Skip to main content

Fungi and Their Role in Phytoremediation of Heavy Metal-Contaminated Soils

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

Pollution of the biosphere by heavy metals (HM) is a global threat that has accelerated dramatically since the beginning of industrial revolution. HMs can accumulate in soil and, in turn, adversely affect the microbial population density and physicochemical properties of soils, leading to the loss of soil fertility and yields of crops. The HMs generally cannot be biologically degraded to more or less toxic products and, hence, persist in the environment. Conventional methods used for metal detoxification produce large quantities of toxic products and are not cost-effective. The use of microorganisms (bioremediation) and plants (phytoremediation) to remediate polluted environments has provided an alternative to conventional methods for the cleaning-up of soils contaminated by metals. Phytoremediation mostly involves the use of metal-hyperaccumulating plants to remove, transform, or stabilize the contaminants, but this technique is time consuming. In other words, plants with exceptionally high metal-accumulating capacity often have a slow growth rate and produce limited amounts of biomass when the concentration of metal in the contaminated soil is very high and toxic. Microorganisms also play important roles in the environmental fate of toxic metals and metalloids with a multiplicity of physicochemical and biological mechanisms affecting transformations between soluble and insoluble phases. Furthermore, by establishing effective relationships with plants, microorganisms are able to induce the chance of success of phytoremediation. Fungi, particularly arbuscular mycorrhizal fungi (AMF), associated with hyperaccumulating or non-hyperaccumulating plants have repeatedly been demonstrated to alleviate HM stress of plants, although there is a need to completely understand the ecological complexities of their interactions with the host plant and soil system and their better exploitation as consortia in remediation strategies employed for contaminated soils. This chapter provides an overview on the developments in the role of fungi particularly AMF in phytorestoration of HM-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amezaga I, Garbisu C (2003) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18:65–73

    PubMed  Google Scholar 

  • Alloway BJ, Jackson AP (1991) The behavior of heavy metals in sewage sludge amended soils. Sci Total Environ 100:151–176

    Article  PubMed  CAS  Google Scholar 

  • Alonso J, Garcia AM, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188

    Article  PubMed  CAS  Google Scholar 

  • Anderson TA, Coats JR (1994) Bioremediation through rhizosphere technology, vol 563, ACS symposium series. American Chemical Society, Washington, DC, p 249

    Book  Google Scholar 

  • Aoyama M, Itaya S, Otowa M (1993) Effects of copper on the decomposition of plant residues, microbial biomass and beta-glucosidase activity in soils. Soil Sci Plant Nutr 39:557–566

    Article  CAS  Google Scholar 

  • Arisi ACM, Noctor G, Foyer CH, Jouanin L (2003) Modification of thiol contents in poplars (Populus tremula × P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203:362–372

    Article  Google Scholar 

  • Arnold PT, Kaputska LA (1987) VA mycorrhizal colonization and spore populations in abandoned agricultural field after five years of sludge additions. Ohio J Sci 87:112–114

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  PubMed  CAS  Google Scholar 

  • Assunçao AGL, Da Costa MP, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226

    Article  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations: a review. Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Balsalobre C, Calonge J, Jiménez E, Lafuente R, Mouriño M, Muño MT, Riquelme M, Mas-Castella J (1993) Using the metabolic capacity of Rhodobacter sphaeroides to assess heavy metal toxicity. Environ Toxicol Water Qual 8:437–450

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2: 333–344

    Google Scholar 

  • Bardgett RD, Speir TW, Ross DJ, Yeats GW, Kettles HA (1994) Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol Fertil Soils 18:71–79

    Article  CAS  Google Scholar 

  • Begonia MT, Begonia GB, Miller G, Gilliard D, Young C (2004) Phosphatase activity and populations of microorganisms from cadmium and lead contaminated soils. Bull Environ Contam Toxicol 73:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Bending GD, Turner MK, Rayns F, Marx MC, Wood M (2004) Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem 36:1785–1792

    Article  CAS  Google Scholar 

  • Berdicevsky I, Duek L, Merzbach D, Yannai S (1993) Susceptibility of different yeast species to environmental toxic metals. Environ Pollut 80:41–44

    Article  PubMed  CAS  Google Scholar 

  • Bogomolov DM, Chen SK (1996) An ecosystem approach to soil toxicity testing—A study of copper contamination in laboratory soil microscosms. Appl Soil Ecol 4:95–105

