Skip to main content

Interpenetrating Polymer Networks (IPN): Structure and Mechanical Behavior

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Co-continuous networks; Macrocyclic catenanes; Polymer blend network

Definition

Interpenetrating polymer network (IPN) refers to a type of elastomer in which two chemically distinct networks coexist, ideally having a structure that is homogeneous down to the segmental level [1]. The two components are present as co-continuous, interlocking networks (catenanes). This co-continuity can be achieved by kinetic retention of an initially miscible mixture of the monomers used to form the network chains, with phase segregation inhibited by the network structure, or be the result of thermodynamic compatibility of the constituent polymers. A specific type of IPN relies on solvent to promote miscibility of the two polymers. Hydrogel IPNs, which use water as the solvent, are not included in this review (see related entry Double Network Hydrogels: Soft and Tough IPN).

Introduction

The defining characteristic of polymers is the enormous size of the constituent molecules (“macromolecules”),...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kim SC, Sperling LH (eds) (1997) IPNs around the world: science and engineering. Wiley, Chichester/New York

    Google Scholar 

  2. Roland CM (2011) Viscoelastic behavior of rubbery materials. Oxford University Press, Oxford, UK.

    Book  Google Scholar 

  3. Sangermano M, Cook WD, Papagna S, Grassini S (2012) Hybrid UV-cured organic–inorganic IPNs. Eur Polym J 48:1796–1804

    Article  CAS  Google Scholar 

  4. Bird SA, Clary D, Jajam KC, Tippur HV, Auad ML (2013) Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate). Polym Eng Sci 53:716–723

    Article  CAS  Google Scholar 

  5. Corsaro RD, Sperling LH (eds) (1990) Sound and vibration damping with polymers. American Chemical Society, Washington, DC

    Google Scholar 

  6. Vidal F, Fichet O, Laskar J, Teyssie D (2006) Polysiloxane-cellulose acetate butyrate cellulose interpenetrating polymer networks close to true IPNs on a large composition range. Polymer 47:3747–3753

    Article  CAS  Google Scholar 

  7. Chunming C, Chuanxi X, Jian Y, Lijie D (2008) Microstructure and properties of fluoroelastomer/butadiene-acrylonitrile rubber interpenetrating polymer networks. J Wuhan Univ Technol Mater Sci Ed 23:50–53

    Article  Google Scholar 

  8. Goujon LJ, Khaldi A, Maziz A, Plesse C, Nguyen GTM, Aubert PH, Vidal F, Chevrot C, Teyssie D (2011) Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI. Macromolecules 44:9683–9691

    Article  CAS  Google Scholar 

  9. Ha SM, Yuan W, Pei QB, Pelrine R, Stanford S (2006) Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater 18:887–891

    Article  CAS  Google Scholar 

  10. Mott PH, Roland CM (2000) Mechanical and optical behavior of double network rubbers. Macromolecules 33:4132–4137

    Article  CAS  Google Scholar 

  11. Pa NFC, Ahmed I, Nawawi MGM, Rahman WA (2012) Influence of polystyrene on PDMS IPNs blend membrane performance. Sep Sci Technol 47:562–576

    Article  CAS  Google Scholar 

  12. Ghamouss F, Mallouki M, Bertolotti B, Chikh L, Vancaeyzeele C, Alfonsi S, Fichet O (2012) Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane. J Power Sources 197:267–275

    Article  CAS  Google Scholar 

  13. Babkina NV, Lipatov YS, Alekseeva TT, Sorochinskaya LA, Datsyuk YI (2008) Effect of spatial constraints on phase separation during polymerization in sequential semi-interpenetrating polymer networks. Polym Sci Ser A 50:798–807

    Article  Google Scholar 

  14. Lee MJ, Choi YS, Kang YS, Choi JH, Kang MS (2012) All-solid-state proton conductive membranes prepared by a semi-interpenetrating polymer network (semi-IPN). J Mater Chem 22:18522–18527

    Article  CAS  Google Scholar 

  15. Zhou B, Pu H, Pan H, Wan D (2011) Proton exchange membranes based on semi-interpenetrating polymer networks of Nafion and poly(vinylidene fluoride) via radiation crosslinking. Int J Hydrog Ener 36:6809–6816

    Article  CAS  Google Scholar 

  16. Brochu P, Stoyanov H, Niu X, Pei Q (2013) All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Mater Struct 22:055022

    Article  Google Scholar 

  17. Peterson AM, Kotthapalli H, Rahmathullah MAM, Palmese GR (2012) Investigation of interpenetrating polymer networks for self-healing applications. Compos Sci Technol 72:330–336

    Article  CAS  Google Scholar 

  18. Mark JE (2003) Elastomers with multimodal distributions of network chain lengths. Macromol Symp 191:121–130

    Article  CAS  Google Scholar 

  19. Roland CM (2013) Immiscible rubber blends. In: Advances in elastomers I, advanced structured materials (PM Visakh, et al. eds.), Springer-Verlag, Berlin, pp 167–181

    Google Scholar 

  20. Buckley GS, Fragiadakis DM, Roland CM (2011) Strength enhancement from heterogeneous networks of ethylene-propylene/ethylene-propylene-diene. Rubber Chem Technol 84:520–526

    Article  CAS  Google Scholar 

  21. Giller CB, Roland CM (2013) Strength enhancement in miscible blends of butyl rubber and polyisobutylene. Macromolecules 46:2818–2822

    Article  CAS  Google Scholar 

  22. Tomlin DW, Roland CM (1992) Negative excess enthalpy in a van der Waals polymer mixture. Macromolecules 25:2994–2996

    Article  CAS  Google Scholar 

  23. Wang J, Roland CM (2005) Heterogeneous networks of polyisoprene/polyvinylethylene. Polymer 46:4160–4165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Roland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Roland, C.M. (2013). Interpenetrating Polymer Networks (IPN): Structure and Mechanical Behavior. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_91-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_91-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics