Skip to main content

Disease Management in Staple Crops: A Bacteriological Approach

  • Chapter
  • First Online:
Bacteria in Agrobiology: Disease Management

Abstract

Disease causes severe economic losses to agricultural crops. The loss due to disease should be controlled due to the rapid rise in demand of food. In recent years, biological control of plant pathogens has received increasing attention as a promising supplement or alternative to chemical control. Biological control agent (BCA) inhibits the disease by using degradative enzymes, antibiotics, competition for nutrients and niches (CNN), siderophores, biosurfactants, detoxification and degradation of virulence factors of the pathogen, and by induced systemic resistance (ISR). Many bacterial species were found having disease-suppressive property in rice and maize along with the other agricultural crops, but Pseudomonas and Bacillus are the prominent one. There has been very limited work done on the biological means of disease management as compared to the tremendous unexplored biocontrol resources. An integrated rigorous research and investment in the field of disease management will bring a new era of biological control of disease management in staple crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeron A, Pandey P, Kumar S, Maheshwari DK (2011a) Emerging role of plant growth promoting rhizobacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystem. Springer, Heidelberg, pp 1–26

    Chapter  Google Scholar 

  • Aeron A, Dubey RC, Maheshwari DK, Pandey P, Bajpai VK, Kang SC (2011b) Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur J Plant Pathol 131:81–93

    Article  Google Scholar 

  • Ait Barka E, Gognies S, Nowak J, Audran JC, Balarbi A (2002) Inhibitory effect of endophytic bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Article  Google Scholar 

  • Anandaraj B, Thivakaran P (2010) Isolation and production of biosurfactant producing organism from oil spilled soil. J Biosci Technol 1(3):120–126

    Google Scholar 

  • Anderson AJ, Habibzadegah-Tari P, Tepper CS (1988) Genetic studies on the role of agglutinin-in root colonization by Pseudomonas putida. Appl Environ Microbiol 54:375–380

    PubMed  CAS  Google Scholar 

  • Ardakani S, Heydari A, Khorassani N, Arjmandi R, Ehteshami M (2009) Preparation of new biofungicides using antagonistic bacteria and mineral compounds for controlling cotton seedling damping-off disease. J Plant Prot Res 49:49–55

    Article  Google Scholar 

  • Arora NK, Kim MJ, Kang SC, Maheshwari DK (2007) Role of chitinase and β-1,3-glucanase activity produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol 53:207–212

    Article  PubMed  CAS  Google Scholar 

  • Arthur FH, Thorne JE (2003) Efficacy of diatomaceous earth to control internal infestations of rice weevil (Coleoptera: Curculionidae). J Econ Entomol 95:510–518

    Article  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  CAS  Google Scholar 

  • Ashizawa T, Zenbayashi K, Sonoda R (2005) Effects of preinoculation with an avirulent isolate of Pyricularia grisea on infection and development of leaf blast lesions caused by virulent isolates on near-isogenic lines of Sasanishiki rice. J Gen Plant Pathol 71:345–530

    Article  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Babu AGC, Thind BS (2005) Potential use of combinations of Pantoea agglomerans, Pseudomonas fluorescens and Bacillus subtilis for the control of bacterial blight of rice. Ann Sri Lanka Dep Agric 7:23–37

    Google Scholar 

  • Bacilio-Jime’nez M, Aguilar-Flores S, Ventura-Zapata E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant disease. Can J Plant Pathol 25:5–9

    Article  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Article  Google Scholar 

  • Basnayake WVS, Birch RJ (1995) A gene from alcaligenes denitrificans that confers albicidin resistance by reversible antibiotic binding. Microbiology 141:551–560

    Article  PubMed  CAS  Google Scholar 

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B 365:61–71

    Article  Google Scholar 

  • Benhamou N (2004) Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit–against Penicillium digitatum, the casual agent of green mold: a comparison with-the effect of chitosan. Phytopathol 94:693–705

    Article  Google Scholar 

  • Berg G, Behl H (1997) Characterization of beneficial rhizobacteria of oilseed rape for biological control of Verticillium wilt. Gesunde Pflanzen 49:76–82

    Google Scholar 

  • Bhatia S, Bhatia S, Dubey RC, Maheshwari DK (2003) Antagonistic properties of fluorescent pseudomonades against Macrophomina phaseolina causing charcoal rot of groundnut. Indian J Exp Biol 41:1442–1446

    PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Bodour AA, Dress KP, Maier RM (2003) Distribution of biosurfactant producing bacteria in undisturbed and contaminated and south-western soils. Appl Environ Microbiol 69:3280–3287

    Article  PubMed  CAS  Google Scholar 

  • Boehm MJ, Hoitink HAJ (1992) Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia. Phytopathology 82:259–264

    Article  Google Scholar 

  • Bressan W (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. BioControl 48:233–240

    Article  Google Scholar 

  • Brisbane PG, Rovira AD (1988) Mechanism of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Plant Pathol 37:104–111

