Skip to main content

Neurological Monitoring in Orthopedic Spine Surgery

  • Chapter
  • First Online:
  • 5706 Accesses

Abstract

Intraoperative neurological monitoring (IOM) during spinal procedures is used to monitor spinal cord and nerve function and alert the surgeon to any compromise of such. It usually involves a combination of somatosensory evoked potentials (SSEP), free-run and stimulated electromyography (EMG), and motor evoked potentials (MEP). These have largely replaced the wake-up and clonus tests. Occasionally, other techniques are used (such as the Hoffman reflex). IOM requires a close cooperation between the surgical, monitoring, and anesthetic teams with a careful choice of anesthesia and physiological management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APB:

Abductor pollicis brevis

AH:

Abductor hallucis

CMAP:

Compound muscle action potential

CN:

Cranial nerve

CST:

Corticospinal tract

DEP:

Dermatomal evoked potential

ECG:

Electrocardiogram

EMG:

Electromyography

Hz:

Hertz

H reflex:

Hoffman reflex

IOM:

Intraoperative neurological monitoring

MAC:

Minimal alveolar concentration

MEP:

Motor evoked potentials

mA:

milliamperes

MUP:

Motor unit potentials

NMEP:

Neurogenic motor evoked potentials

NMJ:

Neuromuscular junction

RLN:

Recurrent laryngeal nerve

SRS:

Scoliosis Research Society

SSEP:

Somatosensory evoked potentials

TA:

Tibialis anterior

TIVA:

Total intravenous anesthetic

References

  1. Abbott R (2002) Sensory rhizotomy for the treatment of childhood spasticity. In: Deletis V, Shils JL (eds) Neurophysiology in neurosurgery. Academic, Boston, pp 219–230

    Chapter  Google Scholar 

  2. Accadbled F, Henry P, de Gauzy JS, Cahuzac JP, Accadbled F, Henry P, de Gauzy JS, Cahuzac JP (2006) Spinal cord monitoring in scoliosis surgery using an epidural electrode. Results of a prospective, consecutive series of 191 cases. Spine 31(22):2614–2623 [see comment]

    Article  PubMed  Google Scholar 

  3. Amassian VE, Cracco RQ (1987) Human cerebral cortical responses to contralateral transcranial stimulation. Neurosurgery 20(1):148–155

    PubMed  CAS  Google Scholar 

  4. Amassian VE, Stewart M, Quirk GJ, Rosenthal JL (1987) Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20(1):74–93

    PubMed  CAS  Google Scholar 

  5. Aminoff MJ, Eisen AA (1998) AAEM minimonograph 19: somatosensory evoked potentials. Muscle Nerve 21(3):277–290

    Article  PubMed  CAS  Google Scholar 

  6. Anonymous (1992) Scoliosis Research Society: Position statement on somatosensory evoked potential monitoring of neurologic spinal cord function during surgery. Scoliosis Research Society, Park Ridge

    Google Scholar 

  7. Apfelbaum RI, Kriskovich MD, Haller JR (2000) On the incidence, cause, and prevention of recurrent laryngeal nerve palsies during anterior cervical spine surgery. Spine 25:2906–2912

    Article  PubMed  CAS  Google Scholar 

  8. Arrington ED, Hochschild DP, Steinagle TJ, Mongan PD, Martin SL (2000) Monitoring of somatosensory and motor evoked potentials during open reduction and internal fixation of pelvis and acetabular fractures. Orthopedics 23(10):1081–1083

    PubMed  CAS  Google Scholar 

  9. Audu P, Artz G, Scheid S (2006) Recurrent laryngeal nerve palsy after anterior cervical spine surgery. Anesthesiology 105:898–901

    Article  PubMed  Google Scholar 

  10. Barker AT, Jalinous R, Freeston IL, Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107

    Article  PubMed  CAS  Google Scholar 

  11. Bednarik J, Kadanka Z, Vohanka S, Stejskal L, Vlach O, Schroder R (1593) The value of somatosensory- and motor-evoked potentials in predicting and monitoring the effect of therapy in spondylotic cervical myelopathy. Prospective randomized study. Spine 24(15):1593–1598

