Skip to main content

Depth of Melt Segregation Below the Nyos Maar-Diatreme Volcano (Cameroon, West Africa): Major-Trace Element Evidence and Their Bearing on the Origin of CO2 in Lake Nyos

  • Chapter
  • First Online:

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

The Nyos maar-diatreme volcano on the Oku Volcanic Group (OVG) in NW Cameroon carries yet the most infamous maar lake in the world because the lake exploded in 1986 releasing CO2 that killed ~1,750 people and over 3,000 livestock. A process of safely getting rid of accumulated gas from the lake started in 2001. Even though ~33 % of it has been removed, gas continues to seep into the lake from the mantle, so the lake still poses a thread. Available data on basaltic lava from the maar-diatreme volcano and other volcanoes of the OVG are used here to determine the depth and location where the magmas are produced, and to make inferences on the generation of CO2 in the Nyos mantle. Fractionation-corrected major element data agree well with experimental data on mantle peridotite and suggest that Lake Nyos magmas formed at pressures of 2–3 GPa in the garnet stability field. This inference is corroborated by trace element models that indicate small degree (1–2 %) partial melting in the presence of residual garnet (2–3 %). The basalts have elevated High Field Strength Element (HFSE) ratios (Zr/Hf = 48.5 ± 1.2 and Ti/Eu = 5,606 ± 224) which cannot be explained by any reasonable fractional crystallization model. A viable mechanism would be melting of a mantle that was previously spiked by percolating carbonatitic melts. It is suggested that small degree partial melting of this metasomatised mantle produces the lavas with super chondritic HFSE ratios, and is generating the CO2 that seeps into and accumulates in the lake, and which asphyxiated people and animals during the 1986 gas disaster. This finding requires that current efforts to degas Lake Nyos should take into account the fact that CO2 will continue to seep into the lake for a yet undetermined but long time in the future. A viable solution would be to avoid renewed stratification of the lake, by (somehow) safely and permanently bringing bottom gas-charged waters to the surface to release gas, even after the gas currently stocked in the lake has been completely removed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aeschbach-Hertig W, Hofer M, Kipfer R, Imboden DM, Wieler R (1999) Accumulation of mantle gases in a permanently stratified volcanic lake (Lac Pavin, France). Geochim Cosmochim Acta 63:3357–3372

    Google Scholar 

  • Aeschbach-Hertig W, Kipfer R, Hofer M, Imboden DM, Wieler R, Signer P (1996) Quantification of gas fluxes from the subcontinental mantle: the example of Laacher See, a maar lake in Germany. Geochim Cosmochim Acta 60:31–41

    Google Scholar 

  • Aka FT (2000) Noble gas systematics and K–Ar chronology: implications on the geotectonic evolution of the Cameroon Volcanic Line, West Africa. Ph.D. thesis, University Okayama, Japan, p 175

    Google Scholar 

  • Aka FT, Kusakabe M, Nagao K, Tanyileke G (2001a) Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of Bioko, São Tomé and Annobon, along the Cameroon Volcanic Line, West Africa. Appl Geochem 16:323–338

    Google Scholar 

  • Aka FT, Kusakabe M, Nagao K (2001b) New K–Ar ages for Lake Nyos maar, Cameroon: implications for hazard evaluation. J Geosci Soc Cam 1:25–26

    Google Scholar 

  • Aka FT, Nagao K, Kusakabe M, Sumino H, Tanyileke G, Ateba B, Hell J (2004) Symmetrical helium isotope distribution on the Cameroon Volcanic Line, West Africa. Chem Geol 203:205–223

    Google Scholar 

  • Aka FT, Yokoyama T, Kusakabe M, Nakamura E, Tanyileke G, Ateba B, Ngako V, Nnange JM, Hell JV (2008) U-series dating of Lake Nyos maar basalts, Cameroon (West Africa); implications for potential hazards on the Lake Nyos dam. J Volcanol Geotherm Res 176:212–224

    Google Scholar 

  • Aka FT, Yokoyama T (2012) Current status of the debate about the age of Lake Nyos dam (Cameroon) and its bearing on potential flood hazards. Nat Haz. doi:10.1007/s11069-012-0401-4