    Article  CAS  Google Scholar 

  • Broadbent P, Baker KF, Waterworth Y (1971) Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils. Aust J Biol Sci 24:975

    Google Scholar 

  • Brodhagen M, Henkels MD, Loper JE (2004) Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 70:1758–1766

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais JC, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen RbiTactonia darri. Science 254:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Campbell R (1989) Biological control of microbial plant pathogens. Cambridge University Press, Cambridge, MA, p 218

    Book  Google Scholar 

  • Castoria R, Wright SAI (2009) Host responses to biological control agents. In: Prusky D, Gullino ML (eds) Post-harvest pathology, vol 2. Springer, Dordrecht, pp 171–181

    Chapter  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world-pesticides and management, vol I. Intech Open Access Publisher, Croatia, pp 273–302

    Google Scholar 

  • Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R, Lugtenberg BJJ, Thomas-Oates J, Bloemberg GV (2006) Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant Microbe Interact 19:418–428

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty U, Purkayastha RP (1984) Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can J Microbiol 30:285–289

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A, Valasubramanian R, Vachani A, Mau W-L, Gnanamanickam SS, Chatterjee AK (1996) Biological control of rice diseases with Pseudomonas fluorescens 7-14: isolation of ant mutants altered in antibiotic production in the control of blast and sheath blight. Biol Control 7:185–195

    Article  Google Scholar 

  • Chen SY, Wei YH, Chang JS (2007) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York, pp 171–225

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PVL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Choudhury DK, Johri BN (2009) Interaction of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Plant growth promoting bacteria for control of plant diseases: principles, mechanism of action and future prospects. Appl Environ Microbiol 9:4951–4959

    Article  CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  PubMed  CAS  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant Microbe Interact 7:440–448

    Article  CAS  Google Scholar 

  • Cron MJ, Evans DL, Palermiti DL, Whitehead DF, Hooper LR, Chu P et al (1958) Kanosamine V. The structure of kanosamine. J Am Chem Soc 80:4741–4742

    Article  CAS  Google Scholar 

  • D’aes J, Maeyer KD, Pauwelyn E, Hofte M (2010) Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2(3):359–372

    Article  CAS  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • De Jonghe K, De Dobbelaere I, Sarrazyn R, Hofte M (2006) Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol 54:219–226

    Article  CAS  Google Scholar 

  • De Meyer GK, Audenaert K, Hofte M (1999) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur J Plant Pathol 105:513–517

    Article  Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  CAS  Google Scholar 

  • De Weert S, Bloemberg G (2007) Rhizosphere competence and the role of root colonization in biocontrol. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 317–333

    Google Scholar 

  • Debode J, De Maeyer K, Perneel M, Pannecoucque J, De Backer G, Hofte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    Google Scholar 

  • Dekkers LC, Mulders IH, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AH, Lutenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Delfosse ES (1985) Echium plantagineum in Australia: effects of a major conflict of interest. In: Delfosse ES (ed) Proceedings of the VI international symposium on biological control of weeds. Agriculture Canada, Ottawa, pp 293–298

    Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 83(3):443–448

    Google Scholar 

  • Dong Y-H, Zhang X-F, Xu J-L, Zhang L-H (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70(2):954–960

    Article  PubMed  CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant diseases. TIBTECH 12:133–141

    Article  CAS  Google Scholar 

  • Droby S, Chalutz E (1994) Mode of action of biocontrol agents of postharvest diseases. In: Wilson CL, Wisniewski ME (eds) Biological control of postharvest diseases: theory and practice. CRC, Boca Raton, FL, pp 63–76

    Google Scholar 

  • Dubey NK, Kumar A, Singh P, Shukla R (2010) Exploitation of natural compounds in eco-friendly management of plant pests. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases, vol 1. Springer, New York, pp 181–198

    Google Scholar 

  • Duffy BK (2001) Competition. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 243–244

    Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Duffy BK, Defago G (2000) Controlling instability in gacS-gacA regulatory genes during inoculum production of Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 66:3142–3150

    Article  PubMed  CAS  Google Scholar 

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Ecol Epdemiol 75:1047–1052

    CAS  Google Scholar 

  • El-Ghaouth A, Wilson CL, Wisniewski M, Droby S, Smilanick JL, Korsten L (2002) Biological control of post-harvest diseases of citrus fruit. In: Gnanamanickm SS (ed) Biological control of crop diseases. Marcel Dekker, New York, pp 289–312

    Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • English JT, Mitchell DJ (1988) Influence of an introduced composite of microorganisms on infection of tobacco by Phytophthora parasitica var. nicotianae. Phytopathology 78:1484–1490

    Article  Google Scholar 

  • Fiddaman PJ, Rossall S (1995) Selection of bacterial antagonists for the biological control of Rhizoctonia solani in oilseed rape (Brassica napus). Plant Pathol 44:695–703

    Article  Google Scholar 

  • Fogliano V, Ballio A, Gallo M, Woo S, Scala F, Lorito M (2002) Pseudomonas lipopeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol Plant Microbe Interact 15:323–333