    Article  Google Scholar 

  • Bohn KS and Liberta AE (1982) In: Graves DH (ed) Symposium on surface mining hydrology, sedimentology and reclamation. University of Kentucky, Lexington

    Google Scholar 

  • Boyle M, Paul EA (1988) Vesicular-arbuscular mycorrhizal associations with barley on sewage-amended plots. Soil Biol Biochem 20:945–948

    Article  Google Scholar 

  • Brenner V, Arensdorf JJ, Foght DD (1994) Genetic construction of PCB degraders. Biodegradation 5:359–377

    Article  PubMed  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Brook RR (ed) Plants that hyperaccumulate heavy metals. CAB, Walingford, pp 55–94

    Google Scholar 

  • Brown PE, Minges GA (1916) The effect of some manganese salts on ammonification and nitrification. Soil Sci 1:67–85

    Article  Google Scholar 

  • Chen B, Christie P, Li X (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:185–192

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Beattie JAM (1989) Grassland soil microbial biomass and accumulation of potentially toxic metals from long term slurry application. J Appl Ecol 26:597–612

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Compant S, Clément B, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96:320–325

    Article  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JR (eds.) Phytoremediation of soil and water contaminants. ACS symposium series 664. American Chemical Society, Washington, DC, pp. 2–19

    Chapter  Google Scholar 

  • Dahlin S, Witter E, Mårtensson AM, Turner A, Bååth E (1997) Where’s the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biol Biochem 29:1405–1415

    Article  CAS  Google Scholar 

  • Danika L, Duc L, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    Article  CAS  Google Scholar 

  • Dedourge O, Vong PC, Lasserre-Joulin F, Benizri E, Guckert A (2004) Effect of glucose and rhizodeposits (with or without cysteine-S) on immobilized-35S, microbial biomass-35S and arylsulphatase activity in a calcareous and an acid brown soil. Eur J Soil Sci 55:649–656

    Article  CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11:261–269

    Article  Google Scholar 

  • Delorme TA, Gagliardi JV, Angle JS, Chaney RL (2001) Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can J Microbiol 47:773–776

    PubMed  CAS  Google Scholar 

  • Diaz G, Honrubia M (1994) A mycorrhizal survey of plants growing on mine wastes in southeast Spain. Arid Soil Res Rehabil 8:59–68

    Google Scholar 

  • Diaz G, Azcon-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthillis cystisoides. Plant Soil 180: 1201–1205

    Article  Google Scholar 

  • Dickinson RE, Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319:109–115

    Article  CAS  Google Scholar 

  • Dmitri S, Begonia FT (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456

    Article  CAS  Google Scholar 

  • Dodd JC, Thompson BD (1994) The screening and selection of inoculant arbuscular mycorrhizal and ectomycorrhizal fungi. Plant Soil 159:149–158

    Google Scholar 

  • Doelman P, Haanstra L (1984) Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 79:317–327

    Article  CAS  Google Scholar 

  • Dueck TA, Visser P, Ernst WHO, Schat H (1986) Vesicular-arbuscular mycorrhizae decrease zinc toxicity to grasses growing in zinc polluted soils. Soil Biol Biochem 18:331–333

    Article  Google Scholar 

  • Elekes CC, Busuoic G, Ionita G (2010) The mycoremediation of metals polluted soils using wild growing species of mushrooms. Latest trends on engineering education. Not Bot Horti Agrobot Cluj Napoca 38:147–151

    CAS  Google Scholar 

  • Filser J, Fromm H, Nagel RF, Winter K (1995) Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna. Plant Soil 170:123–129

    Article  CAS  Google Scholar 

  • Fritze H, Vanhala P, Pietikäinen J, Mälkönen E (1996) Vitality fertilization of Scots pine stands growing along a gradient of heavy metal pollution: short-term effects on microbial biomass and respiration rate of the humus layer. Fresenius J Anal Chem 354:750–755

    CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28: 55–63

    Article  Google Scholar 

  • Fulladosa E, Murat JC, Martínez M, Villaescusa I (2005a) Patterns of metals and arsenic poisoning in Vibrio fischeri. Chemosphere 60:43–48

    Article  PubMed  CAS  Google Scholar 

  • Fulladosa E, Murat JC, Villaescusa I (2005b) Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target. Chemosphere 58(5):551–557