    Google Scholar 

  • Albarède F (1992) How deep do common basaltic magmas form and differentiate? J Geophys Res 97:10997–11009

    Google Scholar 

  • Allard P, Dajlevic D, Delarue C (1989) Origin of CO2 emanation from the 1979 Dieng eruption, Indonesia: implications for the 1986 Nyos catastrophe. J Volcanol Geotherm Res 39:195–205

    Google Scholar 

  • Alvarado GE, Gerardo JS, Flavia MS, Pablo R, de Hurtado Mendoza L (2011) The formation and evolution of Hule and Río Cuarto maars, Costa Rica. J Volcanol Geotherm Res 201:342–356

    Google Scholar 

  • Aranda-Gómez JJ, Luhr JF (1996) Origin of the Joya Honda maar, San Luís Potosí, México. J Volcanol Geotherm Res 74:1–18

    Google Scholar 

  • Aranda-Gómez JJ, Luhr JF, Pier JG (1992) The La-Brena-El-Jaguey-Maar Complex, Durango, Mexico: I. Geological evolution. Bull Volcanol 54(5):393–404

    Google Scholar 

  • Bea A, Cocheme JJ, Trompette R, Affaton P, Soba D, Sougy J (1990) Graben d’âge paléozoïque inférieur et volcanism tholéiitigues associé dans la région de Garoua au North-Cameroun. J Afr Earth Sci 10:657–667

    Google Scholar 

  • Beattie P (1993) The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies. Earth Planet Sci Lett 117:379–391

    Google Scholar 

  • Bedini RM, Bodinier JL, Dautria JM, Morten L (1997) Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth Planet Sci Lett 153:67–83

    Google Scholar 

  • Belousov AB (2005) Distribution and eruptive mechanism of maars in the Kamchatka Peninsula. Dokl Earth Sci 406(1):24–27

    Google Scholar 

  • Bertrand H (1991) The mesozaoic tholeiitic province of Northwest Africa: a volcano-tectonic record of the early opening of Central Atlantic. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings: the Phanerozoic African plate. Springer, Berlin, pp 147–188

    Google Scholar 

  • Blong RJ (1984) Volcanic hazards—a sourcebook on the effects of eruptions. Academic Press, Sydney

    Google Scholar 

  • Boriscova AYu, Belyatsky BV, Portnyagin MV, Sushcheskaya NM (2001) Petrogenesis of olvine-phyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust. J Petrol 42(2):277–319

    Google Scholar 

  • Camus G, Goér de Herve A, Kieffer G, Mergoil J, Vincent PM (1973) Mise au point sur le dynamisme et la chronologie des volcans holocénes de la région de Besse-en-Chandesse (Massif Central Francais). Contre Rendu de l’Académie de Science Paris 277D:629–632

    Google Scholar 

  • Camus G, Michard G, Olive P, Boivin P, Desgranges P, Jézéquel D, Meybeck M, Peyrus JC, Vinson JM, Viollier E, Kornprobst J (1993) Risques d’éruption gazeuse carbonique en Auvergne. Bulletin de Société Géologique de France 164:767–781

    Google Scholar 

  • Class C, Goldstein SL (1997) Plume-lithosphere interactions in the ocean basin: constrains from the source mineralogy. Earth Planet Sci Lett 150:245–260

    Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Google Scholar 

  • Cornen G, Bandetb Y, Giressec P, Maleyd J (1992) The nature and chronostratigraphy of Quaternary pyroclastic accumulations from Lake Barombi Mbo (West-Cameroon). J Volcanol Geotherm Res 51:357–374

    Google Scholar 

  • Coulon C, Vidal P, Dupuy C, Baudin P, Popoff M, Maluski H, Hermitte D (1996) The Mesozoic to early Cenozoic magmatism of the Benue Trough (Nigeria): geochemical evidence for the involvement of the St Helena plume. J Petrol 37:1341–1358

    Google Scholar 

  • Couthures J (1989) The Sénèze maar (French Massif-Central): Hypothesis regarding a catastroph occurring about 1.5 million years ago. J Volcanol Geotherm Res 39:207–210

