Skip to main content

Evolution and Classification of CRISPR-Cas Systems and Cas Protein Families

  • Chapter
  • First Online:
CRISPR-Cas Systems

Abstract

The CRISPR-Cas modules are adaptive antivirus immunity systems that are present in most archaea and many bacteria. These systems function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by numerous, highly diverse Cas (CRISPR-associated) proteins, several of which form the Cascade complex involved in the processing of CRISPR loci transcripts and cleavage of the target DNA. Comparative analysis of the CRISPR-Cas modules led to the classification of the CRISPR-Cas systems into three types (I, II and III) that are characterized by distinct sets of cas genes. Classification of Cas proteins into families and superfamilies is a non-trivial task because of the fast evolution of many cas genes. Exhaustive sequence comparison aided by analysis of the available crystal structures led to the delineation of approximately 30 protein families that can be further classified into several superfamilies. By far the most common domain in Cas proteins is the RNA Recognition Motif (RRM). The RRM domains show remarkable diversity within the CRISPR-Cas systems and in particular comprise the scaffold of the Cascade complex. In addition to the numerous RRM domains, including a distinct polymerase-cyclase domain, the Cas proteins contain a distinct Superfamily II helicase domain, and several diverse nuclease domains. Detailed comparative analysis of the sequences and structures of Cas proteins structures shed light on the deep relationships between Type I and Type III systems and allowed us to propose a simple evolutionary scenario for the origin of CRISPR-Cas system. Moreover, combination of experimental structural studies and comparative analysis provides for detailed models of the structures of the Cascade complexes from different CRISPR-Cas types revealing remarkable architectural uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anantharaman V, Iyer LM, Aravind L (2010) Presence of a classical RRM-fold palm domain in Thg1-type 3′- 5′nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains. Biol Direct 5:43

    Article  PubMed  Google Scholar 

  • Aravind L, Makarova KS, Koonin EV (2000) Survey and summary: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 28:3417–3432

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Mazumder R, Vasudevan S, Koonin EV (2002) Trends in protein evolution inferred from sequence and structure analysis. Curr Opin Struct Biol 12:392–399

    Article  PubMed  CAS  Google Scholar 

  • Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502

    Article  PubMed  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  PubMed  CAS  Google Scholar 

  • Beloglazova N, Brown G, Zimmerman MD, Proudfoot M, Makarova KS, Kudritska M, Kochinyan S, Wang S, Chruszcz M, Minor W, Koonin EV, Edwards AM, Savchenko A, Yakunin AF (2008) A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem 283:20361–20371

    Article  PubMed  CAS  Google Scholar 

  • Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF (2011) Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30:4616–4627

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  PubMed  CAS  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  PubMed  CAS  Google Scholar 

  • Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496

    Article  PubMed  CAS  Google Scholar 

  • Cocozaki AI, Ramia NF, Shao Y, Hale CR, Terns RM, Terns MP, Li H (2012) Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex. Structure 20:545–553

    Article  PubMed  CAS  Google Scholar 

  • Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71

    Article  PubMed  CAS  Google Scholar 

  • Daines DA, Jarisch J, Smith AL (2004) Identification and characterization of a nontypeable Haemophilus influenzae putative toxin–antitoxin locus. BMC Microbiol 4:30

    Article  PubMed  Google Scholar 

  • Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945

    Article  PubMed  Google Scholar 

  • Fukuda E, Kaminska KH, Bujnicki JM, Kobayashi I (2008) Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 9:R163

    Article  PubMed  Google Scholar 

  • Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182

    Article  PubMed  CAS  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  PubMed  CAS  Google Scholar 

  • Gesner EM, Schellenberg MJ, Garside EL, George MM, Macmillan AM (2011) Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat Struct Mol Biol 18:688–692

    Article  PubMed  CAS  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60

    Article  PubMed  Google Scholar 

  • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956

    Article  PubMed  CAS  Google Scholar 

  • Han D, Krauss G (2009) Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett 583:771–776

    Article  PubMed  CAS  Google Scholar 

  • Han D, Lehmann K, Krauss G (2009) SSO1450–a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA. FEBS Lett 583:1928–1932

    Article  PubMed  CAS  Google Scholar 

  • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Abhiman S, Aravind L (2008) A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases. Biol Direct 3:39

    Article  PubMed  Google Scholar 

  • Jackman JE, Phizicky EM (2006) tRNAHis guanylyltransferase adds G-1 to the 5′ end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA 12:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Jakubauskas A, Giedriene J, Bujnicki JM, Janulaitis A (2007) Identification of a single HNH active site in type IIS restriction endonuclease Eco31I. J Mol Biol 370:157–169

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Google Scholar 

  • Jore MM, Brouns SJ, van der Oost J (2011a) RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb Perspect Biol 4(6)

    Google Scholar 

  • Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ (2011b) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18:529–536

    Google Scholar 

  • Kawano M, Aravind L, Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64:738–754

