roughness and heterogeneity. Langmuir 24(9), 4715–4721 (2008)

    Article  MathSciNet  Google Scholar 

  18. H.J. Butt, M. Kappl, Normal capillary forces. Adv. Colloid Interface Sci. 146(1–2), 48–60 (2009)

    Article  Google Scholar 

  19. H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59(1–6), 1–152 (2005)

    Article  Google Scholar 

  20. S. Cai, B. Bhushan, Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts. Mater. Sci. Eng. R-Rep. 61(1–6), 78–106 (2008)

    Article  Google Scholar 

  21. I. Casuso, F. Rico, S. Scheuring, High-speed atomic force microscopy: structure and dynamics of single proteins. Curr. Opin. Chem. Biol. 15(5), 704–709 (2011)

    Article  Google Scholar 

  22. J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72(20), 2613–2615 (1998)

    Article  Google Scholar 

  23. P.G. de Gennes, Wetting—statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)

    Article  Google Scholar 

  24. A. de Lazzer, M. Dreyer, H.J. Rath, Particle-surface capillary forces. Langmuir 15(13), 4551–4559 (1999)

    Article  Google Scholar 

  25. E.J. De Souza, M. Brinkmann, C. Mohrdieck, A. Crosby, E. Arzt, Capillary forces between chemically different substrates. Langmuir 24(18), 10161–10168 (2008)

    Article  Google Scholar 

  26. E.J. De Souza, L.C. Gao, T.J. McCarthy, E. Arzt, A.J. Crosby, Effect of contact angle hysteresis on the measurement of capillary forces. Langmuir 24(4), 1391–1396 (2008)

    Article  Google Scholar 

  27. M. Delmas, M. Monthioux, Th Ondarçuhu, Contact angle hysteresis at the nanometer scale. Phys. Rev. Lett. 106(13), 136102 (2011)

    Article  Google Scholar 

  28. L. Fabie, H. Durou, T. Ondarçuhu, Capillary forces during liquid nanodispensing. Langmuir 26(3), 1870–1878 (2010)

    Article  Google Scholar 

  29. L. Fabie, T. Ondarcuhu, Writing with liquid using a nanodispenser: spreading dynamis at the sub-micron scale. Soft Matt. 8(18) 4995-5001 (2012)

    Google Scholar 

  30. A.P. Fang, E. Dujardin, T. Ondarcuhu, Control of droplet size in liquid nanodispensing. Nano Lett. 6(10), 2368–2374 (2006)

    Article  Google Scholar 

  31. P.L.T.M. Frederix, P.D. Bosshart, A. Engel, Atomic force microscopy of biological membranes. Biophys. J. 96(2), 329–338 (2009)

    Google Scholar 

  32. R. Garcia, R. Perez, Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47(6–8), 197–301 (2002)

    Article  MATH  Google Scholar 

  33. D.S. Ginger, H. Zhang, C.A. Mirkin, The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 43(1), 30–45 (2004)

    Article  Google Scholar 

  34. W. Gulbinski, D. Pailharey, T. Suszko, Y. Mathey, Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films. Surf. Sci. 475(1–3), 149–158 (2001)

    Google Scholar 

  35. J. Hu, X.D. Xiao, D.F. Ogletree, M. Salmeron, Imaging the condensation and evaporation of molecularly thin films of water with nanometer. Science 268(5208), 267–269 (1995)

    Article  Google Scholar 

  36. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, New York, 1991)

    Google Scholar 

  37. C. Jai, J.P. Aimé, R. Boisgard, Dynamical behavior of an evaporating nanomeniscus: a boundary condition problem at the local scale. Europhys. Lett. 81(3), 34003 (2008)

    Article  Google Scholar 

  38. C. Jai, J.P. Aime, D. Mariolle, R. Boisgard, F. Bertin, Wetting an oscillating nanoneedle to image an air-liquid interface at the nanometer scale: dynamical behavior of a nanomeniscus. Nano Lett. 6(11), 2554–2560 (2006)

    Article  Google Scholar 

  39. J.K. Jang, G.C. Schatz, M.A. Ratner, Capillary force in atomic force microscopy. J. Chem. Phys. 120(3), 1157–1160 (2004)

    Article  Google Scholar 

  40. J.Y. Jang, G.C. Schatz, M.A. Ratner, How narrow can a meniscus be? Phys. Rev. Lett. 92(8), 085504 (2004)

    Google Scholar 

  41. M. Jaschke, H.J. Butt, Deposition of organic material by the tip of a scanning force microscope. Langmuir 11(4), 1061–1064 (1995)

