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Abstract. In all existing efficient proofs of knowledge of a solution to
the infinity norm Inhomogeneous Small Integer Solution (ISIS∞) prob-
lem, the knowledge extractor outputs a solution vector that is only guar-
anteed to be ˜O(n) times longer than the witness possessed by the prover.
As a consequence, in many cryptographic schemes that use these proof
systems as building blocks, there exists a gap between the hardness of
solving the underlying ISIS∞ problem and the hardness underlying the
security reductions. In this paper, we generalize Stern’s protocol to ob-
tain two statistical zero-knowledge proofs of knowledge for the ISIS∞

problem that remove this gap. Our result yields the potential of relying
on weaker security assumptions for various lattice-based cryptographic
constructions. As applications of our proof system, we introduce a con-
currently secure identity-based identification scheme based on the worst-
case hardness of the SIVP

˜O(n1.5) problem (in the �2 norm) in general
lattices in the random oracle model, and an efficient statistical zero-
knowledge proof of plaintext knowledge with small constant gap factor
for Regev’s encryption scheme.

1 Introduction

Zero-knowledge proofs and proofs of knowledge are fundamental notions and
powerful tools in cryptography. In a zero-knowledge proof system [GMR89], a
prover convinces a verifier that some statement is true while leaking nothing
but the validity of the assertion. In a proof of knowledge ([GMR89, BG93]), the
prover also convinces the verifier that he indeed knows a satisfying “witness”
for the given statement. In the last 25 years, zero-knowledge proofs of knowl-
edge (ZKPoK) have been extensively studied ([FFS87, GQ90, FS89, RS92,
Mau09],...). These proof systems are the building blocks in many cryptographic
constructions (e.g., identification schemes, group signatures, anonymous creden-
tial systems, to name just a few). In this work, we focus on ZKPoK for an impor-
tant hard-on-average problem in lattice-based cryptography - the Inhomogeneous
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Small Integer Solution (ISIS) problem, that was introduced in [GPV08] and has
since then been used extensively ([ABB10a, ABB10b, CHKP10, Boy10],...).

In recent years, lattice-based cryptography has received much attention from
the research community because it enjoys a unique combination of attractive
features: provable security under worst-case hardness assumptions, conjectured
resistance against quantum computers, and asymptotic efficiency. The rapid de-
velopment of the field yields an interesting challenge of designing and improving
proof systems for lattice problems. There exist several proof systems, both in-
teractive and non-interactive ([GG98, MV03, GMR05, PV08]) that exploit the
geometric structure of worst-case lattice problems. On the other hand, when
designing lattice-based cryptographic protocols, one essentially has to deal with
the average-case problems that enjoy worst-case to average-case reductions, such
as the SIS and ISIS problems ([Ajt96, MR07, GPV08]) and the Learning With
Errors (LWE) problem ([Reg05, Reg09, Pei09]). All existing proofs of knowl-
edge for the ISIS problem ([MV03, Lyu08]) have some limitations, most notably
the fact that there is a gap between the norm of the witness vector and the
norm of the vector computed by the knowledge extractor: The latter is only
guaranteed to be ˜O(n) larger than the former in the case of the infinity norm,
where n denotes the dimension of the corresponding worst-case lattice problem.
As a consequence, cryptographic schemes using these proof systems as building
blocks rely on a stronger security assumption than the assumed hardness of find-
ing a witness for the ISIS instance, by a ˜O(n) factor. This hints that the existing
ZKPoK for the ISIS∞ problem are sub-optimal: Is it possible to design an effi-
cient ZKPoK for ISIS∞ whose security provably relies on a weaker assumption
than the existing ones? In this work, we reply positively, and describe such a
ZKPoK, for which there is only a constant gap between the norm of the witness
vector and the norm of the vector computed by the extractor. We also briefly
describe a scheme with no gap (i.e., constant factor 1), but that is less efficient.
Notations. Throughout the paper, we assume that all vectors are column vec-
tors. We denote vectors by bold lower-case letters (e.g., x), and matrices by bold
upper-case letters (e.g., A). The Gram-Schmidt norm of a matrix A is denoted
by ‖˜A‖. We let the Hamming weight of a vector x ∈ {0, 1}m be denoted by
wt(x). We let B3m denote the set of all vectors x ∈ {−1, 0, 1}3m having ex-
actly m coordinates equal to −1; m coordinates equal to 0; and m coordinates
equal to 1. The symmetric group of all permutations of k elements is denoted
by Sk. We use the notation y $←− D when y is sampled from the distribution D.
When S is a finite set, y $←− S means that y is chosen uniformly at random from S.
We let n denote the security parameter of our schemes. A function ε : N→ R≥0

is said negligible in n (denoted by negl(n)) if it vanishes faster than the inverse
of any polynomial. We say that an event happens with overwhelming probability
if it happens with probability 1 − ε(n) for some negligible function ε. We often
use the soft-O notation: We write f(n) = ˜O(g(n)) if f(n) = O(g(n) logc g(n))
for some constant c. The statistical distance between two distributions X and Y
over a countable domain D is 1

2

∑

d∈D |X(d) − Y(d)|. We say that X and Y are
statistically close (denoted by X ≈s Y) if their statistical distance is negligible.
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1.1 Related Works

We briefly review some of the results related to proofs of knowledge for the ISIS
problem. The ISISp

n,m,q,β problem in the �p norm with parameters (n,m, q, β)
asks to find a vector x ∈ Z

m such that and ‖x‖p ≤ β and Ax = y mod q for a
uniformly chosen input matrix A ∈ Z

n×m
q and a uniformly chosen input vector

y ∈ Z
n
q . The hardness of the ISIS2

n,m,q,β problem is established by a worst-case
to average-case reduction from standard lattice problems, such as the Shortest
Independent Vectors Problem (SIVP).