    Article  PubMed  CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • George ME (2002) Antimicrobial agents and chemotherapy. American Society of Microbiology, Washington, DC, 3868 p

    Google Scholar 

  • Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ (1997) Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60:223–229

    Article  PubMed  CAS  Google Scholar 

  • Giesler LJ, Yuen GY (1998) Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot 17:509–513

    Article  Google Scholar 

  • Gnanamanickam SS, Mew TW (1992) Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Ann Phytopathol Soc Jpn 58:380–385

    Article  Google Scholar 

  • Gnanamanickam SS (2009) Biological control of bacterial blight of rice. In: Gnanamanickam SS (ed) Biological control of rice diseases, vol 8. Springer, New York, pp 67–78

    Google Scholar 

  • Gnanamanickam SS, Valasubramanian R, Chatterjee AK, Mew TW (1994) Antibiotic production mediates the biological control of rice blast by Pseudomonas fluorescens. In: Ziegler RS, Leong SR, Teng PS (eds) Rice blast disease. CAB International, Wallingford

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  PubMed  CAS  Google Scholar 

  • Gomes AMA, Peixoto AR, Mariano RLR, Michereff SJ (1996) Effect of bean seed treatment with fluorescent Pseudomonas spp. on Rhizoctonia solani control. Arquivos-de-Biologiae-Technologia 39:537–545

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement, suppression of Macrophomina phaseolina causing charcoal rot of pea nut by fluorescent Pseudomonas. Biol Fertil Soils 35:295–301

    Google Scholar 

  • Gupta CP, Kumar B, Dubey RC, Maheshwari DK (2006) Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51:821–835

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  • Haddad NIA, Wang J, Mu BZ (2008) Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35:1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Haggag Wafaa M, Abo Sadera SA (2000) Influence of iron sources and siderophores producing Pseudomonas fluorescens on crown rot disease incidence and seed contamination of peanut, with pathogenic Aspergilli. Egypt J Phytopathol 28:1–16

    Google Scholar 

  • Handelsman J, Stabb EB (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    PubMed  CAS  Google Scholar 

  • Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedling by Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    PubMed  CAS  Google Scholar 

  • Handelsman J, Nesmith WC, Raffel SJ (1991) Microassay for biological and chemical control of infection of tobacco by Phytophthora parasitica var. nicotianae. Curr Microbiol 22:317–319

    Article  Google Scholar 

  • Handelsman Jo, Parke JL (1989) Mechanisms in biocontrol of soilborne plant pathogens. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, molecular and genetic perspectives, vol 3. McGraw-Hill, New York, pp 27–61

    Google Scholar 

  • Harman GE, Hayes CK (1994) Biologically based technologies for pest control: pathogens that are pests of agriculture. A report to the Office of Technology Assessment, US Congress, pp 75

    Google Scholar 

  • Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    Article  PubMed  CAS  Google Scholar 

  • Hase S, van Pelt JA, van Loon LC, Pieterse CMJ (2003) Colonization of Arabidopsis roots by Pseudomonas fluorescens primers the plant to produce higher levels of ethylene upon pathogen infection. Physiol Mol Plant Pathol 62:219–226

    Article  CAS  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10(4):273–290

    Article  Google Scholar 

  • Heydari A, Misaghi IJ, Balestra GM (2007) Pre-Emergence herbicides influence the efficacy of fungicides in controlling cotton seedling damping-off in the field. Int J Agric Res 2:1049–1053

    Article  CAS  Google Scholar 

  • Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509

    Article  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre-emergence damping-off by the bacterium. Phytopathology 78:1075–1078

    Article  CAS  Google Scholar 

  • Huang C-J, Yang K-H, Liu Y-H, Lin Y-J, Chen C-Y (2010) Suppression of southern corn leaf blight by a plant growth-promoting rhizobacterium Bacillus cereus C1L. Ann Appl Biol 157:45–53

    Article  Google Scholar 

  • Hultberg M, Bergstrand KJ, Khalil S, Alsanius B (2008) Characterization of biosurfactant-producing strains of fluorescent pseudomonads in a soilless cultivation system. Antonie Van Leewenhoek 94:329–334

    Article  CAS  Google Scholar 

  • Immanuel JE (2006) Molecular analysis of 2, 4-diacetylphloroglucinol (DAPG) production by strains of Pseudomonas fluorescens in rice rhizosphere and assessment of its role in suppression of sheath blight (ShB) disease of rice. Ph.D. Dissertation, University of Madras, Chennai

    Google Scholar 

  • Islam MT, Yasuyuki H, Abhinandan D, Toshiaki I, Satoshi T (2005) Suppression of damping-off-disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  PubMed  CAS  Google Scholar 

  • Isnansetyo A, Cui LZ, Hiramatsu K, Kamei Y (2003) Antibacterial activity of 2,4-diacetyphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int J Antimicrob Agents 22:545–547

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Mass C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus based biological control agents in integrated pest management systems. Plant Dis Phytopathol 94:1272–1275