    Article  Google Scholar 

  42. J.F. Joanny, P.G. de Gennes, A model for contact-angle hysteresis. J. Chem. Phys. 81(1), 552–562 (1984)

    Article  Google Scholar 

  43. R. Jones, H.M. Pollock, J.A.S. Cleaver, C.S. Hodges, Adhesion forces between glass and silicon surfaces in air studied by -AFM: effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 18(21), 8045–8055 (2002)

    Google Scholar 

  44. M. Kober, E. Sahagun, P. Garcia-Mochales, F. Briones, M. Luna, J.J. Saenz, Nanogeometry matters: unexpected decrease of capillary adhesion forces with increasing relative humidity. Small 6(23), 2725–2730 (2010)

    Article  Google Scholar 

  45. S. Kramer, R.R. Fuierer, C.B. Gorman, Scanning probe lithography using self-assembled monolayers. Chem. Rev. 103(11), 4367–4418 (2003)

    Article  Google Scholar 

  46. P. Lambert, Capillary Forces in Microassembly (Springer, New York, 2007)

    Book  Google Scholar 

  47. P. Lambert, A. Chau, A. Delchambre, S. Regnier, Comparison between two capillary forces models. Langmuir 24(7), 3157–3163 (2008)

    Article  Google Scholar 

  48. P. Lambert, A. Delchambre, Parameters ruling capillary forces at the submillimetric scale. Langmuir 21(21), 9537–9543 (2005)

    Article  Google Scholar 

  49. D.L. Malotky, M.K. Chaudhury, Investigation of capillary forces using atomic force microscopy. Langmuir 17(25), 7823–7829 (2001)

    Article  Google Scholar 

  50. A. Meister, M. Liley, J. Brugger, R. Pugin, H. Heinzelmann, Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling. Appl. Phys. Lett. 85(25), 6260–6262 (2004)

    Article  Google Scholar 

  51. A. Meister, M. Gabi, P. Behr, P. Studer, J. Voeroes, P. Niedermann, J. Bitterli, J. Polesel-Maris, M. Liley, H. Heinzelmann, T. Zambelli, FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9(6), 2501–2507 (2009)

    Google Scholar 

  52. A. Mendez-Vilas, A.B. Jodar-Reyes, M.L. Gonzalez-Martin, Ultrasmall liquid droplets on solid surfaces: production, imaging, and relevance for current wetting research. Small 5(12), 1366–1390 (2009)

    Article  Google Scholar 

  53. P. Nemes-Incze, Z. OsvÃąth, K. KamarÃąs, L.P. BirÃş, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46(11), 1435–1442 (2008)

    Google Scholar 

  54. O. Noel, P.-E. Mazeran, H. Nasrallah, Sliding velocity dependence of adhesion in a nanometer-sized contact. Phys. Rev. Lett. 108, 015503 (2012)

    Article  Google Scholar 

  55. T. Ondarcuhu, L. Nicu, S. Cholet, C. Bergaud, S. Gerdes, C. Joachim, A metallic microcantilever electric contact probe array incorporated in an atomic force microscope. Rev. Sci. Instrum. 71(5), 2087–2093 (2000)

    Article  Google Scholar 

  56. F.M. Orr, L.E. Scriven, A.P. Rivas, Pendular rings between solids— meniscus properties and capillary force. J. Fluid Mech. 67(FEB25), 723–742 (1975)

    Google Scholar 

  57. Q. Ouyang, K. Ishida, K. Okada, Investigation of micro-adhesion by atomic force microscopy. Appl. Surf. Sci. 169, 644–648 (2001)

    Article  Google Scholar 

  58. X. Pepin, D. Rossetti, S.M. Iveson, S.J.R. Simons, Modeling the evolution and rupture of pendular liquid bridges in the presence of large wetting hysteresis. J. Colloid Interface Sci. 232(2), 289–297 (2000)

    Article  Google Scholar 

  59. R.D. Piner, J. Zhu, F. Xu, S.H. Hong, C.A. Mirkin, “Dip-pen” nanolithography. Science 283(5402), 661–663 (1999)

    Article  Google Scholar 

  60. B. Qian, M. Loureiro, D.A. Gagnon, A. Tripathi, K.S. Breuer, Micron-scale droplet deposition on a hydrophobic surface using a retreating syringe. Phys. Rev. Lett. 102(16), 164502 (2009)

    Google Scholar 

  61. Y.I. Rabinovich, M.S. Esayanur, B.M. Moudgil, Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21(24), 10992–10997 (2005)