Theorem 1 ([GPV08]). For any m, β = poly(n), and for any integer q ≥
β · ω(

√
n logn), solving a random instance of the ISIS2

n,m,q,β problem with non-
negligible probability is at least as hard as approximating the SIVP2

γ problem on
any lattice of dimension n to within certain γ = β · ˜O(

√
n) factors.

By the relationship between the �2 and �∞ norms (i.e., for any vector x ∈ R
n,

we have ‖x‖∞ ≤ ‖x‖2 ≤ √n · ‖x‖∞), it follows that the ISIS∞
n,m,q,β problem is

at least as hard as SIVP2
γ (in the �2 norm) for some γ = β · ˜O(n). Without loss

of generality, throughout this work, we will assume that β is a positive integer.
We define the relation RISIS∞

n,m,q,β
for this problem as

RISIS∞
n,m,q,β

=
{

((A,y),x) ∈ Z
n×m
q × Z

n
q × Z

m: (‖x‖∞ ≤ β) ∧ (Ax = y [q])
}

.

Kawachi et al. [KTX08] adapted Stern’s identification scheme [Ste96] to the
lattice setting to obtain a ZKPoK for a restricted version of the ISIS∞ problem,
with respect to the relation

RKTXn,m,q,w
=

{

((A,y),x) ∈ Z
n×m
q × Z

n
q ×{0, 1}m: (wt(x) = w) ∧ (Ax = y [q])

}

.

This restriction of RISIS∞
n,m,q,β

does not seem to suffice for a wide range of
applications. For some cryptographic schemes that allow many users, such as
ID-based identification [Sha85] and group signature [CH91] schemes, the se-
cret keys of the users are typically generated from the public keys by a trusted
authority. For such schemes that rely on lattice-based hardness assumptions
([SSTX09, Rüc10a, CNR12, GKV10]), this task is performed by using a secret
trapdoor possessed by the trusted authority, consisting in a relatively short basis
of a publicly known lattice. As a result, a user secret key x is a general solution
to the ISIS∞

n,m,q,β problem, where β is typically ˜O(
√
n). Whenever a user in the

scheme wants to identify himself, he must prove that he knows such a vector x.
In other words, these schemes require a PoK for the relation RISIS∞

n,m,q,β
, for

which, up to the best of our knowledge, there exist two options:

• A proof of knowledge for RISIS∞
n,m,q,β

was introduced by Lyubashevsky [Lyu08].
His protocol is efficient with low communication cost, but suffers from several
limitations: It is not proven zero-knowledge (it is only proven to be witness-
indistinguishable - a weaker notion than zero-knowledge [FS90]); It has a
constant completeness error in each round; And it relies on a relatively strong
hardness assumption for the ISIS∞ problem, with a ˜O(n) gap factor.
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• Another proof system can be obtained by transforming the ISIS instance
into a GapCVP instance, and adapting the Micciancio-Vadhan ZKPoK for
GapCVP [MV03] to the infinity norm. Let B be any basis of the lattice Λ⊥

q (A) =
{x ∈ Z

m : Ax = 0 mod q} and t be a vector in Z
m such that At = y mod q.

Such B and t can be efficiently computed using linear algebra. Then run the
Micciancio-Vadhan protocol for GapCVP∞

γ with common input (B, t, β). The
prover’s auxiliary input is e = t− x ∈ Λ⊥

q (A). We note that the knowledge
extractor in [MV03] is only able to output a vector e′ ∈ Λ⊥

q (A), such that
‖t− e′‖∞ ≤ g · β for some g > 1. This implies that x′ = t− e′ is a solution to
the ISIS∞

n,m,q,g·β problem with respect to (A,y). However, in the infinity norm,
the smallest g that can be obtained is ≥ Θ(n/ logn) while the bit complexity
is relatively high. In more details, the gap factor g depends on some parame-
ter k as follows: g = m1+Ω(1) for k = ω(1); g = Ω(m) for k = ω(logm); and
g = Ω(m/ logm) for k = poly(m) - a sufficiently large polynomial. The commu-
nication cost of the protocol depends linearly on k. Alternatively, one could apply
the ISIS-GapCVP transformation to the Micciancio-Vadhan protocol for the �2
norm, and then use the relationship between the �2 and �∞ norms. However, in
this case, the gap is slightly bigger (at least Θ(n/

√
logn)).

We now shortly review a class of proof systems related to our work: zero-
knowledge proofs of plaintext knowledge (ZKPoPK) for Regev’s LWE-
based cryptosystem ([Reg05, Reg09]). All known ZKPoPK ([BD10, BDOZ11,
AJLA+12, DLA12]) were derived from Secure Multi-Party Computation proto-
cols, via the [IKOS07] transformation from MPC to ZK. The proof systems are
relatively inefficient and rely on the assumption that SIVP is hard for super-
polynomial approximation factors (i.e., γ = nω(1)). We observe (in Section 3.2)
that a PoPK for Regev’s cryptosystem can be obtained from a PoK for RISIS.
Thus, a ZKPoK for the ISIS problem with lower communication cost and a
weaker hardness assumption leads to a significant improvement in this direction.

1.2 Our Contributions and Techniques

The discussions above raise the question whether it is possible to design a
ZKPoK for the general ISIS problem that completely removes the gap. Even a
ZKPoK that has small constant gap factor while maintaining efficiency would be
desirable. In this work, we answer this question positively. Specifically, we show
that there exists a statistical ZKPoK (called Naive SternExt) for the rela-
tion RISIS∞

n,m,q,β
whose security relies on the assumed hardness of the ISIS∞

n,m,q,β .
This scheme achieves optimal gap, as the norm bounds for the witness and the
security assumptions are identical. However, its communication cost depends
linearly on β, which may be a significant drawback for large β. Our main result
is a statistical ZKPoK called SternExt achieving both security and efficiency
requirements: it has an almost optimal gap factor (g ≤ 2), while the communica-
tion cost compares favorably to the Micciancio-Vadhan proof system. We believe
that our result can be applied to many cryptographic primitives. In particular,
we will describe two applications of the SternExt proof system:
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1. A concurrently secure identity-based identification scheme that relies on
worst-case hardness of the SIVP

˜O(n1.5) problem (in the �2 norm) in gen-
eral lattices. This is the weakest security assumption among contemporary
lattice-based ID-based ID schemes ([SSTX09, Rüc10a]).