    CAS  Google Scholar 

  • Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A (2008) Biological control of gray mold on apple fruits by Bacillus licheniformis (EN74-1). Phytoparasitology 36:23–29

    Article  Google Scholar 

  • Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A (2011) A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. OEPP/EPPO Bull 41:65–71

    Google Scholar 

  • Ji G-H, Wei L-F, He Y-Q, Wu Y-P, Bai X-H (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13–1. Biol Control 45:288–296

    Article  Google Scholar 

  • Jochum CC, Osborne LE, Yuen GY (2006) Fusarium head blight biological control with Lysobacter enzymogenes. Biol Control 39:336–344

    Article  Google Scholar 

  • Joshi KK, Kumar V, Dubey RC, Maheshwari DK, Bajpai VK, Kang SC (2006) Effect of chemical fertilizer-adaptive variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1, on Macrophomina phaseolina causing charcoal rot of Brassica juncea. Kor J Environ Agric 25(3):228–235

    Article  Google Scholar 

  • Jourdan E, henry G, Duby F, Dommes J, Berthelemy JP, Thonart P, Ongena M (2009) Insights into the defence related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468

    Google Scholar 

  • Kamalakannan A, Shanmugam V (2009) Management approaches of maize downy mildew using biocontrol agents and their extracts. Acta Phytopathol Entomol Hung 44(2):255–266

    Article  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Kang JG, Shin SY, Kim MJ, Bajpai V, Maheshwari DK, Kang SC (2004) Isolation and anti-fungal activities of 2-Hydroxy-methyl-chroman-4-one produced by Burkholderia sp. MSSP J Antibiot 57(11):726–731

    Article  CAS  Google Scholar 

  • Kanjanamaneesathian M, Chumthong A, Pengnoo A, Wiwattanapatapee R (2009) Bacillus megaterium suppresses major Thailand Rice Diseases. Asian J Food Agro-Ind S154–S159

    Google Scholar 

  • Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid, an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67:595–604

    Article  PubMed  CAS  Google Scholar 

  • Kavitha S (2002) Strategies for management of rice blast and sheath blight with bacterial biocontrol agents in combination with major genes for disease resistance. Ph.D. Dissertation, University of Madras, India

    Google Scholar 

  • Kavitha S, Senthilkumar S, Gnanamanickam SS, Inayathulla M, Jayakumar R (2005) Isolation and partial characterization of an antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem 40:3236–3243

    Article  CAS  Google Scholar 

  • Kazempour MN (2004) Biological control of Rhizoctonia solani, the casual agent of rice sheath blight by antagonistic bacteria in greenhouse and field conditions. Plant Pathol J 3(2):88–96

    Article  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahir G, Defago G (1989) Iron sufficiency is a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology 79:584–589

    Article  Google Scholar 

  • Kerr A (1980) Biological control of crown gall through the production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  • Khare E, Singh S, Maheshwari DK, Arora NK (2011) Suppression of charcoal rot of chickpea by fluorescent pseudomonas under saline stress condition. Curr Microbiol 62:1548–1553

    Article  PubMed  CAS  Google Scholar 

  • Kilic-Ekici O, Yuen GY (2004) Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol Control 30:445–446

    Article  CAS  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vitro control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035

    Article  CAS  Google Scholar 

  • King EB, Parke JL (1993) Biocontrol of Aphanomyces root and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars. Plant Dis 77:1185–1188

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: INRA (ed) Proceedings of 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Vegetable et Phytobacteriologie, Angers, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppression in soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Knee EM, Gong FC, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizospheric bacteria as a sole carbon source. Mol Plant Microbe Interact 14:775–784

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy J, Gnanamanickam SS (1998) Biological control of rice blast by Pseudomonas fluorescens strain pf7-14: evaluation of a marker gene and formulations. Biol Control 13:158–165

    Article  Google Scholar 

  • Kutama AS, Aliyu BS, Nuraddin A, Kiyawa SA (2008) Green evaluation of the epidemiology of sorghum downy mildew in some varieties of sorghum and their chemical control. In: Proceedings of international conference on research and development, vol 13. Institute of African Studies, University of Ghana, Accra, Ghana, 25–28 Nov 2008, pp 63–67

    Google Scholar 

  • Lafontaine PJ, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci Technol 6:111–124

    Article  Google Scholar 

  • Lam ST, Gaffney TD (1993) Biological activities of bacteria used in plant pathogen control. In: Chet I (ed) Biotechnology in plant disease control. Wiley, New York, pp 291–320

    Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez J-S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by the Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71(8):4577–4584

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, van Pelt JA, den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  CAS  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Tu K, Shao X, Zhao Y, Tu S, Su J, Hou Y, Zou X (2010) Effect of hot air treatment in combination with Pichia guilliermondii on postharvest anthracnose rot of loquat fruit. Postharv Biol Technol 58:65–71

    Article  CAS  Google Scholar 

  • Lo C-T (1998) General mechanisms of action of microbial biocontrol agents. Plant Pathol Bull 7:155–156