    Article  Google Scholar 

  62. F. Restagno, L. Bocquet, T. Biben, Metastability and nucleation in capillary condensation. Phys. Rev. Lett. 84(11), 2433–2436 (2000)

    Article  Google Scholar 

  63. S. Rozhok, R. Piner, C.A. Mirkin, Dip-pen nanolithography: âǍL’ what controls ink transport? J. Phys. Chem. B 107(3), 751–757 (2003)

    Article  Google Scholar 

  64. E. Sahagun, P. Garcia-Mochales, G.M. Sacha, J.J. Saenz, Energy dissipation due to capillary interactions: hydrophobicity maps in force microscopy. Phys. Rev. Lett. 98(17), 085504 (2007)

    Article  Google Scholar 

  65. K. Salaita, Y.H. Wang, C.A. Mirkin, Applications of dip-pen nanolithography. Nat. Nanotechnol. 2(3), 145–155 (2007)

    Article  Google Scholar 

  66. K. Salaita, Y. Wang, J. Fragala, R.A. Vega, C. Liu, C.A. Mirkin, Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006)

    Article  Google Scholar 

  67. S. Santos, A. Verdaguer, T. Souier, N.H. Thomson, M. Chiesa, Measuring the true height of water films on surfaces. Nanotechnology 22(46), 465705 (2011)

    Article  Google Scholar 

  68. D.L. Sedin, K.L. Rowlen, Adhesion forces measured by atomic force microscopy in humid air. Anal. Chem. 72(10), 2183–2189 (2000)

    Article  Google Scholar 

  69. R. Szoszkiewicz, E. Riedo, Nucleation time of nanoscale water bridges. Phys. Rev. Lett. 95(13), 135502 (2005)

    Google Scholar 

  70. N.R. Tas, P. Mela, T. Kramer, J.W. Berenschot, A. van den Berg, Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett. 3(11), 1537–1540 (2003)

    Article  Google Scholar 

  71. A.A. Tseng, A. Notargiacomo, T.P. Chen, Nanofabrication by scanning probe microscope lithography: a review. J. Vac. Sci. Technol. B 23(3), 877–894 (2005)

    Article  Google Scholar 

  72. S. Uemura, M. Stjernstrom, J. Sjodahl, J. Roeraade, Picoliter droplet formation on thin optical fiber tips. Langmuir 22(24), 10272–10276 (2006)

    Article  Google Scholar 

  73. J.W. van Honschoten, J.W. Berenschot, T. Ondarcuhu, R.G.P. Sanders, J. Sundaram, M. Elwenspoek, N.R. Tas, Elastocapillary fabrication of three-dimensional microstructures. Appl. Phys. Lett. 97(1), 014103 (2010)

    Google Scholar 

  74. C. Viala, C. Coudret, An expeditious route to cis-Ru(bpy)(2)Cl-2 (bpy = 2, 2 ‘-bipyridine) using carbohydrates as reducers. Inor. Chim. Acta 359(3), 984–989 (2006)

    Article  Google Scholar 

  75. Ch.D Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000)

    Google Scholar 

  76. C.-C. Wu, D.N. Reinhoudt, C. Otto, V. Subramaniam, A.H. Velders, Strategies for patterning biomolecules with dip-pen nanolithography. Small 7(8), 989–1002 (2011)

    Article  Google Scholar 

  77. X.D. Xiao, L.M. Qian, Investigation of humidity-dependent capillary force. Langmuir 16(21), 8153–8158 (2000)

    Article  Google Scholar 

  78. X.M. Xiong, S.O. Guo, Z.L. Xu, P. Sheng, P. Tong, Development of an atomic-force-microscope-based hanging-fiber rheometer for interfacial microrheology. Phys. Rev. E 80(6), 061604 (2009)

    Google Scholar 

  79. M.M. Yazdanpanah, M. Hosseini, S. Pabba, S.M. Berry, V.V. Dobrokhotov, A. Safir, R.S. Keynton, R.W. Cohn, Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes. Langmuir 24(23), 13753–13764 (2008)

    Article  Google Scholar 

  80. L. Zitzler, S. Herminghaus, F. Mugele, Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66(15), 155436 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Ondarçuhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ondarçuhu, T., Fabié, L. (2013). Capillary Forces in Atomic Force Microscopy and Liquid Nanodispensing. In: Lambert, P. (eds) Surface Tension in Microsystems. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37552-1_14

Download citation

Publish with us

Policies and ethics