    Article  Google Scholar 

  12. Ben-David B (1988) Spinal cord monitoring. Orthop Clin North Am 19(2):427–448

    PubMed  CAS  Google Scholar 

  13. Ben-David B, Allen PW, Waller CS, Edgar MA, Webb PJ, Ransford AO (1991) Spinal cord monitoring in scoliosis surgery. Experience with 1168 cases. J Bone Joint Surg Am 73:487–494

    Google Scholar 

  14. Ben-David B, Haller G, Taylor P (1987) Anterior spinal fusion complicated by paraplegia: a case report of a false-negative somatosensory evoked potential. Spine 12:536–539

    Article  PubMed  CAS  Google Scholar 

  15. Bose B, Wierzbowski LR, Sestokas AK, Bose B, Wierzbowski LR, Sestokas AK (2002) Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery. Spine 27(13):1444–1450

    Article  PubMed  Google Scholar 

  16. Brown DM, McGinnis WC, Mesghali H (2002) Neurophysiologic intraoperative monitoring during revision total hip arthroplasty. J Bone Joint Surg Am 84-A(Suppl 2):56–61

    PubMed  Google Scholar 

  17. Burke D, Hicks RG (1998) Surgical monitoring of motor pathways. J Clin Neurophysiol 15:194–205

    Article  PubMed  CAS  Google Scholar 

  18. Calancie B, Madsen P, Lebwohl N (1994) Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine 19(24):2780–2786

    Article  PubMed  CAS  Google Scholar 

  19. Chistyakov A, Soustiel J, Hafner H, Kaplan B, Feinsod M (2004) The value of motor and somatosensory evoked potentials in evaluation of cervical myelopathy in the presence of peripheral neuropathy. Spine 29(12):e239–e247

    Article  PubMed  Google Scholar 

  20. Chung I, Glow JA, Dimopoulos V, Walid MS, Smisson HF, Johnston KW, Robinson JS, Grigorian AA (2009) Upper-limb somatosensory evoked potential monitoring in lumbosacral spine surgery: a prognostic marker for position-related ulnar nerve injury. Spine J 9(4):287–295. doi:10.1016/j.spinee.2008.05.004

    Article  PubMed  Google Scholar 

  21. Costa P, Bruno A, Bonzanino M, Massaro F, Caruso L, Vincenzo I, Ciaramitaro P, Montalenti E, Costa P, Bruno A, Bonzanino M, Massaro F, Caruso L, Vincenzo I, Ciaramitaro P, Montalenti E (2007) Somatosensory- and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal Cord 45(1):86–91

    Article  PubMed  CAS  Google Scholar 

  22. Croft TJ, Brodkey JS, Nulsen FE, Croft TJ, Brodkey JS, Nulsen FE (1972) Reversible spinal cord trauma: a model for electrical monitoring of spinal cord function. J Neurosurg 36(4):402–406

    Article  PubMed  CAS  Google Scholar 

  23. Dawson EG, Sherman JE, Kanim LE, Nuwer MR (1991) Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16(8 Suppl):S361–S364

    PubMed  CAS  Google Scholar 

  24. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473 [erratum appears in J Physiol (Lond) 1990 Nov;430:617]

    PubMed  CAS  Google Scholar 

  25. Day BL, Thompson PD, Dick JP, Nakashima K, Marsden CD (1987) Different sites of action of electrical and magnetic stimulation of the human brain. Neurosci Lett 75(1):101–106

    Article  PubMed  CAS  Google Scholar 

  26. de Haan P, Kalkman CJ, Ubags LH, Jacobs MJ, Drummond JC, de Haan P, Kalkman CJ, Ubags LH, Jacobs MJ, Drummond JC (1996) A comparison of the sensitivity of epidural and myogenic transcranial motor-evoked responses in the detection of acute spinal cord ischemia in the rabbit. Anesth Analg 83(5):1022–1027

    PubMed  Google Scholar 

  27. Deletis V (1993) Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol 63:201–214

    PubMed  CAS  Google Scholar 

  28. Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P, Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P (2009) Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin Neurophysiol 120(2):336–341

    Article  PubMed  Google Scholar 

  29. Deletis V, Fernandez-Conejero I, Ulkatan S, Rogic M, Carbo EL, Hiltzik D (2011) Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol 122(9):1883–1889