2. An efficient statistical ZKPoPK for Regev’s cryptosystem with small con-
stant gap factor between the sizes of a valid plaintext and the output of
the knowledge extractor. In comparison with the results of [BD10, BDOZ11,
AJLA+12, DLA12], our proof system offers a noticeable improvement in
both security and efficiency points of view.

We now sketch our approach. While the [MV03] protocol exploits the geometric
aspect of the ISIS problem, our protocol exploits its combinatorial and algebraic
aspects. We first look at the scheme from [Ste96, KTX08], and investigate how to
loosen the restrictions on the witness x, which are x ∈ {0, 1}m and wt(x) = w.
Note that these conditions are invariant under all permutations of coordinates:
For π ∈ Sm, a vector x satisfies those restrictions if and only if π(x) also does.
Thus, a witness x with such constraints can be verified in zero-knowledge thanks
to the randomness of π. We then notice that the same statement still holds true
for x ∈ B3m, namely: for π ∈ S3m, x ∈ B3m ⇔ π(x) ∈ B3m. This basic fact
allows us to generalize the proof system from [Ste96, KTX08]. Our generalization
consists of two steps:
Step 1. Removing the restriction on the Hamming weight. Specifically, we ob-
serve that a ZKPoK for the relation

RISIS∞
n,m,q,1

=
{

((A,y),x) ∈ Z
n×m
q × Z

n
q × {−1, 0, 1}m: Ax = y mod q

}

can be derived from Stern’s scheme by the following extensions: For any vector
x ∈ {−1, 0, 1}m, append 2m coordinates from the set {−1, 0, 1} to x to obtain
x′ ∈ B3m. Next, append 2m zero-columns to matrix A to get A′ ∈ Z

n×3m
q . We

then have:

x′ ∈ B3m ⇔ x ∈ {−1, 0, 1}m,
A′x′ = y mod q ⇔ Ax = y mod q.

In other words, if a verifier is convinced that x′ ∈ B3m and A′x′ = y mod q,
then he is also convinced that x is a valid witness for the relation RISIS∞

n,m,q,1
.

Step 2. Increasing the �∞ bound to β, for any β > 0. The principle of Step 1
can be generalized in a naive manner. For any x ∈ {−β, . . . , 0, . . . , β}m, one
can append 2βm coordinates to x to obtain an x∗ ∈ {−β, . . . , 0, . . . , β}(2β+1)m

that has exactly m coordinates equal to d for each d ∈ {−β, . . . , 0, . . . , β}. The
extended matrix A∗ ∈ Z

n×(2β+1)m
q is obtained by appending 2βm zero-columns

to matrix A. Then A∗x∗ = Ax mod q. Moreover, the constraints of x∗ can be
verified in zero-knowledge by using a uniform π ∈ S(2β+1)m. Therefore, we obtain
a ZKPoK for RISIS∞

n,m,q,β
, that we call Naive SternExt, where the extraction

gap factor is completely removed. However, as mentioned earlier, the proof is
inefficient for large β as its communication cost is β · ˜O(n lg q).
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A much more efficient method to achieve our goal is based on the idea of repre-
senting any vector x ∈ {−β, . . . , 0, . . . , β}m by k = �lg β
+1 vectors ũ0, . . . , ũk−1

in {−1, 0, 1}m via a binary decomposition, namely: x =
∑k−1

j=0 2j · ũj . Next we
apply the extension of Step 1: Extend each ũj to uj ∈ B3m, and extend A to
A′ ∈ Z

n×3m
q . We then have:

A′(
k−1
∑

j=0

2j · uj

)

= y mod q ⇔ Ax = y mod q.

This allows us to combine k proofs for RISIS∞
n,m,q,1

into one proof RISIS∞
n,m,q,β

.1

We thus obtain a statistical ZKPoK for the general ISIS∞ problem, that we
call SternExt, with the following properties:
• The knowledge extractor obtains an x′ with ‖x′‖∞ ≤ β′, where β ≤ β′ ≤

2β− 1 (depending on the binary representation of β). Hence, the extraction
gap factor satisfies g < 2.
• The communication cost is lg β · ˜O(n lg q). In particular, in most crypto-

graphic applications q is poly(n), and we then have lg β ≤ lg q = ˜O(1).

Overall, SternExt provides a better proof system for RISIS∞
n,m,q,β

in both security
and efficiency aspects than the one derived from the Micciancio-Vadhan protocol.
We summarize the comparison among the PoK for RISIS∞

n,m,q,β
in Table 1. The

comparison data are for one round of protocol, in which case all the considered
proof systems admit a constant soundness error.

Table 1. Comparison among the proofs of knowledge for RISIS∞
n,m,q,β

. See discussion
in Section 1.1 for other security/efficiency trade-offs for the [MV03] scheme.