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2001) Fungi in bioremediation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, White C (1989) Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In: Poole RK, Gadd GM (eds) Metal-microbe interactions. Special publication of the Society for General Microbiology, vol 26. IRL/Oxford University Press, New York, pp 19–38

    Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sun-flower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gang WU, Kang H, Xiaoyang Z, Hongbo S, Liye C, Chengjiang R (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  Google Scholar 

  • Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:75–90

    Article  Google Scholar 

  • Gasper GM, Mathe P, Szabo L, Orgovanyl B, Uzinger N, Anton A (2005) After-effect of heavy metal pollution in brown forest soils. Proceedings of the 8th Hungarian Congress on Plant Physiology and the 6th Hungarian Conference on Photosynthesis. Acta Biologica Szegediensis 49:71–72

    Google Scholar 

  • Gast CH, Jansen E, Bierling J, Haanstra L (1998) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17:789–799

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Geiger G, Federer P, Sticher H (1993) Reclamation of heavy metal-contaminated soils: field studies and germination experiments. J Environ Qual 22:201–207

    Article  CAS  Google Scholar 

  • Giasson P, Jaouich A, Gagné S, Massicotte L, Cayer P, Moutoglis P (2006) Enhanced phytoremediation: a study of mycorrhizoremediation of heavy metal contaminated soil. Remediation 17:97–110

    Article  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbons dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    Article  PubMed  CAS  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of mycorrhizal fungus. Trans Br Mycol Soc 77:648–649

    Article  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol 95:247–261

    Article  CAS  Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac MN, Swift MJ (1997) Agricultural intensification, soil biodiversity and ecosystem function. Appl Soil Ecol 6:3–16

    Article  Google Scholar 

  • Glazer AN, Nikaido H (2007) Microbial biotechnology: fundamentals of applied microbiology, 2nd edn. Cambridge University press, Cambridge, pp 510–528

    Book  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  PubMed  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Vangronsveld J, Colpaert J, Leyval C (2006) Arbuscular mycorrhizal fungi and heavy metals: tolerance mechanisms and potential use in bioremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. CRC, Boca Raton, FL, pp 211–234

    Google Scholar 

  • Gremion F, Chatzinotas A, Kaufmann K, Von Sigler W, Harms H (2004) Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol Ecol 48:273–283

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK (1992) Mobilizable metal in anthropogenic contaminated soils and its ecological significance. In: Vernet JP (ed) Impact of heavy metals on the environment. Elsevier, Amsterdam, pp 299–310

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag 19:187–192

    Google Scholar 

  • Harris PJ (1994) Consequences of the spatial distribution of microbial communities in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Compositional and functional analysis of soil microbial communities. Wiley, Chichester, pp 239–246

    Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Leyval C, Sanders FE (1994) Impact of arbuscular mycorrhizal fungi on plant uptake of heavy metals and radionuclides from soil. In: Gianinazzi S, SchuÈepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. BirkhaÈuser, Basel, pp 179–189

    Chapter  Google Scholar 

  • Hattori H (1996) Decomposition of organic matter with previous cadmium adsorption in soils. Soil Sci Plant Nutr 42:745–752

    Article  CAS  Google Scholar 

  • Hernandez-Allica J, Becerril JM, Zarate O, Garbisu C (2006) Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant Soil 281:147–158

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemisrty 68:139–146

    Article  CAS  Google Scholar 

  • Hinojosa MB, Carreira J, García-Ruíza R, Dick RP (2004) Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol Biochem 36:1559–1568

    Article  CAS  Google Scholar 

  • Holtan-Hartwig L, Bechmann M, Høyås TR, Linjordet R, Bakken LR (2002) Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181–1190

    Article  CAS  Google Scholar 

  • Homer FA, Reeves RD, Brooks RR (1997) The possible involvement of aminoacids in nickel chelation in some nickel-accumulating plants. Curr Top Phytochem 14:31–33

    Google Scholar 

  • Howden R, Anderson CR, Goldsbrough PB, Cobbett CS (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Hüttermann A, Arduini I, Godbold DL (1999) Metal pollution and forest decline. In: Prasad NMV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 253–272

    Google Scholar 

  • Illmer P, Schinner F (1991) Effects of lime and nutrient salts on the microbiological activities of forest soils. Biol Fertil Soils 11:261–266

    Article  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188

    Article  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Heidelberg, 550 pp

    Book  Google Scholar 

  • Kaldorf M, Kuhn A, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306

    Article  CAS  Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    Article  CAS  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  CAS  Google Scholar 