    CAS  Google Scholar 

  • Lo CT, Nelson EB, Hays CK, Harman GE (1998) Ecological studies of transformed Trichoderma harzianum strain 1295-22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology 88:129–136

    Article  PubMed  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions of plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    PubMed  CAS  Google Scholar 

  • Lorito M, Hayes CK, Zoina A, Scala F, Del-Sorbo G, Woo SL, Harman GE (1994) Potential of genes and gene products from Trichoderma spp. and Gliocladium spp. for the development of biological pesticides. Mol Biotechnol 2:209–217

    Article  PubMed  CAS  Google Scholar 

  • Lu XY, Li SZ, Li QS, Kong LX, Liu J, Ma P, Gao SG (2006) Screening of bacteria as biocontrol agent against corn leaf spot and study on its optimal culture medium. Chin J Biol Control 22:47–53 (in Chinese)

    Google Scholar 

  • Markowich NA, Kononova GL (2003) Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Appl Biochem Microbiol 39:341–351

    Article  Google Scholar 

  • Martinetti G, Loper JE (1992) Mutational analysis of gene determining antagonism of Alcaligenes sp strain MFA I against the phytopathogenic fungus Fusarium oxysporum. Can J Microbiol 38:241–247

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonization Pseudomonas fluorescens strain CHAO: influence of the gac A gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mayek-Perez N, Garcia-Espinosa R, Lopez-Castaneda C, Acosta-Gallegos JA, Simpson J (2002) Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during parthenogenesis of Macrophomina phaseolina under drought stress. Physiol Mol Plant Pathol 60:185–195

    Article  Google Scholar 

  • Mazzola M, Cook RJ (1991) Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonads in the wheat rhizosphere. Appl Environ Microbiol 57:2171–2178

    PubMed  CAS  Google Scholar 

  • Mercier J, Lindow SE (2001) Field performance of antagonistic bacteria identified in a novel assay for biological control of firelight. Biol Control 22:66–71

    Article  Google Scholar 

  • Meshram SU, Jager G (1983) Antagonism of Azotobacter chroococcum isolates to Rhizoctonia solani. Neth J Plant Pathol 89:191–192

    Article  Google Scholar 

  • Mew TW, Alvarez AM, Leach JE, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77:5–11

    Article  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He I-I, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    PubMed  CAS  Google Scholar 

  • Misato C (1961) Blasticidin-S. Japan Plant Protection Association, Tokyo, pp 1–55

    Google Scholar 

  • Mitchell R, Hurwitz E (1965) Suppression of Pythium debaryanum by lytic rhizosphere bacteria. Phytopathology 55:156–158

    Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. BBA Mol Cell Biol L 1488:211–218

    Article  CAS  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  PubMed  CAS  Google Scholar 

  • Muhammad S, Amusa A (2003) In-vitro inhibition of growth of some seedling blight inducing pathogens by compost-inhabiting microbes. Afr J Biotech 2(6):161–164

    Google Scholar 

  • Nagarajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R, Velazhahan R (2005) Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol Res 160:291–298

    Article  PubMed  CAS  Google Scholar 

  • Nakkeeran S, Fernando DWG, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Naureen Z, Hafeez FY, Roberts M (2011) Biological control of sheath blight disease of rice by siderophore producing rhizobacterial strains and their role in efficient mobilization of micronutrients from soil. Curr Opin Biotechnol (Abst) S15–S152

    Google Scholar 

  • Nelson EB (1987) Rapid germination of sporangia of Pythium species in response to volatiles from germinating seeds. Phytopathology 77:1108–1112

    Article  Google Scholar 

  • Newton JA, Fray RG (2004) Integration of environmental and host-derives signals with quorum sensing during plant-microbe interactions. Cell Microbiol 6:213–224

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MN, Sorensen J, Fels J, Pedersen HC (1998) Secondary metabolite and endochitinase dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tension-a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  PubMed  CAS  Google Scholar 

  • Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christeophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  PubMed  CAS  Google Scholar 

  • Norton JM, Harman GE (1985) Responses of soil microorganisms to volatile exudates from germinating pea seeds. Can J Bot 63:1040–1045

    Article  CAS  Google Scholar 

  • Nowak J, Shulaev V (2003) Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124

    Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Ou SH (1985) Rice disease. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  • Ovadis M, Liu X, Gavriel S, Ismailov Z, Vhet I, Chernin L (2004) The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing and functional studies. J Bacteriol 186:4986–4993

    Article  PubMed  CAS  Google Scholar 

  • Pal KK (1996) Ph.D Thesis. IARI, New Delhi

    Google Scholar 

  • Pal KK, Gardener M (2006) Biological control of plant pathogens. Plant Health Instructor pp 1–25

    Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  PubMed  CAS  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta 1, 3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  PubMed  CAS  Google Scholar 