Schemes [Lyu08] [MV03] Naive
SternExt

SternExt

Zero-knowledge? ✗(WI) ✓ ✓ ✓

Perfect completeness? ✗ ✓ ✓ ✓

Norm bound in the
ISIS hardness assumption β · ˜O(n) β · ˜O(n) β ≤ 2β − 1

Communication cost ˜O(n lg q) ˜O(n lg q) β · ˜O(n lg q) lg β · ˜O(n lg q)

Outline. The rest of the paper is organized as follows: In Section 2, we present
the SternExt proof system; and in Section 3, we describe two cryptographic
applications. We refer the reader to [Gol04, Chap. 4] and [GPV08] for standard
definitions of zero-knowledge proof systems and lattice problems, respectively.
In the appendix, we adapt SternExt to the relation RSIS∞ associated to the
SIS problem: RSIS∞ corresponds to setting y = 0 and imposing x �= 0 in RISIS∞ .
1 This packing of proofs is akin to Jain et al.’s recent work on the Learning Parity

with Noise problem [JKPT12, Section 4.2].
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2 A Zero-Knowledge Proof of Knowledge for ISIS

Our scheme extends Stern’s ZKPoK [Ste96] for the Syndrome Decoding Prob-
lem (SDP). Stern’s proof system is a 3-move interactive protocol: the prover P
computes three commitments and sends them to the verifier V ; verifier V sends a
uniformly random challenge to P ; prover P reveals two of the three commitments
according to the challenge. Kawachi et al. [KTX08] adapted Stern’s scheme to
the lattice setting, exploiting the similarity between the SDP and ISIS problems.
Their construction makes use of a string commitment scheme that is statistically
hiding and computationally binding.

Definition 1. A statistically hiding, computationally binding string commit-
ment scheme is a PPT algorithm COM(s, ρ) satisfying:

• For all s0, s1 ∈ {0, 1}∗, we have (over the random coins of COM):

COM(s0; ·) ≈s COM(s1; ·),
• For all PPT algorithm A returning (s0, ρ0); (s1, ρ1), where s0 �= s1, we have

(over the random coins of A):

Pr[COM(s0; ρ0) = COM(s1; ρ1)] = negl(n).

2.1 Setup

For a security parameter n, let q be a positive integer. Let β be some positive
integer, and k = �lg β
 + 1. Let COM be a statistically hiding and computa-
tionally binding string commitment scheme. It was shown in [KTX08] that such
a scheme can be constructed based on the hardness of the ISIS∞

n,m,q, ˜O(1)
prob-

lem. For simplicity, in the interactive protocol, we will not explicitly write the
randomness ρ of the commitment scheme COM.

The common input is a pair (A,y) such that y belongs to the image of A,
and the prover’s auxiliary input is vector x. Prior to the interaction, both P
and V form the extended matrix A′ ∈ Z

n×3m
q by appending 2m zero-columns

to matrix A. In addition, prover P performs the following preparation
steps:

1. Decomposition. The goal is to represent vector x = (x1, x2, . . . , xm) by k
vectors in {−1, 0, 1}m. For each 1 ≤ i ≤ m, consider a binary representation
of coordinate xi, that is: xi = bi,0 · 20 + bi,1 · 21 + . . . + bi,k−1 · 2k−1, where
bi,j ∈ {−1, 0, 1}, for all j = 0, . . . , k − 1. Now for each index j, let ũj =
(b1,j , b2,j, . . . , bm,j) ∈ {−1, 0, 1}m. We observe that x =

∑k−1
j=0 2j · ũj .

2. Extension. For each index j = 0, . . . , k−1, extend ũj to a vector uj ∈ B3m

as follows: If the numbers of coordinates −1, 0, and 1 in vectors ũj are λ(−1)
j ,

λ
(0)
j and λ

(1)
j respectively, then choose a random vector tj ∈ {−1, 0, 1}2m

that has exactly (m− λ(−1)
j ) coordinates −1, (m− λ(0)

j ) coordinates 0, and
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(m− λ(1)
j ) coordinates 1; and append tj to ũj , i.e., set uj = (ũj‖tj). Since

the last 2m columns of matrix A′ are zero-columns, we have:

A′(
k−1
∑

j=0

2j · uj

)

= y mod q ⇔ Ax = y mod q.

2.2 The Interactive Proof System

The prover P and the verifier V interact as described in Figure 1.

1. Commitment. Prover P samples k vectors r0, . . . , rk−1
$←− Z

3m
q ; k permuta-

tions π0, . . . , πk−1
$←− S3m, and sends the commitment CMT := (c1, c2, c3), where

⎧

⎪

⎨

⎪

⎩

c1 = COM(π0, . . . , πk−1,A
′(

∑k−1
j=0 2j · rj) mod q)

c2 = COM(π0(r0), . . . , πk−1(rk−1))

c3 = COM(π0(u0 + r0), . . . , πk−1(uk−1 + rk−1))

2. Challenge. Receiving CMT, verifer V sends a challenge Ch $←− {1, 2, 3} to P .
3. Response. Prover P replies as follows:

• If Ch=1, then reveal c2 and c3. For each j, let vj=πj(uj), and wj =πj(rj).
Send RSP := (v0, . . . ,vk−1,w0, . . . ,wk−1).

• If Ch = 2, then reveal c1 and c3. For each j, let φj = πj , and zj = uj + rj .
Send RSP := (φ0, . . . , φk−1, z0, . . . , zk−1).

• If Ch = 3, then reveal c1 and c2. For each j, let ψj = πj , and sj = rj .
Send RSP := (ψ0, . . . , ψk−1, s0, . . . , sk−1).

Verification. Receiving the response RSP, verifier V performs the following checks:

• If Ch = 1: Check that vj ∈ B3m for all j = 0, . . . , k − 1, and
{

c2 = COM(w0, . . . ,wk−1)

c3 = COM(v0 + w0, . . . ,vk−1 + wk−1)

• If Ch = 2: Check that
{

c1 = COM(φ0, . . . , φk−1,A
′(

∑k−1
j=0 2j · zj)− y mod q)

c3 = COM(φ0(z0), . . . , φk−1(zk−1))

• If Ch = 3: Check that
{

c1 = COM(ψ0, . . . , ψk−1,A
′(

∑k−1
j=0 2j · sj) mod q)

c2 = COM(ψ0(s0), . . . , ψk−1(sk−1))

In each case, verifier V outputs the decision d = 1 (Accept) if and only if all the
conditions hold. Otherwise, he outputs d = 0 (Reject).