    Google Scholar 

  • Downes H, Kostoula T, Jones AP, Beard AD, Thirlwall MF, Bodinier JL (2002) Geochemistry and Sr–Nd isotope compositions of mantle xenoliths from the Monte Vulture carbonatite-melilitite volcano, central Italy. Contrib Mineral Petrol 144:78–92

    Google Scholar 

  • Favalli M, Tarquini S, Papale P, Fornaciai A, Boschi E (2011) Lava flow hazard and risk at Mt. Cameroon volcano. Bull Volcanol. doi:10.1007/s00445-011-0540-6

  • Fitton JG (1987) The Cameroon line, West Africa: a comparison between oceanic and continental alkaline volcanism. In: Fitton, JG, Upton B (eds) Alkaline igneous rocks, vol 30. Geological Society, London, Special Publications, London, pp 273–291

    Google Scholar 

  • Freeth SJ, Rex DC (2000) Constraints on the age of Lake Nyos, Cameroon. J Volcanol Geotherm Res 97:261–269

    Google Scholar 

  • Freeth SJ (1988) When the Lake Nyos dam fails there will be serious flooding in Cameroon and Nigeria—but when will it fail? EOS Trans Am Geophy Union 69(32):776–777

    Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Google Scholar 

  • Furman T (1995) Melting of metasomatised subcontinental lithosphere: undersaturated mafic lavas from Rungwe, Tanzania. Contrib Mineral Petrol 122:97–115

    Google Scholar 

  • Gebhardt AC, De Batist M, Niessen F, Anselmetti FS, Ariztegui D, Haberzettl T, Kopsch C, Ohlendorf C, Zolitschka B (2011) Deciphering lake and maar geometries from seismic refraction and reflection surveys in Laguna Potrok Aike (Southern Patagonia, Argentina). J Volcanol Geotherm Res 201(1–4):357–363

    Google Scholar 

  • Gebhardt AC, Ohlendorf C, Niessen F, De Batist M, Anselmetti FS, Ariztegui D, Kliem P, Wastegard S, Zolitschka B (2012) Seismic evidence of up to 200 m lake-level change in Southern Patagonia since marine isotope stage 4. Sedimentology 59(3):1087–1100

    Google Scholar 

  • Graham DW, Jenkins WJ, Schilling JG, Thompson G, Kurz MD, Humphris SE (1992) Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic. Earth Planet Sci Lett 110:133–147

    Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Google Scholar 

  • Greenough JD (1988) Minor phases in the Earth’s mantle: evidence from trace and minor element patterns in primitive alkaline magmas. Chem Geol 69:177–192

    Google Scholar 

  • Gurenko AA, Hoernle KA, Hauff F, Schmincke HU, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chem Geol 233:75–112

    Google Scholar 

  • Haase K (1996) The relationship between the age of the lithosphere and the composition of oceanic magmas: constraints on partial melting, mantle sources and the thermal structure of the plates. Earth Planet Sci Lett 144:75–92

    Google Scholar 

  • Halliday AN, Davidson JP, Holden P, DeWolf C, Lee DC, Fitton JG (1990) Trace-element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon line. Nature 347:523–528

    Google Scholar 

  • Halliday AN, Lee DC, Tommasini S, Gareth RD, Paslick CR, Fitton JG, Dodie EJ (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395

    Google Scholar 

  • Halbwachs M, Sabroux JC, Grangeon J, Kayser G, Tochon-Danguy JC, Alain F, Beard JC, Villevieille A, Vitter G, Richon P, Wüest A, Hell J (2004) Degassing the ‘Killer Lakes’ Nyos and Monoun, Cameroon. EOS Trans Am Geoph Union 85(30):281–288

    Google Scholar 

  • Haller MJ, Németh K (2006) Architecture and pyroclastic succession of a small Quaternary (?) maar in the Pali Aike Volkanic field, Santa Cruz, Argentina. Zeitschrift der Deutschen Geologischen Gesellschaft 157(3):467–476

    Google Scholar 

  • Hart SR, Davis KE (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci Lett 40:203–219

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning for 24 trace elements. Contrib Mineral Petrol 113:1–8

    Google Scholar 

  • Hawkesworth CJ, Kempton PD, Rogers NW, Ellam RM, van Calsteren PW (1990) Continental mantle lithosphere and shallow level enrichment processes in the Earth’s mantle. Earth Planet Sci Lett 96:256–268

    Google Scholar 

  • Herzberg C, Zhang J (1996) Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J Geophy Res 101:8271–8295

    Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamonds. Earth Planet Sci Lett 114:477–489

    Google Scholar 

  • Hoernle K, Tilton G, Le Bas M, Duggen S, Garbe-Schonberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314

    Google Scholar 

  • Ivanovich M, Harmon SR (1992) Uranium-series disequilibrium: applications to Earth, Marine and Environmental Sciences. Oxford University Press, Oxford, p 910

    Google Scholar 

  • Jenner GA, Foley SF, Jackson SE, Green TH, Fryer BJ, Longerich HP (1993) Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta 57:5099–5103

    Google Scholar 

  • Kamgang P, Njonfang E, Chazot G, Tchoua F (2007) Geochemistry and geochronology of felsic lavas of the Bamenda Mountains (Cameroon Volcanic Line). Contre Rendu Geosci 339:659–666

    Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophy Res 102:853–874

    Google Scholar 

  • Kling GW (1988) Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West Africa. Limnol Oceanogr 33(1):27–40

    Google Scholar 

  • Kling GW, Evans WC, Tanyileke G, Kusakabe M, Ohba T, Yoshida Y, Hell JV (2005) Degassing Lakes Nyos and Monoun: Defusing certain disaster. Proc Nat Acad Sci 102(40):14185–14190

    Google Scholar 

  • Kogarko LN, Kurat G, Ntaflos T (2001) Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. Contrib Mineral Petrol 140:577–587

    Google Scholar 

  • Kusakabe M, Ohba T, Issa, Yoshida Y, Satake H, Ohizumi T, Evans WC, Tanyileke G, Kling GW (2008) Evolution of CO2 in Lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem J 42:93–118

    Google Scholar 

  • Kusakabe M, Sano Y (1992) Origin of gases in Lake Nyos, Cameroon. In: Freeth SJ, Ofoegb CO, Onohua KM (eds) Natural hazards in West and Central Africa. International monograph series on interdisciplinary earth science research and applications. Friedrich Vieweg & Sohn Verlag, Braunschweig, Wiesbaden, pp 83–95

    Google Scholar 

  • Kusakabe M, Tanyileke G, McCord SA, Schladow SG (2000) Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation. J Volcanol Geotherm Res 97:241–260

    Google Scholar 

  • Kusakabe M (this volume) Evolution of CO2 content in Lakes Nyos and Monoun, and sub-lacustrine CO2-recharge system at Lake Nyos as envisaged from CO2/3He ratios and noble gas signatures. In: D. Rouwet et al. (eds) Volcanic Lakes. Springer, Berlin

    Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrology systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Phipps Morgan J, Blackman DK, Sinton JM (eds) Mantle flow and Mmelt generation at mid-ocean ridges, vol 71. American Geophysical Union Monograph, pp 183–280

    Google Scholar 

  • Lee DC, Halliday AN, Fitton JG, Poli G (1994) Isotopic variation with distance and time in the volcanic Islands of the Cameroon line: evidence for a mantle plume origin. Earth Planet Sci Lett 123:119–138

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) Chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Le Guern F, Sigvaldason GE (1989) (eds) The Lake Nyos event and natural CO2 degassing, 1. J Volcanol Geotherm Res 39:95–275

    Google Scholar 

  • Lockwood JP, Rubin M (1989) Origin and age of Lake Nyos maar, Cameroon. J Volcanol Geotherm Res 39:117–124

    Google Scholar 

  • Lockwood JP, Costa JE, Tuttle ML, Tebor SG (1988) The potential for catastrophic dam failure at Lake Nyos maar, Cameroon. Bull Volcanol 50:340–349

    Google Scholar 

  • Liotard JM, Dupuy C, Dostal J, Cornen G (1982) Geochemistry of the volcanic Island of Annobon, Gulf of Guinea. Chem Geol 35:115–128

    Google Scholar 

  • Lorke A, Tietze K, Halbwachs M, Wüest A (2004) Response of Lake Kivu stratification to lava inflow and climate warming. Limnol Oceanogr 49(3):778–783

    Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock and soft-rock environments. Geolines 15:72–83