  • Kazumasa H, Naoki T, Kazuhisa M (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593–599

    Article  CAS  Google Scholar 

  • Keller C, McGrath SP, Dunham SJ (2002) Trace metal leaching through a soil–grassland system after sewage sludge application. J Environ Qual 31:1550–1560

    Article  PubMed  CAS  Google Scholar 

  • Kelly JJ, Haggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipids fatty acid profiles. Biol Fertil Soils 38:65–71

    Article  CAS  Google Scholar 

  • Keshav PS, Nand KS, Shivesh S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J 2010:1–20

    Google Scholar 

  • Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Bioremediat J 11:33–43

    Article  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation—an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    Article  PubMed  Google Scholar 

  • Khodaverdiloo H, Homaee M (2008) Modeling of cadmium and lead phytoextraction from contaminated soil. Pol J Soil Sci 41:149–162

    CAS  Google Scholar 

  • Knight B, McGrath SP, Chaudri AM (1997) Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper or zinc. Appl Environ Microbiol 63:39–43

    PubMed  CAS  Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    Article  CAS  Google Scholar 

  • Ladd JNM, Amato M, Grace PR, van Veen JA (1995) Simulation of 14C turnover through the microbial biomass in soils incubated with 14C-labelled plant residues. Soil Biol Biochem 27:777–783

    Article  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  PubMed  CAS  Google Scholar 

  • Lau PCK, Lorenzo VDE (1999) Genetic engineering: the frontier of bioremediation. Environ Sci Technol 4:124A–128A

    Article  Google Scholar 

  • Leita L, Denobili M, Muhlbachova G, Mondini C, Marchiol L, Zerbi G (1995) Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol Fertil Soils 19:103–108

    Article  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Singh BR, Joner EJ (1995) Occurrence and infectivity of arbuscular mycorrhiza fungi in some Norwegian soils influenced by heavy metals and soil properties. Water Air Soil Pollut 84: 203–216

    Article  CAS  Google Scholar 

  • Leyval C, Turnau A, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139–153

    Article  CAS  Google Scholar 

  • Lipman CB, Burgess PS (1914) The effects of copper, zinc, iron and lead salts on ammonification and nitrification in soils. Univ Calif Publ Agric Sci 1:127–139

    CAS  Google Scholar 

  • Litz R, Lavi U (1997) Mango biotechnology (chapter 12). In: Litz R (ed) The mango. CRC, Boca Raton, FL, pp 401–424

    Google Scholar 

  • Lombi E, Wenzel WW, Gobran GR, Adriano DC (2001) Dependency of phyto-availability of metals on indigenous and induced rhizosphere processes: a review. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, New York, pp 3–24

    Google Scholar 

  • Long LK, Yao Q, Guo J, Yang RH, Huang YH, Zhu HH (2010) Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. Eur J Soil Biol 46:288–294

    Article  Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL, pp 235–250

    Google Scholar 

  • Maliszewska W, Dec S, Wierzbicka H, Wozniakowska A (1985) The influence of various heavy metal compounds on the development and activity of soil micro-organisms. Environ Pollut A 37:195–215

    Article  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Marschner B, Kalbitz K (2003) Control of bioavailability and biodegradation of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • Mathur NJ, Singh S, Bohra A, Vyas A (2007) Arbuscular mycorrhizal fungi: a potential tool for phytoremediation. J Plant Sci 2:127–140

    Article  CAS  Google Scholar 

  • McGrath SP (1994) Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 242–274

    Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  PubMed  CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

    PubMed  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochem J 307:687–705

    Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  PubMed  CAS  Google Scholar 

  • Mejare M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  PubMed  CAS  Google Scholar 

  • Mench MJ, Didier VL, Loffler M, Gomez A, Masson P (1994) A mimicked insitu remediation study of metalcontaminated soils with emphasis on cadmium and lead. J Environ Qual 23: 785–792

    Article  Google Scholar 

  • Moftah AE (2000) Physiological response of lead polluted tomato and eggplant to the antioxidant ethylene diurea. Menofia Agric Res 25:933–955

    Google Scholar 

  • Morley GF, Sayer JA, Wilkinson SC, Gharieb MM, Gadd GM (1996) Fungal sequestration, solubilization and transformation of toxic metals. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge, pp 235–256