    Article  PubMed  Google Scholar 

  30. Deletis V, Sala F (2008) Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol 119(2):248–264

    Article  PubMed  Google Scholar 

  31. Djurasovic M, Dimar JR 2nd, Glassman SD, Edmonds HL, Carreon LY (2005) A prospective analysis of intraoperative electromyographic monitoring of posterior cervical screw fixation. J Spinal Disord Tech 18(6):515–518 [see comment]

    Article  PubMed  Google Scholar 

  32. Donohue ML, Murtagh-Schaffer C, Basta J, Moquin RR, Bashir A, Calancie B (2008) Pulse-train stimulation for detecting medial malpositioning of thoracic pedicle screws. Spine 33(12):E378–E385

    Article  PubMed  Google Scholar 

  33. Edmonds HL Jr (2002) Multi-modality neurophysiologic monitoring for cardiac surgery. Heart Surg Forum 5(3):225–228

    PubMed  Google Scholar 

  34. Edmonds HL Jr, Paloheimo MP, Backman MH, Johnson JR, Holt RT, Shields CB (1989) Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine 14(7):683–686

    Article  PubMed  Google Scholar 

  35. Edmonds HL, Rodriguez RA, Audenaert SM, Austin EH, Pollock SM, Ganzel BL (1996) The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth 10:15–23

    Article  PubMed  Google Scholar 

  36. Edwards BM, Kileny PR (2005) Intraoperative neurophysiologic monitoring: indications and techniques for common procedures in otolaryngology-head and neck surgery. Otolaryngol Clin North Am 38(4):631–642

    Article  PubMed  Google Scholar 

  37. Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Dvorak J, Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Dvorak J (2007) Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients. Eur Spine J 16(Suppl 2):S188–S196

    Article  PubMed  Google Scholar 

  38. Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Porchet F, Dvorak J (2007) Multimodal intraoperative monitoring (MIOM) during cervical spine surgical procedures in 246 patients. Eur Spine J 16(Suppl 2):S209–S215

    Article  PubMed  Google Scholar 

  39. Fehlings MG, Houlden D, Vajkoczy P (2009) Introduction. Neurosurg Focus 27(4):E1. doi:10.3171/2009.8.FOCUS.OCT09.INTRO

    Article  PubMed  Google Scholar 

  40. Forbes HJ, Allen PW, Waller CS, Jones SJ, Edgar MA, Webb PJ, Ransford AO (1991) Spinal cord monitoring in scoliosis surgery. Experience with 1168 cases. J Bone Joint Surg Br 73(3):487–491

    PubMed  CAS  Google Scholar 

  41. Fountas KN, Kapalaki EZ, Nikolakakos LG (2007) Anterior cervical discectomy and fusion associated complications. Spine 32:2310–2317

    Article  PubMed  Google Scholar 

  42. Freedman B, Potter B, Kuklo T (2005) Managing neurologic complications in cervical spine surgery. Curr Opin Orthop 16(3):169–177

    Article  Google Scholar 

  43. Green J, Gildemeister R, Hazelwood C (1983) Dermatomally stimulated somatosensory cerebral evoked potentials in the diagnosis of lumbar disc disease. Clin Electroencephalogr 14:152–163

    PubMed  CAS  Google Scholar 

  44. Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG, Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG (2004) Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine 29(6):677–684

    Article  PubMed  Google Scholar 

  45. Harper CM (2004) Intraoperative cranial nerve monitoring. Muscle Nerve 29(3):339–351

    Article  PubMed  Google Scholar 

  46. Hickey R, Sloan TB, Roger JN (1995) Functional organization and physiology of the spinal cord. In: Porter SS (ed) Anesthesia for surgery of the spine. McGraw-Hill, New York, pp 15–39

    Google Scholar 

  47. Holland NR (1998) Intraoperative electromyography during thoracolumbar spinal surgery. Spine 23(17):1915–1922

    Article  PubMed  CAS  Google Scholar 

  48. Holland NR (2002) Intraoperative electromyography. J Clin Neurophysiol 19(5):444–453

    Article  PubMed  Google Scholar 

  49. Hoppenfeld S, Gross A, Andrews C, Lonner B (1997) The ankle clonus test for assessment of the integrity of the spinal cord during operations for scoliosis. J Bone Joint Surg Am 79:208–212