  • Pamp SJ, Tolkier-Nielsen T (2007) Multiple role of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Aeron A, Maheshwari DK (2011) Impact of rhizobacteria as biocontrol agents on productivity and yield of pigeon-pea (Cajanus cajan). In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Microbiology monographs (Springer series). Springer, Heidelberg, pp 231–250

    Google Scholar 

  • Papavizas GC, Kovacs MF Jr (1972) Stimulation of spore germination of Thielaviopsis basicola by fatty acids from rhizosphere soil. Phytopathology 62:688–694

    Article  CAS  Google Scholar 

  • Paroda RS, Kumar P (2000) Food production and demand in South Asia. Agric Econ Rev 13(1):1–25

    Google Scholar 

  • Perneel M, Heyman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Hofte M (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103:1007–1788

    Article  PubMed  CAS  Google Scholar 

  • Perneel M, D’Hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788

    Article  PubMed  Google Scholar 

  • Petatan-Sagahon I, Anducho-Reyes MA, Silvo-Rojas HV, Arana-Cuenca A, Tellez-Jurado A, Cardenas-Alvarez IO (2011) Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. Int J Mol Sci 12:5522–5537

    Article  PubMed  CAS  Google Scholar 

  • Phipps PM (1992) Evaluation of biological agents for control of Sclerotinia blight of peanut, 1991, Biol. Cultural tests control. Plant Dis 7:60

    Google Scholar 

  • Picard C, Cello F Di, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Google Scholar 

  • Pimenta RS, Silva JFM, Coelho CM, Morais PB, Rosa CA (2010) Integrated control of Penicillium digitatum by the predacious yeast Saccharomycopsis crataegenesis and sodium bicarbonate on oranges. Braz J Microbiol 41:404–410

    Article  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Rabindran R, Vidhyasekaran P (1996) Development of a powder formulation of Pseudomonas fluorescens PfALP2 for management of rice sheath blight. Crop Prot 15:715–721

    Article  Google Scholar 

  • Ramamoorthy VR, Viswanathan R, Raguchander T, Prakasam V, Smaiyappan R (2001) Induction of systemic resistance by plant growth promoting bacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics and pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:190–200

    Article  CAS  Google Scholar 

  • Reddy BP, Rani J, Reddy MS, Kumar KVK (2010) Isolation of siderophore producing strains of rhizobacterial fluorescent Pseudomonads and their biocontrol against rice fungal pathogens. Int J Appl Biol Pharm Technol 1:133–137

    Google Scholar 

  • Reinhold B, Hurek T, Fendrick I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195

    PubMed  CAS  Google Scholar 

  • Roberts DP, Dery PD, Hebbar PK, Mao W, Lumsden RD (1997a) Biological control of damping-off of cucumber caused by Pythium ultimum with root-colonization-deficient strain of E. coli. J Phytopathol 145:383–388

    Article  Google Scholar 

  • Roberts DP, Dery PD, Mao W, Hebbar PK (1997b) Use of colonization deficient strain of E. coli in strain combinations for enhanced biocontrol of cucumber seedling diseases. J Phytopathol 145:461–463

    Article  Google Scholar 

  • Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S (2003) Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10:869–880

    Article  PubMed  CAS  Google Scholar 

  • Rosales AM, Vantomme R, Swings J, De Le J, Mew TW (2008) Identification of some bacteria from paddy antagonistic to several rice fungal pathogens. J Phytopathol 138(3):189–208

    Article  Google Scholar 

  • Roy AK (2003) Mycological problems of crude herbal drugs-overview and challenges. Indian Phytopathol 56:1–13

    Google Scholar 

  • Sadoma MT, El-Sayed ABB, El-Moghazy SM (2011) Biological control downy mildew diseases of maize caused by Peronosclerospora sorghi using certain biocontrol agents alone or in combination. J Agric Res Kafer El-Sheikh Univ 37(1)

    Google Scholar 

  • Sahaf BZ, Moharramipour S, Meshkatalsadat MH (2007) Chemical constituents and fumigant toxicity of essential oil from Carum copticum against two stored product beetles. Insect Sci 14:213–218

    Article  CAS  Google Scholar 

  • Sakthivel N (1987) Biological control of Sarocladium oryzae (Sawada) Gams and Hawksworth, sheath rot pathogen of rice by bacterization with Pseudomonas fluorescens Migula. Ph.D. Dissertation, University of Madras, India

    Google Scholar 

  • Sakthivel N (2002) Sheath rot disease of rice: current status and control strategies. In: Sreenivasaprasad S, Johnson R, Manibushanrao K (eds) Major fungal diseases of rice: recent advances. Springer, Dordrecht, pp 271–283

    Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1987) Evaluation of Pseudomonas fluorescens strains for suppression of sheath-rot disease and enhancement of grain yield in rice, Oryza sativa L. Appl Environ Microbiol 53:2056–2059

    PubMed  CAS  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705

    PubMed  CAS  Google Scholar 

  • Saravanakumar D, Spadaro D, Garibaldi A, Gullino ML (2009) Detection of enzymatic activity and partial sequence of a chitinase in Metschnikowia pulcherrima strain MACH1 used as postharvest biocontrol agent. Eur J Plant Pathol 123:183–193

    Article  CAS  Google Scholar 

  • Savary S, Teng PS, Willocquet L, Nutter FW (2006) Quantification and modeling of crop losses: a review of purposes. Annu Rev Phytopathol 44:89–112

    Article  PubMed  CAS  Google Scholar 

  • Saxena AK, Pal KK, Tilak KVBR (2000) Bacterial biocontrol agents and their management. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biological potential and its exploitation in sustainable agriculture, vol 1. Kluwer Academic/Plenum, New York, pp 25–37

    Chapter  Google Scholar 

  • Schirmboock M, Lorito M, Wang Y-L, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    Google Scholar 

  • Schouten A, van der Berg G, Edel-harman V, Steinberg C, Gautheron N, Alabouvette C, de Vos CH, Lemanceau P, Raaijmakers JM (2004) Defence responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact 17:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Schroth MN, Hancock JG (1982) Diseases suppressive soil and root colonizing bacteria. Science 216:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Shaarawy MA, Monem Abdel AM, El-Wakil AA (2002) A modified method for detecting of oospores of Peronosclerospora sorghi, the causal organism of sorghum downy mildew in Sudan Grass seeds (Sorghum sudanense). Egypt J Agric Res 80(3):1033–1042

    Google Scholar 

  • Shahraki M, Heydari A, Hassanzadeh N (2009) Investigation of antibiotic, siderophore and volatile metabolites production by Bacillus and Pseudomonas bacteria. Iran J Biol 22:71–85

    Google Scholar 

  • Sharga BM (1997) Bacillus isolates as potential biocontrol agents against chocolate spot on faba beans. Can J Microbiol 43:915–924

    Article  CAS  Google Scholar 

  • Sholberg PL, Marchi A, Bechard J (1995) Biocontrol of post harvest diseases of apple using Bacillus spp. isolated from stored apples. Can J Microbiol 41:247–252

    Article  CAS  Google Scholar 

  • Silo-Suh IA, Lethbridge BJ, Raffel SJ, Clardy H, He J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    PubMed  CAS  Google Scholar 

  • Silva HSA, Romeiro RDS, Macagnan D, Halfield-Vieira BDA, Pereira MCB, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol Control 29:288–295

    Article  CAS  Google Scholar 

  • Simmons M, van der Biji AJ, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  Google Scholar 

  • Simmons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WC365. Mol Plant Microbe Interact 10:102–106

    Article  Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere component Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Article  Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biocontrol of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir pine. Crop Prot 29:1142–1147

    Article  Google Scholar 

  • Smith RS Jr, Krugman SL (1967) Control of the charcoal rot disease of white fir by fall soil fumigation. Plant Dis 51:671–674

    Google Scholar 

  • Smith JA, Metraux J-P (1991) Pseudomonas syringae pv. syringae induces systemic resistance to Pyricularia oryzae in rice. Physiol Mol Plant Pathol 69:451–461

    Article  Google Scholar 

  • Smith KP, Havey MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142

    Article  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci USA 96:4786–4790

    Article  PubMed  CAS  Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f. sp. cucumericum as affected by fluorescent and lytic bacteria from Fusarium suppressive soils. Phytopathology 74:1115–1124

    Article  Google Scholar 

  • Soberon-Chavez G, Lepine F, Deziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  PubMed  CAS  Google Scholar 

  • Someya N, Nakajima M, Hibi T, Yamaguchi I, Akutsu K (2002) Induced resistance to rice blast by antagonistic bacterium, Serratia marcescens strain B2. J Gen Plant Pathol 68:177–182

    Article  CAS  Google Scholar 

  • Someya N, Nakajima M, Hasebe A, Hibi T, Akutsu K (2003) Biological control of rice blast by epiphytic bacterium transformed with a chitinolytic enzyme gene from an antagonistic bacterium, Serratia marcescens strain B2. J Gen Plant Pathol 69:276–282

    Article  CAS  Google Scholar 

  • Spadaro D, Gullino ML (2003) State of the art and future prospects of biological control of post-harvest fruit diseases. Int J Food Microbiol 24:1–10

    Google Scholar 

  • Spadaro D, Gullino ML (2005) Improving the efficiency of biocontrol agents soilborne pathogens. Crop Prot 24:601–613

    Article  Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants, their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81(1):4–12

    Article  CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil borne plant pathogens. Plant Pathol 48:360–369

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Tagami Y, Mizukami T (1962) Historical review of the researches on bacterial blight of rice caused by Xanthomonas oryzae (Uyede and Ishiyama). Dowson. Spec. Rep. Plant Dis. Ins. Pests Forecasting Serv. 10. Kyushu Agricultural Station, Kyushu, p 112

    Google Scholar 

  • Thara P, Gnanamanickam SS (1994) Biological control of rice sheath blight in India: lack of correlation between chitinase production by bacterial antagonists and sheath blight suppression. Plant Soil 160:277–280