    Chapter  Google Scholar 

  • Naidu CK, Reddy TKR (1988) Effect of cadmium on microorganisms and microbe-mediated mineralization process in soil. Bull Environ Contam Toxicol 41:657–663

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick R (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kuner KJ, Rennenberg H, Foyer C (1998) Glu-tathione biosynthesis metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Ohya H, Komai Y, Amaguchi MY (1985) Zinc effects on soil microflora and glucose metabolites in soil amended with 14C-glucose. Biol Fertil Soils 1:117–122

    Article  CAS  Google Scholar 

  • Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA (2007) Determination of metal content in wild edible mushrooms species from region of Greece. J Food Compos Anal 20:480–486

    Article  CAS  Google Scholar 

  • Pandolfini T, Gremigni P, Gabbrielli R (1997) Biomonitoring of soil health by plants. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB, New York, pp 325–347

    Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy metal stress and developmental patterns in arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Blaszkowski J, Rühling A (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Pennanen T, Frostegård A, Fritze H, Bååth E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428

    PubMed  CAS  Google Scholar 

  • Rahmanian M, Khodaverdiloo H, Rezaee Danesh Y, Rasouli Sadaghiani MH (2011) Effects of heavy metal resistant soil microbes inoculation and soil Cd concentration on growth and metal uptake of millet, couch grass and alfalfa. Afr J Microbiol Res 5:403–410

    CAS  Google Scholar 

  • Rajapaksha R, Tobor-Kaplon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Nazaret S, Gourbiere F, Thioulouse J, Linet P, Richaume A (2000) A soil microscale study to reveal the heterogeneity of Hg (II) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints. FEMS Microbiol Ecol 31: 107–115

    Article  PubMed  CAS  Google Scholar 

  • Renella G, Mench M, van der Lelie D, Pietramellara G, Ascher J, Ceccherini MT, Landi L, Nannipieri P (2004) Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol Biochem 36:443–451

    Article  CAS  Google Scholar 

  • Romandini P, Tallandini L, Beltramini M, Salvato B, Manzano M (1992) Effects of copper and cadmium on growth, superoxide dismutase and catalase activities in different yeast strains. Comp Biochem Physiol 103C:255–262

    CAS  Google Scholar 

  • Rufyikiri G, Huysmans L, Wannijin J, Hees MV, Leyval C, Jakobsen I (2004) Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130:427–436

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49: 643–668

    Article  PubMed  CAS  Google Scholar 

  • Sandaa RA, Torsvik V, Enger O, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  PubMed  CAS  Google Scholar 

  • Saxena PK, Raj SK, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of heavy metal contaminated and polluted soils. In: Prasad MNV, Hagemayr J (eds) Heavy metal stress in plants. From molecules to ecosystems. Springer, Berlin, pp 305–329

    Google Scholar 

  • Schnoor JL (1997) Phytoremediation. Technology evaluation report. Ground-Water Remediation Technologies Analysis Center. E Series TE-98-101

    Google Scholar 

  • Schubler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Shakolnik MY (1984) Trace elements in plants. Elsevier, NewYork, pp 140–171

    Google Scholar 

  • Sharma A, Talukdar G (1987) Effects of metals on chromosomes of higher organisms. Environ Mutagen 9:191–226

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866

    Article  PubMed  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  • Smejkalova M, Mikanova O, Boruvka L (2003) Effect of heavy metal concentration on biological activity of soil microorganisms. Plant Soil Environ 49:321–326

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic and Elsevier, London

    Google Scholar 

  • Soylak M, Saraçoğlu S, Tüzen M, Mendil D (2005) Determination of trace metals in mushroom sample from Kayseri, Turkey. Food Chem 92:649–652

    Article  CAS  Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1995) A simple kinetic approach to derive the ecological dose value, ED(50), for the assessment of Cr(VI) toxicity to soil biological properties. Soil Biol Biochem 27:801–810

    Article  CAS  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol 41: 553–575

    CAS  Google Scholar 

  • Stresty EV, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13

    Article  Google Scholar 

  • Svoboda L, Havličková B, Kalač P (2006) Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem 96:580–585

    Article  CAS  Google Scholar 

  • Szili-Kovács T, Anton A, Gulyás F (1999) Effect of Cd, Ni and Cu on some microbial properties of a calcareous chernozem soil. In: Kubát J (ed) Proceedings of 2nd symposium on the pathways and consequences of the dissemination of pollutants in the biosphere, Prague, pp 88–102