    PubMed  CAS  Google Scholar 

  50. Hsu B, Cree AK, Lagopoulos J, Cummine JL (2008) Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine 33(10):1100–1106

    Article  PubMed  Google Scholar 

  51. Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius van Eps RG, Schurink GW, Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius van Eps RG, Schurink GWH (2006) The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 43(2):239–246

    Article  PubMed  Google Scholar 

  52. Jameson LC, Sloan TB (2006) Monitoring of the brain and spinal cord. Anesthesiol Clin 24(4):777–791

    Article  PubMed  Google Scholar 

  53. Jellish WS, Jensen RL, Anderson DE, Shea JF (1999) Intraoperative electromyographic assessment of recurrent laryngeal nerve stress and pharyngeal injury during anterior cervical spine surgery with Caspar instrumentation. J Neurosurg 91(2 Suppl):170–174

    PubMed  CAS  Google Scholar 

  54. Jung A, Schramm J, Lehnerdt K, Herberhold C (2005) Recurrent laryngeal nerve palsy during anterior cervical spine surgery: a prospective study. J Neurosurg Spine 2:123–127

    Article  PubMed  Google Scholar 

  55. Kamel IR, Drum ET, Koch SA, Whitten JA, Gaughan JP, Barnette RE, Wendling WW (2006) The use of somatosensory evoked potentials to determine the relationship between patient positioning and impending upper extremity nerve injury during spine surgery: a retrospective analysis. Anesth Analg 102(5):1538–1542 [see comment]

    Article  PubMed  Google Scholar 

  56. Kelleher MO, Tan G, Sarjeant R, Fehlings MG (2008) Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine 8(3):215–221. doi:10.3171/spi/2008/8/3/215

    Article  PubMed  Google Scholar 

  57. Kennedy WF, Byrne TF, Majid HA, Pavlak LL (1991) Sciatic nerve monitoring during revision total hip arthroplasty. Clin Orthop 264:223–227

    PubMed  Google Scholar 

  58. Kilburg C, Sullivan HG, Mathiason MA (2006) Effect of approach side during anterior cervical discectomy and fusion on the incidence of recurrent laryngeal nerve injury. J Neurosurg Spine 4:273–277

    Article  PubMed  Google Scholar 

  59. Kim DH, Zaremski J, Kwon B, Jenis L, Woodard E, Bode R, Banco RJ (2007) Risk factors for false positive transcranial motor evoked potential monitoring alerts during surgical treatment of cervical myelopathy. Spine 32(6):3041–3046

    Article  PubMed  Google Scholar 

  60. Kojima Y, Yamamoto T, Ogino H, Okada K, Ono K, Kojima Y, Yamamoto T, Ogino H, Okada K, Ono K (1979) Evoked spinal potentials as a monitor of spinal cord viability. Spine 4(6):471–477

    Article  PubMed  CAS  Google Scholar 

  61. Krassioukov AV, Sarjeant R, Arkia H, Fehlings MG (2004) Multimodality intraoperative monitoring during complex lumbosacral procedures: indications, techniques, and long-term follow-up review of 61 consecutive cases. J Neurosurg Spine 1(3):243–253 [see comment]

    Article  PubMed  Google Scholar 

  62. Kriskovich MD, Apfelbaum RI, Haller JR (2000) Vocal fold paralysis after anterior cervical spine surgery: incidence, mechanism, and prevention of injury. Laryngoscope 110:1467–1473

    Article  PubMed  CAS  Google Scholar 

  63. Lang EW, Chesnut RM, Beutler AS, Kennelly NA, Renaudin JW (1996) The utility of motor-evoked potential monitoring during intramedullary surgery. Anesth Analg 83(6):1337–1341

    PubMed  CAS  Google Scholar 

  64. Langeloo DD, Lelivelt A, Louis Journee H, Slappendel R, de Kleuver M (2003) Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine 28(10):1043–1050

    PubMed  Google Scholar 

  65. Laschinger JC, Owen J, Rosenbloom M, Cox JL, Kouchoukos NT (1988) Direct noninvasive monitoring of spinal cord motor function during thoracic aortic occlusion: use of motor evoked potentials. J Vasc Surg 7(1):161–171