Fig. 1. The SternExt proof system
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Completeness. We observe that if prover P has a valid witness x for the re-
lation RISIS∞

n,m,q,β
and follows the protocol, then he always gets accepted by V .

Therefore, the proof system has perfect completeness.
Communication Cost. The size of the commitment scheme from [KTX08] is
˜O(n lg q). If Ch = 1, then the size of RSP is 3km + 3km lg q. If Ch = 2 or
Ch = 3, then RSP consists of k vectors in Z

3m
q and k permutations. Note that

in practice, instead of sending the permutations and vectors, one would send the
random seed of the PRNG used to generate these data, and thus significantly
reduce the communication cost. Overall, the total communication cost of the
protocol is lg β · ˜O(n lg q).

2.3 Statistical Zero-Knowledge

We now prove that the proof system SternExt is statistically zero-knowledge,
by exhibiting a transcript simulator.

Theorem 2. If COM is a statistically hiding string commitment scheme, then
the proof system SternExt from Figure 1 is statistically zero-knowledge.

Proof. Adapting the techniques of [Ste96] and [KTX08], we construct a sim-
ulator S which has black-box access to a (possibly cheating) verifier ̂V , such
that on input the public parameters A (and implicitly its extension A′) and y,
outputs with probability 2/3 a successful transcript (i.e., an accepted interac-
tion), and the view of ̂V in the simulation is statistically close to that in the
real interaction. The simulator S begins by selecting a random Ch ∈ {1, 2, 3} (a
prediction of the challenge value that ̂V will not choose), and a random tape r′

of ̂V . We note that in all the cases we consider below, by the assumption on the
commitment scheme COM, the distributions of c′1, c′2, c′3 are statistically close
to the distributions of the commitments in the real interaction, and thus, the
distributions of the challenge Ch from ̂V is also statistically close to that in the
real interactions.

Case Ch = 1: The simulator S computes x′ ∈ Z
m
q such that Ax′ = y mod q

using linear algebra. It picks k− 1 random vectors ũ′
1, . . . , ũ

′
k−1

$←− Z
m
q and sets:

ũ′
0 := x′ −

k−1
∑

j=1

2j · ũ′
j mod q.

In other words, we have x′ =
∑k−1

j=0 2j · ũ′
j mod q. Now for each j, the simulator

extends ũ′
j to u′

j ∈ Z
3m
q by appending 2m random coordinates. It then picks k

vectors r′0, . . . , r
′
k−1

$←− Z
3m
q ; k permutations π′

0, . . . , π
′
k−1

$←− S3m; and uniformly
random strings ρ′1, ρ′2, ρ′3. It sends the following commitments to ̂V :

⎧

⎪

⎨

⎪

⎩

c′1 = COM(π′
0, . . . , π

′
k−1,A

′(
∑k−1

j=0 2j · r′j) mod q; ρ′1)
c′2 = COM(π′

0(r
′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′
0(u

′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3).
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Receiving a challenge Ch from ̂V , simulator S provides a transcript as follows:

• If Ch = 1: Output ⊥ and halt.
• If Ch = 2: Output

(

r′, (c′1, c
′
2, c

′
3), 2, (π

′
0, π

′
1, . . . , π

′
k−1,u

′
0 + r′0, . . . ,u

′
k−1 + r′k−1); ρ

′
1, ρ

′
3

)

.

• If Ch = 3: Output
(

r′, (c′1, c
′
2, c

′
3), 3, (π

′
0, . . . , π

′
k−1, r

′
0, . . . , r

′
k−1); ρ

′
1, ρ

′
2

)

.

Case Ch = 2: The simulator S picks r′0, . . . , r
′
k−1

$←− Z
3m
q ; u′

0, . . . ,u
′
k−1

$←− B3m;

permutations π′
0, . . . , π

′
k−1

$←− S3m; and uniformly random strings ρ′1, ρ′2, ρ′3. It
sends to ̂V the commitments:

⎧

⎪

⎨

⎪

⎩

c′1 = COM(π′
0, . . . , π

′
k−1,A

′(
∑k−1

j=0 2j · r′j) mod q; ρ′1)
c′2 = COM(π′

0(r
′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′
0(u

′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3).

Receiving a challenge Ch from ̂V , simulator S computes the following transcript:

• If Ch = 1: Output
(

r′, (c′1, c
′
2, c

′
3), 1, (π

′
0(u

′
0), . . . , π

′
k−1(u

′
k−1), π

′
0(r

′
0), . . . , π

′
k−1(r

′
k−1)); ρ

′
2, ρ

′
3

)

.

• If Ch = 2: Output ⊥ and halt.
• If Ch = 3: Output

(

r′, (c′1, c′2, c′3), 3, (π′
0, . . . , π

′
k−1, r

′
0, . . . , r

′
k−1); ρ

′
1, ρ

′
2

)

.

Case Ch = 3: The simulator picks the uniformly random vectors, permutations,
and strings exactly as in the case Ch = 2 above, but sends the following:

⎧

⎪

⎨

⎪

⎩

c′1 = COM(π′
0, . . . , π

′
k−1,A

′(
∑k−1

j=0 2j · (u′
j + r′j))− y mod q; ρ′1)

c′2 = COM(π′
0(r

′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′
0(u

′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3).

Receiving a challenge Ch from ̂V , simulator S computes a transcript as follows:

• If Ch = 1: Output
(

r′, (c′1, c
′
2, c

′
3), 1, (π

′
0(u

′
0), . . . , π

′
k−1(u

′
k−1), π

′
0(r

′
0), . . . , π

′
k−1(r

′
k−1)); ρ

′
2, ρ

′
3

)

.