    Article  PubMed  CAS  Google Scholar 

  • Kleanthous C, Kuhlmann UC, Pommer AJ, Ferguson N, Radford SE, Moore GR, James R, Hemmings AM (1999) Structural and mechanistic basis of immunity toward endonuclease colicins. Nat Struct Biol 6:243–252

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756

    Article  PubMed  CAS  Google Scholar 

  • Kojima KK, Kanehisa M (2008) Systematic survey for novel types of prokaryotic retroelements based on gene neighborhood and protein architecture. Mol Biol Evol 25:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Kwon AR, Kim JH, Park SJ, Lee KY, Min YH, Im H, Lee I, Lee BJ (2012) Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res 40:4216–4228

    Article  PubMed  CAS  Google Scholar 

  • Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H, Naismith JH, Sdano M, Peng N, She Q, Copie V, Young MJ, White MF, Lawrence CM (2011) Structural and functional characterization of an archaeal CASCADE complex for CRISPR-mediated viral defense. J Biol Chem 286:21643–21656

    Google Scholar 

  • Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L, Wolf YI, Koonin EV (2011a) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 6:38

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7

    Article  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011b) Evolution and classification of the CRISPR/Cas systems. Nat Rev Microbiol 9:467–477

    Google Scholar 

  • Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV (2007) Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33

    Article  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Koonin EV (2003) Potential genomic determinants of hyperthermophily. Trends Genet 19:172–176

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Wolf YI, Koonin EV (2009a) Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4:19

    Article  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Snir S, Koonin EV (2011c) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193:6039–6056

    Google Scholar 

  • Makarova KS, Wolf YI, van der Oost J, Koonin EV (2009b) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 4:29

    Article  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2009) Invasive DNA, chopped and in the CRISPR. Structure 17:786–788

    Article  PubMed  CAS  Google Scholar 

  • Mulepati S, Bailey S (2011) Structural and biochemical analysis of the nuclease domain of the clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 3(CAS3). J Biol Chem 286(36):31896–31903

    Google Scholar 

  • Pei J, Grishin NV (2001) GGDEF domain is homologous to adenylyl cyclase. Proteins 42:210–216

    Article  PubMed  CAS  Google Scholar 

  • Rogozin IB, Makarova KS, Pavlov YI, Koonin EV (2008) A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct 3:32

    Article  PubMed  Google Scholar 

  • Sakamoto K, Agari Y, Agari K, Yokoyama S, Kuramitsu S, Shinkai A (2009) X-ray crystal structure of a CRISPR-associated RAMP module [corrected] Cmr5 protein [corrected] from Thermus thermophilus HB8. Proteins 75:528–532

    Article  PubMed  CAS  Google Scholar 

  • Samai P, Smith P, Shuman S (2010) Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66:1552–1556

    Article  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Google Scholar 

  • Sashital DG, Wiedenheft B, Doudna JA (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell 46:606–615

    Article  PubMed  CAS  Google Scholar 

  • Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30(7):1335–1342

    Google Scholar 

  • Steitz TA (2004) The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. Curr Opin Struct Biol 14:4–9

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Yin YW (2004) Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases. Philos Trans R Soc Lond B Biol Sci 359:17–23

    Article  PubMed  CAS  Google Scholar 

  • Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4:11

    Article  PubMed  Google Scholar 

  • Takeuchi N, Wolf YI, Makarova KS, Koonin EV (2012) Nature and intensity of selection pressure on CRISPR-associated genes. J Bacteriol 194:1216–1225

    Article  PubMed  CAS  Google Scholar 

  • van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407

    Article  PubMed  Google Scholar 

  • Van Melderen L, Saavedra De Bast M (2009) Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet 5:e1000437

    Article  PubMed  Google Scholar 

  • Wang R, Preamplume G, Terns MP, Terns RM, Li H (2011) Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19:257–264

    Article  PubMed  CAS  Google Scholar 

  • Westra ER, van Erp PB, Kunne T, Wong SP, Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K, de Vos WM, Dame RT, de Vries R, Brouns SJ, van der Oost J (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by cascade and Cas3. Mol Cell 46:595–605

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJ, van der Oost J, Doudna JA, Nogales E (2011a) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–489

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, van Duijn E, Bultema J, Waghmare S, Zhou K, Barendregt A, Westphal W, Heck A, Boekema E, Dickman M, Doudna JA (2011b) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci USA 108:10092–10097

    Google Scholar 

  • Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904–912

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Inouye M (2009) mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Prog Mol Biol Transl Sci 85:467–500

    Article  PubMed  CAS  Google Scholar 

  • Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393–404

    Article  PubMed  CAS  Google Scholar 

  • Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–5576

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L, White MF (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45:303–313

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Ye K (2012) Crystal structure of Cmr2 reveals a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems. FEBS Lett 586(6):939–945

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira S. Makarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Makarova, K.S., Koonin, E.V. (2013). Evolution and Classification of CRISPR-Cas Systems and Cas Protein Families. In: Barrangou, R., van der Oost, J. (eds) CRISPR-Cas Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34657-6_3

Download citation

Publish with us

Policies and ethics