    PubMed  CAS  Google Scholar 

  66. Legatt A (2002) Current practice of motor evoked potential monitoring: results of a survey. J Clin Neurophysiol 19(5):454–460

    Article  PubMed  Google Scholar 

  67. Leis AA, Zhou HH, Mehta M, Harkey HL 3rd, Paske WC, Leis AA, Zhou HH, Mehta M, Harkey HL 3rd, Paske WC (1996) Behavior of the H-reflex in humans following mechanical perturbation or injury to rostral spinal cord. Muscle Nerve 19(11):1373–1382

    Article  PubMed  CAS  Google Scholar 

  68. Lenke LG (1997) The clinical utility of intraoperative evoked-potential monitoring from a spinal surgeon’s perspective. Semin Spine Surg 9(4):288–294

    Google Scholar 

  69. Leppanen RE (2005) Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 19(6):437–461

    Article  PubMed  Google Scholar 

  70. Leppanen RE (2006) Intraoperative applications of the H-reflex and F-response: a tutorial. J Clin Monit Comput 20(4):267–304

    Article  PubMed  Google Scholar 

  71. Levy WJ Jr (1987) Clinical experience with motor and cerebellar evoked potential monitoring. Neurosurgery 20(1):169–182

    PubMed  Google Scholar 

  72. Levy WJ, McCaffrey M, York DH, Tanzer F (1984) Motor evoked potentials from transcranial stimulation of the motor cortex in cats. Neurosurgery 15(2):214–227

    Article  PubMed  CAS  Google Scholar 

  73. Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA (2006) The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 103(2):316–321. doi:10.1213/01.ane.0000226142.15746.b2, table of contents

    Article  PubMed  CAS  Google Scholar 

  74. Loughman BA, Fennelly ME, Henley M, Hall GM (1995) The effects of differing concentrations of bupivacaine on the epidural somatosensory evoked potential after posterior tibial nerve stimulation. Anesth Analg 81(1):147–151

    PubMed  CAS  Google Scholar 

  75. Loughnan BA, Fennelly ME (1995) Spinal cord monitoring. Anaesthesia 50(2):101–102

    Article  PubMed  CAS  Google Scholar 

  76. Lyon R, Burch S, Lieberman J (2009) Mixed-muscle electrode placement (“jumping” muscles) may produce false-negative results when using transcranial motor evoked potentials to detect an isolated nerve root injury in a porcine model. J Clin Monit Comput 23(6):403–408. doi:10.1007/s10877-009-9205-9

    Article  PubMed  Google Scholar 

  77. MacDonald D (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19(5):416–429

    Article  PubMed  Google Scholar 

  78. Macdonald DB (2006) Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput 20(5):347–377. doi:10.1007/s10877-006-9033-0

    Article  PubMed  Google Scholar 

  79. MacDonald DB, Al Zayed Z, Khoudeir I, Stigsby B (2003) Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine 28(2):194–203

    Article  PubMed  Google Scholar 

  80. Marusch F, Hussock J, Haring G, Hachenberg T, Gastinger I (2005) Influence of muscle relaxation on neuromonitoring of the recurrent laryngeal nerve during thyroid surgery. Br J Anaesth 94(5):596–600. doi:aei110 [pii]

    Article  PubMed  CAS  Google Scholar 

  81. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227–235

    Article  PubMed  CAS  Google Scholar 

  82. Meyer PR Jr, Cotler HB, Gireesan GT (1988) Operative neurological complications resulting from thoracic and lumbar spine internal fixation. Clin Orthop 237:125–131

    PubMed  Google Scholar 

  83. Minahan RE, Riley LH 3rd, Lukaczyk T, Cohen DB, Kostuik JP (2000) The effect of neuromuscular blockade on pedicle screw stimulation thresholds. Spine 25(19):2526–2530

    Article  PubMed  CAS  Google Scholar 

  84. Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP (2001) Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol 112(8):1442–1450 [see comment]

    Article  PubMed  CAS  Google Scholar 

  85. Misiaszek JE, Misiaszek JE (2003) The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28(2):144–160

    Article  PubMed  Google Scholar 

  86. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked ­potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41(6):1327–1336