• If Ch = 2: Output
(

r′, (c′1, c
′
2, c

′
3), 2, (π

′
0, . . . , π

′
k−1,u

′
0 + r′0, . . . ,u

′
k−1 + r′k−1); ρ

′
1, ρ

′
3

)

.

• If Ch = 3: Output ⊥ and halt.

We observe that the probability that the simulator outputs ⊥ is negligibly close
to 1/3. Moreover, one can check that whenever S does not halt, it will provide a
successful transcript, and the distribution of the transcript is statistically close to
that of the prover in the real interaction. Hence, we have constructed a simulator
that can successfully impersonate the honest prover with probability 2/3, and
completed the proof.
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2.4 Proof of Knowledge

The fact that anyone can run the simulator to convince the verifier with proba-
bility 2/3 implies that the SternExt proof system has soundness error ≥ 2/3.
In the following, we prove that it is indeed a proof of knowledge for the relation
RISIS∞

n,m,q,β
with knowledge error κ = 2/3.

Theorem 3. Assume that COM is a computationally binding string commit-
ment scheme. Then there exists a knowledge extractor K such that the following
holds. If K has access to a cheating prover who convinces the verifier on in-
put (A,y) with probability 2/3+ ε for some ε > 0 and in time T , then K outputs
an x such that ((A,y);x) ∈ RISIS∞

n,m,q,2β−1
with overwhelming probability and

runtime T · poly(n,m, lg q, 1/ε).
As a corollary, SternExt is sound for uniform (A,y) under the assumption that
the ISIS∞

n,m,q,2β−1 problem is hard.

Proof. We apply the technique of [Vér96] relying on trees to model the probabil-
ity space corresponding to the protocol execution. Suppose a cheating prover ̂P
can convince the verifier with probability 2/3 + ε. Then by rewinding ̂P a num-
ber of times polynomial in 1/ε, the knowledge extractor K can find with over-
whelming probability a node with 3 sons in the tree associated with the protocol
between ̂P and the verifier. This node corresponds to the reception of all 3 values
of the challenge. In other words, ̂P is able to answer correctly to all challenges
for the same commitment. Therefore, K can get the following relations:

COM(φ0, . . . , φk−1,A′(
k−1
∑

j=0

2j · zj)− y) = COM(ψ0, . . . , ψk−1,A′(
k−1
∑

j=0

2j · sj))

COM(w0, . . . ,wk−1) = COM(ψ0(s0), . . . , ψk−1(sk−1))
COM(φ0(z0), . . . , φk−1(zk−1)) = COM(v0 + w0, . . . ,vk−1 + wk−1),

and vj ∈ B3m for all j = 0, . . . , k− 1. Since COM is computationally binding, it
follows that:

A′
(

k−1
∑

j=0

2j · (zj − sj)
)

= y mod q,

and for all j, we have φj = ψj ;wj = ψj(sj);vj + wj = φj(zj);vj ∈ B3m. This
implies that φj(zj−sj) = vj ∈ B3m. Let v′

j := zj−sj = φ−1
j (vj), then we obtain

that A′
(

∑k−1
j=0 2j ·v′

j

)

= y mod q and v′
j ∈ B3m. Then for each v′

j , we drop the

last 2m coordinates to obtain ˜v′
j ∈ {−1, 0, 1}m. Now we have A

(

∑k−1
j=0 2j ·˜v′

j

)

=

y mod q. Let x′ =
∑k−1

j=0 2j ·˜v′
j . Then Ax′ = y mod q, and

‖x′‖∞ ≤
k−1
∑

j=0

2j · ‖˜v′
j‖∞ ≤

k−1
∑

j=0

2j =
	lg β

∑

j=0

2j = 2	lg β
+1 − 1 ≤ 2β − 1.

The knowledge extractor outputs x′, which satisfies ((A,y;x′) ∈ RISIS∞
n,m,q,2β−1

.
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2.5 A Scheme Variant with No Gap

In a personal communication, D. Micciancio indicated to the authors a modifi-
cation of the SternExt proof system that removes the extraction gap entirely.
Instead of relying on powers of 2, one can use the following sequence of integers:
b1 = �β/2�, b2 = �(β − b1)/2�, b3 = �(β − b1− b2)/2�, . . . , and 1. One obtains a
sequence of numbers of length k = �lg β
+1, whose subset sums are precisely the
numbers between 0 and β. Finally, any integer in this interval can be efficiently
expressed as a subset sum of the integers in the sequence.

3 Applications

Our results described in Section 2 yield the potential of enabling weaker secu-
rity assumptions and lower complexities for various lattice-based cryptographic
constructions. In this section, we will describe two applications of the SternExt
proof system: an improved ID-based identification scheme and a new ZKPoPK
for Regev’s encryption scheme [Reg05, Reg09].

3.1 Identity-Based Identification

Definition 2 ([BNN09]). An identity-based identification (IBI) scheme is a
tuple of four PPT algorithms (MKg,UKg,P,V):

• MKg(1n): On input 1n, output a master public and master secret key pair
(mpk,msk).

• UKg(msk, id): On input msk and a user identity id ∈ {0, 1}∗, output a secret
key skid for this user.

• 〈P,V〉 is an interactive protocol. The prover P takes (mpk, id, skid) as input,
the verifier V takes (mpk, id) as input. At the end of the protocol, V outputs 1
(accept) or 0 (reject).

The completeness requirement for an IBI scheme is as follows: For any mpk
generated by MKg(1n), and skid extracted by UKg(msk, id), the decision of V
after interacting with P is always 1. We refer the reader to [BNN09] for formal
definitions of security notions for IBI schemes.