    Google Scholar 

  • Lorenz V (2007) Syn- and posteruptive hazards of maar-diatreme volcanoes. J Volcanol Geotherm Res 159(1–3):285–312

    Google Scholar 

  • Lorenz V (1985) Maars and diatremes of phreatomagmatic origin: a review. Trans Geol Soc South Africa 88:459–470

    Google Scholar 

  • Lorenz CA (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Google Scholar 

  • MacDonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:83–113

    Google Scholar 

  • Marcelot G, Dupuy C, Dostal J, Rancon JP, Pouclet A (1989) Geochemistry of mafic volcanic rocks from the Lake Kivu (Zaire and Rwanda) section of the western branch of the African Rift. J Volcanol Geotherm Res 39:73–88

    Google Scholar 

  • Martín-Serrano A, Vegas J, García-Cortés A, Galán L, Gallardo-Millán JL, Martín-Alfageme S, Rubio FM, Ibarra PI, Granda A, Pérez-González AJL (2009) Morphotectonic setting of maar lakes in the Campo de Calatrava Volcanic Field (Central Spain, SW Europe). Sediment Geol 222:52–63

    Google Scholar 

  • Martin U, Németh K (2006) Eruptive mechanism of phreatomagmatic volcanoes from the Pinacate Volcanic Field: comparison between Crater Elegante and Cerro Colorado, Mexico. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (ZDGG) 157(3):451–466

    Google Scholar 

  • Marzoli A, Piccirillo EM, Renne PR, Bellieni G, Iacumin M, Nyobe JB, Aka Tongwa F (2000) The Cameroon volcanic line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenosphric mantle sources. J Petrol 41:87–109

    Google Scholar 

  • Mathieu L, Kervyn M, Ernst GGJ (2011) Field evidence for flank instability, basal spreading and volcano-tectonic interactions at Mt Cameroon. Bull Volcanol, West Africa. doi:10.1007/s00445-011-0458-z

    Google Scholar 

  • Mazzarini F, D’Orazio M (2003) Spatial distribution of cones and satellite-detected lineaments in the Pali Aike Volcanic Field (southernmost Patagonia): insights into the tectonic setting of a Neogene rift system. J Volcanol Geotherm Res 125(3–4):291–305

    Google Scholar 

  • Morrissey and Rouwet this issue

    Google Scholar 

  • Mysen B (1979) Nickel partitioning between olivine and silicate melt; Henry’s law revisited. Am Mineral 64:1107–1114

    Google Scholar 

  • Nagao K, Kusakabe M, Yoshida Y, Tanyileke G (2010) Noble gases in Lakes Nyos and Monoun, Cameroon. Geochem J 44:519–543

    Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–17

    Google Scholar 

  • Németh K, Agustin-Flores J, Briggs R, Cronin SJ, Kereszturi G, Landsay A (2012) Monogenetic volcanism of the South Auckland and Auckland Volcanic Fields. In: IAVCEI—CMV/CVS—IAS 4IMC conference Auckland, New Zealand

    Google Scholar 

  • Ngounouno I, Deruelle B, Guiraud R, Vicat JP (2001) Magmatismes tholéiitique et alkalin des demi-grabens crétacés de Mayo Oulo-Léré et de Babouri-Figuil (North du Cameroun – Sud du Tchad) en domaine d’extension continentale. Contre Rendu Geoscience 333:201–207

    Google Scholar 

  • Nkambou C, Deruelle B, Danielle V (1995) Petrology of Mt. Etindé nephelinite series. J Petrol 36(2):373–393

    Google Scholar 

  • Ottonello G, Ernst WG, Joron JK (1984) Rare earth and transition element geochemistry of peridotite rocks: I. peridotites from the western Alps. J Petrol 25:434–472

    Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. Treatise Geochemistry V2:171–275

    Google Scholar 

  • Pier JG, Luhr JF, Podosek FA, Aranda-Gómez JJ (1992) The La Brena—El Jaguey Maar Complex, Durango, Mexico: 1. Petrology and geochemistry. Bull Volcanol 54:405–428

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Price RC, Nicholas IA, Grey CM (2003) Cainozoic igneous activity. In: Birch WD (ed) Geology of Victoria, Special Publication 23. Geological Society of Australia, pp 361–375

    Google Scholar 

  • Rankenburg K, Lassiter JC, Brey G (2005) The role of continental crust and lithospheric mantle in the genesis of Cameroon Volcanic Line lavas: constraints from isotopic variations in lavas and megacrysts from Biu and Jos plateaux. J Petrol 46(1):169–190

    Google Scholar 

  • Righter K, Leeman WP, Hervig RL (2006) Partitioning of Ni, Co and V between spinel- structured oxides and silicate melts: importance of spinel composition. Chem Geol 227:1–25

    Google Scholar 

  • Roeder PL, Emslie RL (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Robinson JAC, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284

    Google Scholar 

  • Rudnick RL, McDonough WF, Chappel BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Google Scholar 

  • Salters VJM (1996) The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet Sci Lett 141:109–123

    Google Scholar 

  • Sato H, Aramaki S, Kusakabe M, Hirabayashi JI, Sano Y, Nojiri Y, Tchoua F (1990) Geochemical difference of basalts between polygenetic and monogenetic volcanoes in the central part of the Cameroon Volcanic Line. Geochem J 24:357–370

    Google Scholar 

  • Scarrow JH, Cox KG (1995) Basalts generated by decompressive adiabatic melting of a mantle plume—a case study from the Ise of Skye, NW Scotland. J Petrol 36:3–22

    Google Scholar 

  • Schmincke HU (2007) The quaternary volcanic fields of the east and west Eifel (Germany). In: Ritter J, Christensen U (eds) Mantle plumes. Springer, Berlin, pp 241–322

    Google Scholar 

  • Schenker F, Dietrich V (1986) The Lake Nyos gas catastrophe (Cameroon). A magmatological interpretation. Scweiz Mineralogie ünd Petrographie Mitt 66:343–384

    Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Google Scholar 

  • Shaw DM, Cramer JJ, Higgines MD, Truscott MG (1986) Composition of the Canadian Precambrian shield and the continental crust of the Earth, Special Publication 24. Geological Society, London, pp 275–282

    Google Scholar 

  • Shen Y, Forsyth DW (1995) Geochemical constraints on initial and final depth of melting beneath mid-ocean ridges. J Geophys Res 100:2211–2237

    Google Scholar 

  • Sigurdsson H, Devine ID, Tchoua FM, Presser TS, Pringle MK, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroon. J Volcanol Geotherm Res 31:1–16

    Google Scholar 

  • Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180:189–202

    Google Scholar 

  • Suh CE, Sparks RSJ, Fitton JG, Ayonghe SN (2003) The 1999 and 2000 eruptions of Mount Cameroon: eruption behavior and petrochemistry of lava. Bull Volcanol 65:267–281

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, Special Publication 42. Geological Society, London, pp 313–345

    Google Scholar 

  • Tabot CT, Fairehead JD, Stuart GW, Ateba B, Ntepe N (1992) Seismicity of the Cameroon Volcanic Line, 192-1990. Tectonophysics 212:303–320

    Google Scholar 

  • Tassi F, Vaselli O, Fernández E, Duarte E, Martínez M, Delgado Huertas A, Bergamaschi F (2009) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68(2):193–205

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The chemical evolution of the continental crust. Rev Geophy 33:241–265

    Google Scholar 

  • Temdjim R, Boivin P, Chazot G, Robin C, Rouleau E (2004) L`hétérogénité du manteau supérieur a l`aplomb du volcan de Nyos (Cameroun) révélée par les enclaves ultrabasiques. C R Geosci 336:1239–1244

    Google Scholar 

  • Teitchou MI, Grégoire M, Temdjim R, Ghogogu RT, Ngwa C, Aka FT (2011) Mineralogical and geochemical fingerprints of mantle metasomatism beneath Nyos volcano (Cameroon Volcanic Line). Geological Society of America Special Papers 478, 193–210

    Google Scholar 

  • Tietze K (1980) The unique methane gas deposit in Lake Kivu (Central Africa)—stratification, dynamics, genesis and development. In: Proceedings of the first annual symposium on unconventional gas recovery, Society of Petroleum Engineers (SPE) of the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) and United States Department of Energy (DOE), Pittsburgh, SPE/DOE 8957, pp 275–287