    Article  PubMed  CAS  Google Scholar 

  87. Morpeth JF, Williams MF (2000) Vocal fold paralysis after anterior cervical discectomy and fusion. Laryngoscope 110:43–46

    Article  PubMed  CAS  Google Scholar 

  88. Mostegl A, Bauer R, Eichenauer M (1988) Intraoperative somatosensory potential monitoring. A clinical analysis of 127 surgical procedures. Spine 13(4):396–400

    Article  PubMed  CAS  Google Scholar 

  89. Nash CL Jr, Lorig RA, Schatzinger LA, Brown RH (1977) Spinal cord monitoring during operative treatment of the spine. Clin Orthop 126:100–105

    PubMed  Google Scholar 

  90. Neuloh G, Schramm J, Neuloh G, Schramm J (2004) Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg 100(3):389–399

    Article  PubMed  Google Scholar 

  91. Nuwer MR (1998) Spinal cord monitoring with somatosensory techniques. J Clin Neurophysiol 15(3):183–193

    Article  PubMed  CAS  Google Scholar 

  92. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96(1):6–11

    Article  PubMed  CAS  Google Scholar 

  93. Owen J (1997) Cost efficacy of intraoperative monitoring. Semin Spine Surg 9(4):348–352

    Google Scholar 

  94. Owen JH (1993) Intraoperative stimulation of the spinal cord for prevention of spinal cord injury. Adv Neurol 63:271–288

    PubMed  CAS  Google Scholar 

  95. Owen JH (1997) Applications of neurophysiological measures during surgery of the spine. In: Frymoyer JW (ed) The adult spine: principles and practice, 2nd edn. Lippincott-Raven Publishers, Philadelphia, pp 673–702

    Google Scholar 

  96. Owen JH, Bridwell KH, Grubb R, Jenny A, Allen B, Padberg AM, Shimon SM (1991) The clinical application of neurogenic motor evoked potentials to monitor spinal cord function during surgery. Spine 16(8 Suppl):S385–S390

    PubMed  CAS  Google Scholar 

  97. Padberg AM, Russo MH, Lenke LG, Bridwell KH, Komanetsky RM (1996) Validity and reliability of spinal cord monitoring in neuromuscular spinal deformity surgery. J Spinal Disord 9(2):150–158

    Article  PubMed  CAS  Google Scholar 

  98. Papastefanou SL, Henderson LM, Smith NJ, Hamilton A, Webb JK (2000) Surface electrode somatosensory-evoked potentials in spinal surgery: implications for indications and practice. Spine 25(19):2467–2472

    Article  PubMed  CAS  Google Scholar 

  99. Pearlman RC, Isley MR, Ruben GD, Sandler SC, Weisbaum B, Khan MA, Greene BS, Charles V, Shah A, Pearlman RC, Isley MR, Ruben GD, Sandler SC, Weisbaum B, Khan MA, Greene BS, Charles V, Shah A (2005) Intraoperative monitoring of the recurrent laryngeal nerve using acoustic, free-run, and evoked electromyography. J Clin Neurophysiol 22(2):148–152

    Article  PubMed  Google Scholar 

  100. Pelosi L, Lamb J, Grevitt M, Mehdian SM, Webb JK, Blumhardt LD, Pelosi L, Lamb J, Grevitt M, Mehdian SMH, Webb JK, Blumhardt LD (2002) Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113(7):1082–1091

    Article  PubMed  Google Scholar 

  101. Pereon Y, Bernard JM, Fayet G, Delecrin J, Passuti N, Guiheneuc P, Pereon Y, Bernard JM, Fayet G, Delecrin J, Passuti N, Guiheneuc P (1998) Use-fulness of neurogenic motor evoked potentials for spinal cord monitoring: findings in 112 consecutive patients undergoing surgery for spinal deformity. Electroencephalogr Clin Neurophysiol 108(1):17–23

    Article  PubMed  CAS  Google Scholar 

  102. Prass RL, Kinney SE, Hardy RW Jr, Hahn JF, Luders H (1987) Acoustic (loudspeaker) facial emg monitoring: II. Use of evoked emg activity during acoustic neuroma resection. Otolaryngol Head Neck Surg 97:541–551