A common strategy in constructing IBI schemes consists in combining a sig-
nature scheme and a PoK in the following way: The trusted authority gener-
ates (mpk,msk) as a verification key - signing key pair of a signature scheme;
whenever a user id queries for his secret key, the authority returns skid as a
signature on id; for identification, the user plays the role of the prover, and runs
a PoK to prove the possession of skid. If the signature scheme is strongly secure
against existential forgery under chosen message attacks, and the PoK is at
least witness-indistinguishable, then the resulting IBI scheme is secure against
impersonation under concurrent attacks [BNN09]. This strategy is widely used
for lattice-based IBI schemes. Stehlé et al. [SSTX09] combined the GPV signa-
ture scheme [GPV08], and the Micciancio-Vadhan [MV03] PoK to obtain an
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IBI scheme based on the hardness of the SIVP
˜O(n2) problem (in the �2 norm).

Rückert [Rüc10a] combined the Bonsai tree signature scheme [CHKP10] and
Lyubashevsky’s PoK [Lyu08] for ideal lattices to produce an IBI scheme based
on the hardness of the restriction of SVP

˜O(n3.5) to ideal lattices (in the �∞ norm).
Following the same approach, the SternExt proof system allows us to achieve

better in terms of security assumption. Since SternExt is zero-knowledge, it
has the witness-indistinguishability (WI) property. As WI is preserved under
parallel composition [FS90], we can repeat the protocol ω(logn) times in parallel
to obtain a WIPoK with negligible soundness error. Combining with the GPV
signature scheme, we obtain a secure IBI scheme in the random oracle model with
hardness assumption SIVP

˜O(n1.5). At first, we review the trapdoor generation
and preimage sampling algorithms used in [GPV08], which will essentially serve
as the MKg(1n) and UKg(msk, id) algorithms in our IBI scheme. The following
trapdoor generation algorithm was introduced in [Ajt99], improved in [AP11],
and recently simplified in [MP12].

Lemma 1 ([AP11, MP12]). Let q ≥ 2 and m ≥ 6n lg q. There is a PPT
algorithm TrapGen(n,m, q) that outputs a matrix A statistically close to uniform
in Z

n×m
q , and a basis TA ∈ Z

m×m for Λ⊥
q (A) satisfying ‖˜TA‖ ≤ O(

√
n lg q).

Given an integer lattice L, the discrete Gaussian distribution DL,σ,c with param-
eter σ is the m-dimensional Gaussian distribution centered at c, with support
restricted to the lattice L. Given a basis B for L, the distribution DL,σ,c can be
sampled efficiently for σ ≥ ‖˜B‖ω(

√
logm).

Lemma 2 ([GPV08]). Let q ≥ 2 and m ≥ n. Let A be a matrix in Z
n×m
q and

TA be a basis for Λ⊥
q (A). Then for y in the image of A and σ≥ ‖˜TA‖ω(

√
logm),

there is a PPT algorithm SampleISIS(A,TA,y, σ) that outputs x ∈ Z
m sampled

from the distribution DZm,σ,0, conditioned on the event that Ax = y mod q.

Let x be the output of SampleISIS(A,TA,y, σ). Gentry et al. [GPV08] noted
that for any fixed function t(m) ≥ ω(

√
logm), one has ‖x‖∞ ≤ σ · t with over-

whelming probability. If TA is a basis generated by TrapGen(n,m, q), then we
can take σ = O(

√
n lg q) · ω(

√
logm). In this case, let β = �σ · t� = ˜O(

√
n).

Now let H : {0, 1}∗ → Z
n
q be the random oracle used in the GPV signature. For

parameters (m, q, β, σ) as described above, we obtain the following IBI scheme:

• MKg(1n): Run algorithm TrapGen(n,m, q) to output a master public key
mpk = A ∈ Z

n×m
q , and a master secret key msk = TA ∈ Z

m×m.
• UKg(msk, id): For id ∈ {0, 1}∗, let skid = SampleISIS(A,TA,H(id), σ).

If ‖skid‖∞ > β (which happens with negligible probability) then restart.
Otherwise, output skid as the secret key for identity id. We note that skid

is the GPV signature for the message id, and is a solution to the ISIS∞
n,m,q,β

instance (A,H(id)).
• 〈P,V〉: The common input is the pair (A,H(id)). The auxiliary input of P

is skid. Then P and V play the roles of the prover and the verifier in the
SternExt protocol. The protocol is repeated l = ω(logn) times in parallel
to make the soundness error negligibly small.
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The completeness of the obtained IBI scheme follows from the perfect complete-
ness of SternExt. Since the GPV signature scheme is strongly secure against
existential forgery under chosen message attacks [GPV08], and the SternExt
protocol is a WIPoK, the obtained IBI scheme is secure against impersonation
under concurrent attacks. The scheme relies on the assumed hardness of the
ISIS∞

n,m,q,2β−1 problem, where β = ˜O(
√
n). It follows from Theorem 1 that solv-

ing the ISIS∞
n,m,q,2β−1 problem is at least as hard as solving SIVP2

γ (in the �2
norm) with γ = (2β − 1) · ˜O(n) = ˜O(n1.5).

Theorem 4. The obtained IBI scheme is concurrently secure in the random
oracle model if the SIVP

˜O(n1.5) problem is hard (in the worst-case).

Similarly, combining the SternExt proof system with lattice-based signature
schemes that are secure in the standard model (e.g., [CHKP10, Boy10, MP12])
we can obtain secure lattice-based IBI schemes in the standard model, with
weaker security assumptions than in the contemporary schemes.

3.2 Proof of Plaintext Knowledge for Regev’s Cryptosystem

Regev’s LWE-based encryption scheme is as follows:

• Parameters: Integers n,m, q, an integer p� q and a real α > 0.
• Private key: The private key is s $←− Z

n
q .

• Public key: Let A $←− Z
n×m
q and e $←− (Ψα(q))m , where Ψα(q) is the LWE

error distribution [Reg05, Reg09]. The public key is

(A,b = AT s + e) ∈ Z
n×m
q × Z

m
q .