    Article  CAS  Google Scholar 

  • Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA (1987) The use of agrocin-producing in the biological control of crown gall. In: Chet I (ed) Innovative approach to plant disease control. Wiley, New York, pp 213–228

    Google Scholar 

  • Thrane C, Nielson MN, Sorensen J, Olsson S (2001) Pseudomonas fluorescens DR54 reduces sclerotia formation, biomass development and disease incidence of Rhizoctonia solani causing damping-off in sugar beet. Microb Ecol 42:438–445

    Article  PubMed  CAS  Google Scholar 

  • Tingpej P, Smith L, Rose B, Zhu H, Conibear T, Al Nassafi K (2007) Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol 45:1697–1704

    Article  PubMed  CAS  Google Scholar 

  • Tiwari KN (2002) In: Armstrong DL (ed) Rice production and nutrient management in India. Better Crops Int 16:18–22

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plans by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  PubMed  CAS  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Turner JT Jr (1987) Relationship among plant growth, yield and rhizosphere ecology of peanuts as affected by seed treatment with Bacillus subtilis. Ph.D Dissertation, Auburn Unversity, p 108

    Google Scholar 

  • Umezawa S, Umnio K, Shibahara S, Hamada M, Hashimoto S (1967) Studies of aminosugars XVII. Production of 3-amino-3-deoxy-D-glucose by Bacillus species. Bull Chem Soc Jpn 40:2419–2421

    Google Scholar 

  • Valasubramanian R (1994) Biological control of rice blast with Pseudomonas fluorescens Migula: role of antifungal antibiotic in disease suppression. Ph.D Dissertation, University of Madras, Chennai

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth promoting bacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F et al (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan P (2002) Isolation and characterization of Bacillus spp. from the rice rhizosphere and their role in biological control of bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae. Ph.D dissertation, University of Madras, Chennai

    Google Scholar 

  • Velusamy P, Gnanamanickam SS (2003) Plant associated bacteria, 2,4-diacetylphloroglucinol (DAPG) production and suppression of rice bacterial blight in India. Curr Sci 85:1270–1273

    CAS  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65

    Article  PubMed  CAS  Google Scholar 

  • Venkatesan BP, Gnanamanickam SS (1999) Occurrence of a subpopulation of Xanthomonas oryzae pv. oryzae with virulence to rice cultivar IRBB21 (Xa 21) in southern India. Plant Dis 83:781

    Google Scholar 

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    Article  PubMed  CAS  Google Scholar 

  • Vidhyasekaran P (1988a) Physiology of disease resistance in plants, vol 1. CRC, Boca Raton, FL, p 149

    Google Scholar 

  • Vidhyasekaran P (1988b) Physiology of disease resistance in plants, vol 2. CRC, Boca Raton, FL, p 127

    Google Scholar 

  • Vidhyasekaran P, Muthamilan R (1999) Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci Technol 9:67–74

    Article  Google Scholar 

  • Walker R, Innes CMJ, Allan EJ (2001) The potential biocontrol agent Pseudomonas antimicrobial inhibits germination of conidia and outgrowth of Botrytis cinerea. Lett Appl Microbiol 32:346–348

    Article  PubMed  CAS  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:368–1373

    Article  CAS  Google Scholar 

  • Wang HL, Wen K, Zhao XY, Wang XD, Li AY, Hong HZ (2009) The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Prot 28:634–639

    Article  Google Scholar 

  • Wei L, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Wiwattanapatapee R, Pengnoo A, Kanjanamaneesathian M, Matchavanich W, Nilratana L, Jantharangsri A (2004) Floating pellets containing bacterial antagonist for control sheath blight of rice: formulations, viability and bacterial release studies. J Control Release 95:455–462

    Article  PubMed  CAS  Google Scholar 

  • Young FE, Tupper J, Strominger JL (1974) Autolysis of cell walls of Bacillus subtilis mechanism and possible relationship to competence. J Biol Chem 249:3600–3602

    Google Scholar 

  • Yun-feng YE, Qi-qin LI, Gang FU, Gao-qing YUAN, Jian-hua MIAO, Wei LIN (2012) Identification of antifungal substance (IturinA2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agric 11(1):90–99

    Google Scholar 

  • Zarandi M, Ebrahimi B, Shahidi GH, Dehkaei F, Padaht I (2009) Biocontrol of rice blast (Magnaporthe oryzae) by use of Streptomyces sindeneusis isolate 263 in greenhouse. Am J Appl Sci 6:194–199

    CAS  Google Scholar 

  • Zhang L, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci USA 4:9984–9989

    Article  Google Scholar 

  • Zhang B, Xie C, Yang X (2008) A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides 29:350–355

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Zhang Z, Qin G, Tian S (2010) Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharv Biol Technol 56:50–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruva K. Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tapadar, S.A., Jha, D.K. (2013). Disease Management in Staple Crops: A Bacteriological Approach. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_5

Download citation

Publish with us

Policies and ethics