    Google Scholar 

  • Touret J, Grégoire M, Teitchou MI (2010) Was the lethal eruption of Lake Nyos related to a double CO2/H2O density inversion? C R Geosci 342:19–26

    Google Scholar 

  • UNEP/OCHA Joint Environment Unit (2005) Lake Nyos dam assessment, Cameroon. http://www.reliefweb.int/library/documents/2005/ocha-cmr

  • Vaselli et al. (this issue) Are limnic eruptions in the CO2–CH4-rich gas reservoir of Lake Kivu (Democratic Republic of the Congo and Rwanda) possible? Insights from physico-chemical and isotopic data. In: In: D. Rouwet et al. (eds) Volcanic Lakes. Springer, Berlin

    Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Google Scholar 

  • Walter MJ, Katsura T, Kubo A, Shinmei T, Nishikawam O, Ito E, Lesher C, Funakoshi K (2002) Spinel–garnet lherzolite transition in the system CaO-MgO-Al2O3-SiO2 revisited: An in situ X-ray study. Geochim Cosmochim Acta 66(12):2109–2121

    Google Scholar 

  • White W (2005) Geochemistry. www.geo.cornell.edu/geology/clsses/geo455/Chapters.HTML

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29

    Google Scholar 

  • Walther JV (2005) Essentials of geochemistry. Jones and Bartlett Publishers, Boston, p 704

    Google Scholar 

  • Wohletz K, Heiken G (1992) Volcanology and geothermal energy. University of California Press, Berkeley, p 432

    Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol 39(11–12):1917–1930

    Google Scholar 

  • Yokoyama T, Aka FT, Kusakabe M, Nakamura E (2007) Plume-lithosphere interaction beneath Mt. Cameroon volcano, West Africa: Constraints from 238U-230Th-226Ra and Sr–Nd–Pb isotopic systematics. Geochim Cosmochim Acta 71:1835–1854

    Google Scholar 

  • Zimanoswski B (1998) Phreatomagmatic explosions. In: Freundt A, Rosi M (eds) From magma to tephra. Developments in Volcanology, vol 4. Amsterdam, pp 25–54

    Google Scholar 

Download references

Acknowledgments

Compilation of the Cameroon Volcanic Line and other data used in this paper was made when I was on a ‘mis à la disposition’ of Okayama University Institute for Study of the Earth’s Interior (ISEI) in Misasa, Japan, from the Institute for Geological and Mining Research (IRGM, Cameroon). My stay in ISEI was supported by a JSPS grant to Minoru Kusakabe for ‘Asia-Africa Science Platform Program (Geochemistry of Lake Nyos gas disaster, Cameroon Volcanic Line-Rift Valley volcanoes and the underlying mantle), and also by a COE-21 (Center of Excellence in the 21st Century in Japan) grant to Eizo Nakamura. Assistance from colleagues and collaborators of IRGM and ISEI is acknowledged. Some of the pictures shown in Figs. 2 and 9 were taken during many trips to Lake Nyos within the framework of (1) the Lakes Nyos and Monoun Degassing Project funded by the Government of Cameroon, USAID and the French Cooperation; (2) SATREPS-IRGM project headed by Prof. Takeshi Ohba of Tokai University (Japan) and funded by the Government of Cameroon, the Japan International Cooperation Agency (JICA) and the Japan Science and Technology Agency (JST); (3) the Lake Nyos dam reinforcement project funded by the Government of Cameroon and the European Union. We acknowledge the leadership of MINRESI, through IRGM that coordinates all these projects. Discussions with T. Yokoyama and review comments from Dmitri Rouwet, Karoly Németh and Tanya Furman helped in improving the paper. I stayed at the Misasa Onsen Hospital for part of the time that I was in Misasa, but was able to continue to work. I commend Y. Nakano (COE-21 administrative officer), all the nurses and doctors through Yukari Tanabe and Morio Yasuo respectively, for the assistance that they gave me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Festus Tongwa Aka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aka, F.T. (2015). Depth of Melt Segregation Below the Nyos Maar-Diatreme Volcano (Cameroon, West Africa): Major-Trace Element Evidence and Their Bearing on the Origin of CO2 in Lake Nyos. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_21

Download citation

Publish with us

Policies and ethics