    Google Scholar 

  • Thomas KW (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    Article  CAS  Google Scholar 

  • Timmis KN, Piper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17: 201–204

    Article  CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • Torslov J (1993) Comparison of bacterial toxicity tests based on growth, dehydrogenase activity and esterase activity of Pseudomonas fluorescens. Ecotoxicol Environ Saf 25:33–40

    Article  PubMed  CAS  Google Scholar 

  • Turnau K, Ryszka P, Gianinazzi PV, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plant colonizing zinc wastes in southern Poland. Mycorrhiza 10: 169–174

    Article  CAS  Google Scholar 

  • Turnau K, Jurkiewicz A, Lingua G, Barea JM, Gianinazzi-Pearson V (2006) Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites (chapter 13). In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. CRC, Boca Raton, FL

    Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessments of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8:971–983

    Article  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Veen JA, Ladd JN, Amato M (1985) Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C(U)]glucose and [15N](NH4)SO4 under different moisture regimes. Soil Biol Biochem 17:747–756

    Article  Google Scholar 

  • Vivas A, Barea JM, Biro B, Azcon R (2006) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598

    Article  PubMed  CAS  Google Scholar 

  • Voegelin A, Barmettler K, Kretzschmar R (2003) Heavy metal release from contaminated soils: comparison of column leaching and batch extraction results. J Environ Qual 32:865–875

    PubMed  CAS  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  PubMed  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  PubMed  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007a) Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytoremediation 9: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007b) Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decrease Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia 51: 99–109

    Article  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007c) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environ Pollut 147:248–255

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27:145–153

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Exp Agric 47:712–720

    Article  CAS  Google Scholar 

  • Wecks JEJ, Clisjsters HMM (1997) Zn toxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247–256

    Article  CAS  Google Scholar 

  • Wenzel WW, Adriano DC, Sal D, Smith R (1999) Phytoremediation: a plant-microbe-based remediation system. In: Adriano DC, Bollag JM, Frankenburger WT Jr, Sims RC (eds) Bioremediation of contaminated soils, vol 37, Agronomy monographs. ASA, CSSA, and SSSA, Madison, WI, pp 457–508

    Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonization in Thymus polytrichus in Northern England. Mycorrhiza 14:55–62

    Article  PubMed  CAS  Google Scholar 

  • Winge DR et al (1985) Yeast metallothionein: sequence and metal-binding properties. J Biol Chem 260:14464–14470

    PubMed  CAS  Google Scholar 

  • Wolt J (1994) Soil solution chemistry. Wiley, New York

    Google Scholar 

  • Yeats GW, Orchard VA, Speir TW, Hunt JL, Hermans MCC (1994) Impact of pasture contamination by copper, chromium, arsenic and timber preservative on soil biological activity. Biol Fertil Soils 18:200–208

    Article  Google Scholar 

  • Zarei M (2008) Diversity of arbuscular mycorrhizal fungi in heavy metal pollution soils and their roles in phytoremediation. Ph.D. dissertation in Soil Science (Soil Biology and Biotechnology), Agricultural Faculty, University of Tehran, Tehran, Iran, p 219 (In Persian with an English abstract)

    Google Scholar 

  • Zarei M, Sheikhi J (2010) The role of arbuscular mycorrhizal fungi in phytostabilization and phytoextraction of heavy metal contaminated soils. In: Golubev IA (ed) Handbook of phytoremediation. Nova, New York

    Google Scholar 

  • Zarei M, König S, Hempel S, Khayam Nekouei M, Savaghebi G, Buscot F (2008a) Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut 156:1277–1283

    Article  PubMed  CAS  Google Scholar 

  • Zarei M, Saleh-Rastin N, Salehi Jouzani G, Savaghebi G, Buscot F (2008b) Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Eur J Soil Biol 44:381–391

    Article  CAS  Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  PubMed  CAS  Google Scholar 

  • Zelles L, Bai QY, Ma RX, Rackwitz R, Winter K, Beese F (1994) Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biol Biochem 26:439–446

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamyl-cysteine synthetase. Plant Physiol 121:1169–1176

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozhgan Sepehri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sepehri, M., Khodaverdiloo, H., Zarei, M. (2013). Fungi and Their Role in Phytoremediation of Heavy Metal-Contaminated Soils. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_14

Download citation

Publish with us

Policies and ethics