    PubMed  CAS  Google Scholar 

  103. Quinones-Hinojosa A, Gadkary CA, Gulati M, von Koch CS, Lyon R, Weinstein PR, Yingling CD (2004) Neurophysiological monitoring for safe surgical tethered cord syndrome release in adults. Surg Neurol 62(2):127–133; discussion 133–135

    Article  PubMed  Google Scholar 

  104. Quinones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C, Quinones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C (2002) Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery 51(5):1199–1206; discussion 1206–1207

    Article  PubMed  Google Scholar 

  105. Quraishi NA, Lewis SJ, Kelleher MO, Sarjeant R, Rampersaud YR, Fehlings MG (2009) Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine 34(14):1504–1512

    Article  PubMed  Google Scholar 

  106. Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holden TJ, Bridwell KH, Padberg AM, Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holden TJ, Bridwell KH, Padberg AM (2002) Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine 27(18):2030–2035 [see comment]

    Article  PubMed  Google Scholar 

  107. Reidy DP, Houlden D, Nolan PC, Kim M, Finkelstein JA, Reidy DP, Houlden D, Nolan PC, Kim M, Finkelstein JA (2001) Evaluation of electromyographic monitoring during insertion of thoracic pedicle screws. J Bone Joint Surg Br 83(7):1009–1014

    Article  PubMed  CAS  Google Scholar 

  108. Rothwell JC, Thompson PD, Day BL, Dick JP, Kachi T, Cowan JM, Marsden CD (1987) Motor cortex stimulation in intact man. 1. General characteristics of EMG responses in different muscles. Brain 110(Pt 5):1173–1190

    Article  PubMed  Google Scholar 

  109. Sala F, Krzan MJ, Deletis V, Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18(6–7):264–287

    PubMed  Google Scholar 

  110. Sala F, Lanteri P, Bricolo A, Sala F, Lanteri P, Bricolo A (2004) Motor evoked potential monitoring for spinal cord and brain stem surgery. Adv Tech Stand Neurosurg 29:133–169

    Article  PubMed  CAS  Google Scholar 

  111. Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M (2010) Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26(4):473–490

    Article  PubMed  Google Scholar 

  112. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A, Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58(6):1129–1143; discussion 1129–1143

    Article  PubMed  Google Scholar 

  113. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ (2007) Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 89(11):2440–2449

    Article  PubMed  Google Scholar 

  114. Schwartz DM, Sestokas AK, Hilibrand AS, Vaccaro AR, Bose B, Li M, Albert TJ (2006) Neurophysiological identification of position-induced neurologic injury during anterior cervical spine surgery. J Clin Monit Comput 20(6):437–444. doi:10.1007/s10877-006-9032-1

    Article  PubMed  Google Scholar 

  115. Schwartz DM, Sestokis AK, Wierzbowski LR (1996) Intraoperative neurophysiological monitoring during surgery for spinal instability. Semin Spine Surg 8(4):318–331

    Google Scholar 

  116. Shi YB, Binette M, Martin WH, Pearson JM, Hart RA, Shi YB, Binette M, Martin WH, Pearson JM, Hart RA (2003) Electrical stimulation for intraoperative evaluation of thoracic pedicle screw placement. Spine 28(6):595–601

    PubMed  Google Scholar 

  117. Shields CB, Paloheimo MPJ, Backman MH, Edmonds HLJ, Johnson JR (1990) Intraoperative use of transcranial magnetic motor evoked potentials. In: Chokroverty S (ed) Magnetic stimulation in clinical neurophysiology. Butterworths, London, pp 173–184

    Google Scholar 

  118. Sloan T (2012) General anesthesia for monitoring. In: Koht A, Sloan T, Toleikis JR (eds) Monitoring for the anesthesiologist and other health professionals. Springer, New York, pp 319–335

    Chapter  Google Scholar 

  119. Sloan TB (1997) Evoked potentials. In: Albin MA (ed) Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. McGraw-Hill, New York, pp 221–276

    Google Scholar 

  120. Sloan TB (2002) Evoked potentials. Anesthesia and motor evoked-potentials monitoring. In: Deletis V, Shills J (eds) Neurophysiology in neurosurgery. Academic, San Diego, pp 451–464