• Encryption: The message space is {0, . . . , p − 1}. Given a message M ,
and the public key (A,b), choose a uniformly random2 integer vector r $←−
{0, . . . , p− 1}m, and output the ciphertext

(u, c) = (Ar,bT r +M · �q/p
) ∈ Z
n
q × Zq.

• Decryption: Given the ciphertext (u, c) ∈ Z
n
q × Zq, and the private key

s ∈ Z
n
q , output M = �(c− sTu) · p/q�.

For the correctness, security, and parameters selection of this cryptosystem we
refer to [Reg09]. We now show how to derive a PoPK for this encryption scheme
from a PoK for the relation RISIS∞ . A PoPK for Regev’s cryptosystem is a PoK
for the following relation:

RRegev =
{

((A,b), (u, c), r‖M) ∈ (Zn×m
q × Z

m
q )×(Zn

q× Zq)×{0, . . . , p−1}m+1 :

(u = Ar) ∧ (c = bT r +M · �q/p
)
}

.

2 In fact, the proof system can be adapted to any nonce distribution, as long as ‖r‖∞
is bounded by some B sufficiently smaller than q.
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We form the following matrix:

A′ =

⎡

⎢

⎢

⎢

⎢

⎣

0

A
...
0

bT �q/p�

⎤

⎥

⎥

⎥

⎥

⎦

∈ Z
(n+1)×(m+1)
q ,

and let y = (u‖c) ∈ Z
n+1
q . Let x = (r‖M) be any witness of the relation

RRegev. Then we have x ∈ Z
m+1, and ‖x‖∞ ≤ p− 1. Moreover, we observe that

A′x = y mod q. Therefore, vector x is a solution to the ISIS∞ problem with pa-
rameters (n+1,m+1, q, p−1) defined by (A′,y). In other words, we have shown
that the relation RRegev can be embedded into the relation RISIS∞

n+1,m+1,q,p−1
. We

then run the SternExt protocol for the relation RISIS∞
n+1,m+1,q,p−1

to obtain an
efficient ZKPoPK for Regev’s encryption scheme.

If a cheating prover succeeds in proving the knowledge of a plaintext x = (r‖M),
then we use the knowledge extractor to output a vector x′ = (r′‖M ′) ∈ Z

m+1

such that ‖x′‖∞ ≤ 2 · (p− 1)− 1 = 2p− 3. In particular, we obtain r′ ∈ Z
m such

that ‖r′‖∞ ≤ 2p−3 and Ar′ = u mod q. Since A is chosen uniformly at random
in Z

n×m
q , and the distribution of u is statistically close to uniform over Z

n
q

(see [Reg09, Section 5]), the vector r′ is a solution to the random ISIS∞
n,m,q,2p−3

instance (A,u). This implies that the security of our ZKPoPK for Regev’s
encryption scheme relies on the assumed hardness of SIVPp· ˜O(n) (in the �2 norm).
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A A Zero-Knowledge Proof of Knowledge for SIS

We consider the relation associated to the SIS∞
n,m,q,β problem:

RSIS∞
n,m,q,β

=
{

(A,x) ∈ Z
n×m
q × Z

m: (0 < ‖x‖∞ ≤ β) ∧ (Ax = 0 mod q)
}

.

We now show how to modify the SternExt proof system for RISIS∞
n,m,q,β

in
Section 2 to handle the additional requirement on the witness, i.e., x �= 0. In
particular, the protocol must prevent a cheating prover using x = 0 from passing
the verification step. We look at the binary decomposition of x, i.e., x =

∑k−1
j=0 2j ·

ũj , and observe that x = 0 is equivalent to ∀j : ũj = 0. Our idea is to constrain
the prover to prove in zero-knowledge that (at least) one of his ũj ’s is non-zero.

Now, observe that if x = (x1, . . . , xm) is a valid witness for RSIS∞
n,m,q,β

, and 2l

is the highest power of 2 dividing gcd(x1, . . . , xm), then x∗ = (x1/2l, . . . , xm/2l)
is also a valid witness for RSIS∞

n,m,q,β
. Applying the binary decomposition to the

vector x∗, we note that the vector ũ∗
0, whose coordinates are the least significant

bits of x1/2l, . . . , xm/2l, must be non-zero. To prove the knowledge of such a
vector ũ∗

0, the prover can use the extension trick, but in dimension 3m − 1
instead of dimension 3m. More precisely, the prover appends 2m−1 coordinates
to ũ∗

0 to get a vector u∗
0 that has exactly m coordinates equal to 1; m coordinates

equal to −1; and m− 1 coordinates equal to 0. Seeing a permutation of u∗
0 that

has these constraints, the verifier will be convinced that the original vector ũ∗
0

must have at least one coordinate equal to 1 or −1, and thus it must be non-zero.
In summary, the modified SternExt proof system for RSIS∞

n,m,q,β
works as

follows: The common input is a matrix A ∈ Z
n×m
q . The auxiliary input of the

prover is x. Prior to the interaction, both parties append 2m− 1 and 2m zero-
columns to the matrix A to get a matrix A∗, and a matrix A′, respectively. In
addition, the prover performs the following preparation steps:

• Shifting: Map x to x∗, as described above.
• Binary decomposition: Write x∗ =

∑k−1
j=0 2j · ũ∗

j .
• Extensions: Append (2m−1) coordinates to ũ∗

0 as described above, and per-
form the usual extension to dimension 3m for the other vectors ũ∗

1, . . . , ũ
∗
k−1.

We note that A∗u∗
0+A′(

∑k−1
j=1 2j ·u∗

j ) = 0 mod q is equivalent to Ax = 0 mod q.
Therefore, we can now apply the SternExt proof with a small tweak: The
constraints of u∗

0 are verified using a random permutation of 3m − 1 elements.
This leads to a ZKPoK for the SIS∞

n,m,q,β problem.
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