    Chapter  Google Scholar 

  121. Sloan TB, Heyer EJ (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19(5):430–443

    Article  PubMed  Google Scholar 

  122. Sloan TB, Jameson LC (2007) Electrophysiologic monitoring during surgery to repair the thoraco-abdominal aorta. J Clin Neurophysiol 24(4):316–327

    PubMed  Google Scholar 

  123. Sloan TB, Ronai AK, Koht A (1986) Reversible loss of somatosensory evoked potentials during anterior cervical spinal fusion. Anesth Analg 65(1):96–99

    Article  PubMed  CAS  Google Scholar 

  124. Sloan TB, Toleikis JR, Koht A (1989) Evaluation of spinal cord function by means of evoked potentials. In: Meyer PR Jr (ed) Surgery of spine trauma. Churchill-Livingstone, New York, pp 121–136

    Google Scholar 

  125. Sutter M, Deletis V, Dvorak J, Eggspuehler A, Grob D, Macdonald D, Mueller A, Sala F, Tamaki T (2007) Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J 16(Suppl 2):S232–S237

    Article  PubMed  Google Scholar 

  126. Sutter M, Eggspuehler A, Grob D, Jeszenszky D, Benini A, Porchet F, Mueller A, Dvorak J (2007) The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors. Eur Spine J 16(Suppl 2):S197–S208

    Article  PubMed  Google Scholar 

  127. Sutter MA, Eggspuehler A, Grob D, Porchet F, Jeszenszky D, Dvorak J (2007) Multimodal intraoperative monitoring (MIOM) during 409 lumbosacral surgical procedures in 409 patients. Eur Spine J 16(Suppl 2):S221–S228

    Article  PubMed  Google Scholar 

  128. Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32(2):219–226

    Article  PubMed  CAS  Google Scholar 

  129. Toleikis JR (2002) Neurophysiological monitoring during pedicle screw placement. In: Deletis V, Shils JL (eds) Neurophysiology in neurosurgery. Academic, New York, pp 231–264

    Chapter  Google Scholar 

  130. Ubags LH, Kalkman CJ, Been HD (1998) Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery 43(1):90–94; discussion 94–95

    Article  PubMed  CAS  Google Scholar 

  131. Vauzelle C, Stagnara P, Jouvinroux P (1973) Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop 93:173–178

    Article  PubMed  Google Scholar 

  132. Wang AC, Than KD, Etame AB, La Marca F, Park P (2009) Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus 27(4):E7

    Article  PubMed  Google Scholar 

  133. Whittle IR, Johnston IH, Besser M, Taylor TK, Overton J (1984) Intra-operative spinal cord monitoring during surgery for scoliosis using somatosensory evoked potentials. Aust N Z J Surg 54(6):553–557

    Article  PubMed  CAS  Google Scholar 

  134. Wilber RG, Thompson GH, Shaffer JW, Brown RH, Nash CL Jr (1984) Postoperative neurological deficits in segmental spinal instrumentation. A study using spinal cord monitoring. J Bone Joint Surg Am 66(8):1178–1187

    PubMed  CAS  Google Scholar 

  135. Wilson-Holden TJ, Padberg AM, Parkinson JD, Bridwell KH, Lenke LG, Bassett GS (2000) A prospective comparison of neurogenic mixed evoked potential stimulation methods: utility of epidural elicitation during posterior spinal surgery. Spine 25(18):2364–2371

    Article  PubMed  CAS  Google Scholar 

  136. Wohrle JC, Behrens S, Mielke O, Hennerici MG, Wohrle JC, Behrens S, Mielke O, Hennerici MG (2004) Early motor evoked potentials in acute stroke: adjunctive measure to MRI for assessment of prognosis in acute stroke within 6 hours. Cerebrovasc Dis 18(2):130–134

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tod B. Sloan M.D., MBA, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sloan, T.B., Jameson, L., Janik, D., Mongan, P. (2014). Neurological Monitoring in Orthopedic Spine Surgery. In: Patel, V., Patel, A., Harrop, J., Burger, E. (eds) Spine Surgery Basics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34126-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34126-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34125-0

  • Online ISBN: 978-3-642-34126-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics