

Application of Bagging, Boosting and Stacking to

Intrusion Detection

Iwan Syarif
1,2

, Ed Zaluska
1
, Adam Prugel-Bennett

1
, Gary Wills

1

1 School of Electronics and Computer Science, University of Southampton, UK

{is1e08,ejz,apb,gbw}@ecs.soton.ac.uk
2 Eletronics Engineering Polytechnics Institute of Surabaya, Indonesia

iwanarif@eepis-its.edu

Abstract. This paper investigates the possibility of using ensemble algorithms

to improve the performance of network intrusion detection systems. We use an

ensemble of three different methods, bagging, boosting and stacking, in order to

improve the accuracy and reduce the false positive rate. We use four different

data mining algorithms, naïve bayes, J48 (decision tree), JRip (rule induction)

and iBK(nearest neighbour), as base classifiers for those ensemble methods.

Our experiment shows that the prototype which implements four base classifi-

ers and three ensemble algorithms achieves an accuracy of more than 99% in

detecting known intrusions, but failed to detect novel intrusions with the accu-

racy rates of around just 60%. The use of bagging, boosting and stacking is un-

able to significantly improve the accuracy. Stacking is the only method that was

able to reduce the false positive rate by a significantly high amount (46.84%);

unfortunately, this method has the longest execution time and so is insufficient

to implement in the intrusion detection field.

Keywords: Intrusion Detection System, bagging, boosting, stacking, ensemble

classifiers

1 Intrusion Detection System

Intrusion detection is a process of gathering intrusion-related knowledge occurring in

the process of monitoring events and analyzing them for signs of intrusion [1]. There

are two basic IDS approaches: misuse detection (signature-based) and anomaly detec-

tion. The misuse detection system uses patterns of well-known attacks to match and

identify known intrusions. It performs pattern matching between the captured network

traffic and attack signatures. If a match is detected, the system generates an alarm.

The main advantage of the signature detection paradigm is that it can accurately

detect instances of known attacks. The main disadvantage is that it lacks the ability to

detect new intrusions or zero-day attacks [16][17].

The anomaly detection model works by identifying an attack by looking for beha-

viour that is out of the normal. It establishes a baseline model of behaviour for users

and components in a computer or network. Deviations from the baseline cause alerts

that direct the attention of human operators to the anomalies [17][18]. This system

searches for anomalies either in stored data or in the system activity. The main advan-

tage of anomaly detection is that it does not require prior knowledge of an intrusion

and thus can detect new intrusions. The main disadvantage is that it may not be able

to describe what constitutes an attack and may have a high false positive rate

[16][17][18]. We will develop a hybrid IDS which combines both misuse detection

and anomaly detection system, but this paper focuses on the first technique.

2 Data Mining for IDS

Data mining studies automatic techniques for learning to make accurate predictions

based on past observations [2]. In the intrusion detection case, data mining can be

used to build a system that can distinguish intrusions or anomalies from normal net-

work traffic. To build this kind of system, the first step is for the machine learning

algorithms to learn the training dataset, which contains both normal traffic and intru-

sions. This learning phase results in a model that can be used to determine whether

the network traffic is normal or an intrusion. There are many possible algorithms that

can be used in the intrusion detection problem; their performance is measured using

accuracy rate and false positive rate. In order to achieve a higher accuracy and lower

false positive rate, many data mining researchers have proposed various ensemble

learning approaches. It is well known in the data mining literature that the appropriate

combination of a number of weak classifiers can yield a highly accurate global

classifier [1].

3 Ensemble Classifier

An ensemble classifier is a method which uses or combines multiple classifiers to

improve robustness as well as to achieve an improved classification performance from

any of the constituent classifiers. Furthermore, this technique is more resilient to noise

compared to the use of a single classifier. This method uses a ‘divide and conquer

approach’ where a complex problem is decomposed into multiple sub-problems that

are easier to understand and solve.

Ensemble approaches [2][15] have the advantage that they can be made to adapt to

any changes in the monitored data stream more accurately than single model tech-

niques. An ensemble classifier has better accuracy than single classification tech-

niques. The success of the ensemble approach depends on the diversity in the individ-

ual classifiers with respect to misclassified instances [3]. According to Polikar [4],

there are four ways to achieve this diversity, the first is to use different training data to

train single classifiers, the second is to use different training parameters, the third is to

use different features to train the classifiers and the final one is to combine different

types of classifier.

Dietterich [5] reported that there are three main reasons why an ensemble classifier

is usually significantly better than a single classifier. Firstly, the training data does not

always provide sufficient information for selecting a single accurate hypothesis. Se-

condly, the learning processes of the weak classifier might be imperfect, and thirdly,

the hypothesis space being searched might not contain the true target function while

an ensemble classifier can provide a good approximation.

In this paper we evaluated and analyzed three different ensemble classifier tech-

niques, called bagging, boosting and stacking, using various weak classifiers, such as

nearest neighbour, decision tree, rule induction and naïve bayes; these were applied

on a network intrusion dataset [11][12][13].

3.1 Bagging

Bagging, which means bootstrap aggregation, is one of the simplest but most success-

ful ensemble methods for improving unstable classification problems. For example,

weak classifiers, such as decision tree algorithms, can be unstable, especially when

the position of a training point changes slightly and can lead to a very different tree.

This method is usually applied to decision tree algorithms, but it also can be used with

other classification algorithms such as naïve bayes, nearest neighbour, rule induction,

etc. The bagging technique is very useful for large and high-dimensional data, such as

intrusion data sets, where finding a good model or classifier that can work in one step

is impossible because of the complexity and scale of the problem.

Bagging was first introduced by Leo Breiman [6] to reduce the variance of a pre-

dictor. It uses multiple versions of a training set which is generated by a random draw

with the replacement of N examples where N is the size of original training set. Each

of these data sets is used to train a different model. The outputs of the models are

combined by voting to create a single output. Details of the bagging algorithm and its

pseudo-code were given in [10].

3.2 Boosting

Boosting, which was introduced by Schapire et al.[7], is an ensemble method for

boosting the performance of a set of weak classifiers into a strong classifier. This

technique can be viewed as a model averaging method and it was originally designed

for classification, but it can also be applied to regression. Boosting provides sequen-

tial learning of the predictors. The first one learns from the whole data set, while the

following learns from training sets based on the performance of the previous one. The

misclassified examples are marked and their weights increased so they will have a

higher probability of appearing in the training set of the next predictor. It results in

different machines being specialized in predicting different areas of the dataset [8].

In this paper, we select an AdaBoost algorithm, which is one of the most widely

used boosting techniques for constructing a strong classifier as a linear combination

of weak classifiers. The AdaBoost algorithm was first introduced by Freund and

Schapire [9] and has been shown to solve many of the practical difficulties of earlier

boosting algorithms, since it has solid theoretical foundation and produces very accu-

rate predictions. Details of the boosting algorithm and its pseudo-code were given in

[10].

3.3 Stacking

Stacking or stacked generalization, is a different technique of combining multiple

classifiers. Unlike bagging and boosting, stacking is usually used to combine various

different classifiers, e.g. decision tree, neural network, rule induction, naïve bayes,

logistic regression, etc. Stacking consists of two levels which are base learner as lev-

el-0 and stacking model learner as level-1. Base learner (level-0) uses many different

models to learn from a dataset. The outputs of each of the models are collected to

create a new dataset. In the new dataset, each instance is related to the real value that

it is suppose to predict. Then that dataset is used by stacking model learner (level-1)

to provide the final output [8]. For example, the predicted classifications from the

three base classifiers, naïve bayes, decision tree and rule induction can be used as

input variables into a nearest neighbour classifier as a stacking model learner, which

will attempt to learn from the data how to combine the predictions from the different

models to achieve the best classification accuracy. Details of the boosting algorithm

and its pseudo-code were given in [10].

4 Experimental Settings

The following section describes the intrusion data sets used in the experiment, the

performance metric used to evaluate the proposed system and the experimental set-

tings and its results.

4.1 Intrusion Dataset

One of the most widely used data sets for evaluating intrusion detection systems

(IDS) is the DARPA/Lincoln Laboratory off-line evaluation dataset or IDEVAL [11].

IDEVAL is the most comprehensive testset available today and it was used to develop

the 1999 KDD Cup data mining competition [12]. In this experiment, we use the

NSL-KDD intrusion data, which was provided to solve some problems in KDD’99,

particularly that its training and test sets contained a huge number of redundant

records with about 78% and 75% of the records being duplicated in the training and

test sets, respectively. This may cause the classification algorithms to be biased to-

wards these redundant records and thus prevent it from classifying other records [13].

Table 1. List of intrusions in training and testing data

Intrusions which exist in both
training and testing data

Intrusions which only exist
in testing data

back, buffer_overflow, ftp_write, guess_passwd, imap,

ipsweep, land, loadmodule, multihop, neptune, nmap,

phf, pod, portsweep, rootkit, satan, smurf, spy, tear-

drop, warezclient, warezmaster

apache2, httptunnel, mailbomb, mscan, named, perl,

processtable, ps, saint, sendmail, snmpgetattack,

snmpguess, sqlattack, udpstorm, worm, xlock, xsnoop,

xterm

The intrusion data set consists of forty different intrusions classified into four main

categories: DoS (Denial of Service), R2L (Remote to Local Attack), U2R (User to

Root Attack) and Probing Attack. The training dataset consists of 25,191 instances

and the testing dataset consists of 11,950 instances. The testing data set has many

intrusions which do not exist in the training data, as shown in table 1.

4.2 Performance Metric

We use accuracy rate and false positive rate as the performance criteria based on the

following metric shown in Table 2 below.

Table 2. Performance metric

Actual Result

Intrusion Normal

Predicted
Result

Intrusion True Positive (TP) False Positive (FP)

Normal False Negative (FN) True Negative (TN)

True Positive (TP) is a condition when an actual attack is successfully detected by the

IDS and True Negative (TN) is a condition when no attack has taken place and no

IDS alert is raised. False Positive (FP) is an alarm/alert that indicates that an attack is

in progress when in fact there was no such attack. False Negative (FN) is a failure of

IDS to detect an actual attack [19]. The accuracy rate and false positive rate are meas-

ured using these following formulas:

 ��������	���	 =
��
��

��
��
��
��
�1�, ����		�������	 =

��

��
��
�2�

4.3 Experimental Settings

We apply various data mining algorithms in the misuse detection module in order to

find the best method for detecting intrusion based on accuracy, false positives and

speed (computation time). We use four single algorithms from the Weka Data Mining

Tools: Naïve Bayes, iBK, Jrip and J48, then apply these algorithms into three differ-

ent ensemble classifiers, which are bagging, boosting and stacking, as shown in Fig-

ure 1 below.

Fig. 1. Misuse detection model

These algorithms were executed on a PC with Intel Xeon quad core processors

2.67 GHz and 12 Gb RAM. In the first experiment, we use 10-fold cross validation as

a performance measurement while in the second experiment we use testing data

which contains many new intrusions.

4.3.1. Cross validation

For performance measurement, we first use the 10-fold cross validation technique,

which only needs training data. In 10-fold cross-validation, the original training data

is randomly partitioned into 10 subsamples. Of the 10 subsamples, a single subsample

is retained as the validation data for testing the model, and the remaining 9 subsam-

ples are used as training data. The cross-validation process is then repeated 10 times

with each of the 10 subsamples used exactly once as the validation data. The 10 re-

sults from the folds then can be averaged to produce a single estimate. The results of

the first experiment are given in Tables 3 and 4 below.

Table 3. The performance of ensemble classifiers using 10-fold cross validation

Algo-
rithm

Accuracy False Positive

Single Bagging Boosting Single Bagging Boosting

Naïve
Bayes

89.59% 89.57% 94.56% 10.60% 10.70% 5.30%

iBK 99.44% 99.44% 99.44% 0.60% 0.60% 0.60%

Jrip 99.58% 99.71% 99.73% 0.40% 0% 0.30%

J48 99.56% 99.67% 99.80% 0.40% 0.30% 0.20%

Table 4. The performance of stacking algorithm using 10-fold cross validation

Base
Learner

Stacking Model
Learner

Accuracy
(%)

False
Positive (%)

Naïve Bayes

Jrip 99.64% 0.40% iBK

J48

Jrip

Naïve Bayes 99.75% 0.30% iBK

J48

Naïve Bayes

iBK 99.51% 0.50% J48

Jrip

Naïve Bayes

J48 99.63% 0.40% iBK

Jrip

In the stacking method, we use three different algorithms as base learners and an

algorithm as a stacking model learner. We use various combinations of naïve bayes,

iBK, J48 and JRip. The classifications predicted by the base learners will be used as

input variables into a stacking model learner. Each input classifier computes predicted

classifications using cross validation from which overall performance characteristic

can be computed. Then the stacking model learner will attempt to learn from the data

how to combine the predictions from the different models to achieve maximum classi-

fication accuracy. The stacking algorithm experiment results are given in the Table 4.

4.3.1.1. Results

Overall, all the algorithms achieved good results, with the highest accuracy being

99.80% and the lowest being 89.59%. Tables 3 and 4 above show that Adaboost when

implement with J48 as a weak classifier achieves the highest accuracy, which is

99.80%, with a false positive (FP) rate of 0.30%. On the other hand, the J48 Bagging

algorithm achieves the lowest FP rate of 0%. Unfortunately the computation time of

the three ensemble classifiers are all very high; the slowest one is stacking followed in

turn by boosting and bagging.

Table 5. Accuracy improvement on 10 fold cross validation experiment

Algorithm
Single
Classifier

Accuracy Improvement

Bagging % Boosting % Stacking %

Naïve Bayes 89.59% 89.57% -0.02% 94.56% 5.55% 99.75% 11.34%

iBK 99.44% 99.44% 0.00% 99.44% 0.00% 99.51% 0.07%

Jrip 99.58% 99.71% 0.13% 99.73% 0.15% 99.64% 0.06%

J48 99.56% 99.67% 0.11% 99.80% 0.24% 99.63% 0.07%

Table 5 and Table 6 show that the use of the bagging, boosting and stacking algo-

rithms did not improve the accuracy significantly. Only the use of boosting and stack-

ing on the Naïve Bayes algorithm were able to improve the accuracy, by 5.55% and

11.22% respectively, while the others showed a less than 1% improvement.

Table 6. False positive reduction on 10 fold cross validation experiment

Algorithm
Single
Classifier

False Positive Improvement

Bagging % Boosting % Stacking %

Naïve Bayes 10.60% 10.70% -0.94% 5.30% 50.00% 0.30% 97.17%

iBK 0.60% 0.60% 0.00% 0.60% 0.00% 0.50% 16.67%

Jrip 0.40% 0.30% 25.00% 0.30% 25.00% 0.40% 0.00%

J48 0.40% 0.30% 25.00% 0.20% 50.00% 0.40% 0.00%

While the three ensemble algorithms failed to improve the accuracy, they succeed

in reducing the false positive rates. Bagging was able to reduce the false positive rate

by up to 25% when implemented with Jrip and J48, boosting by up to 50% for Naïve

Bayes and J48, and stacking by up to 96.23% for Naïve Bayes.

4.3.2. Testing Data

In the second stage, we implement various single algorithms against the training data

set to build an intrusion model then apply this model to the testing data which con-

tains a lot of unknown attacks (see Table 1). The results are given in Tables 7 and 8

below.

4.3.2.1. Results

Overall none of the algorithms in the misuse detection module performed very well in

detecting data with a lot of new intrusions. The best accuracy was only 67.90%,

which was achieved by the stacking algorithm with iBK as a model learner and three

other algorithms (Naïve Bayes, Jrip and J48) as base classifiers. Bagging was only

able to improve it by less than 1% in three methods (Naïve Bayes, iBK, J48) while

boosting failed to improve any method. The stacking method was able to improve the

accuracy to 6.90% (Naïve Bayes) and 8.05% (iBK).

Table 7. Accuracy improvement using testing data experiment

Algorithm
Single
Classifier

Accuracy Improvement

Bagging % Boosting % Stacking %

Naïve Bayes 55.77% 56.10% 0.59% 37.60% -32.58% 59.62% 6.90%

iBK 62.84%

62.95% 0.18% 20.90% -66.74% 67.90% 8.05%

Jrip 63.69% 59.40% -6.74% 18.40% -71.11% 64.31% 0.97%

J48 63.97% 64.51% 0.84% 18.80% -70.61% 61.23% -4.28%

The bagging algorithm failed to reduce the false positive rates in three base clas-

sifiers (Naïve Bayes, iBK, JRip) and was only able to reduce it by 1.12% with J48 as

a base classifier. Boosting is worse than bagging because it failed to reduce the false

positive rates on all four base classifiers.

Table 8. False positive reduction using testing data experiment

Algorithm
Single
Classifier

False Positive Improvement

Bagging % Boosting % Stacking %

Naïve Bayes 34.80% 35.10% -0.86% 37.60% -8.05% 18.50% 46.84%

iBK 20.90% 20.90% 0.00% 20.90% 0.00% 17.40% 16.75%

Jrip 18.00% 19.00% -5.56% 18.40% -2.22% 16.90% 6.11%

J48 17.90% 17.70% 1.12% 18.80% -5.03% 19.60% -9.50%

Stacking algorithm is the only approach which was able to reduce the false positive

rates significantly, with a 46.84% reduction on Naïve Bayes, a 16.75% reduction on

iBK and a 6.11% reduction on JRip, even though it failed on J48 (-9.50%).

Fig. 2. Execution time comparison for single classifier bagging, boosting and stacking

Figure 2 shows that the use of bagging, boosting and stacking significantly in-

creases the execution time. The slowest is stacking followed in turn by bagging and

boosting. The stacking method was able to reduce the false positive rate, but it would

be too slow to implement in a misuse detection module. The bagging method, espe-

cially when applied to the iBK and Naïve Bayes algorithms, did not increase the ex-

ecution time significantly and only improves the accuracy by 0.18% (iBK) and 0.59%

(Naïve Bayes). Furthermore, bagging failed to reduce the false positive rate in either

algorithm.

5 Conclusions

We investigated the possibility of using ensemble algorithms (bagging, boosting and

stacking) to improve the performance on network intrusion detection systems. Our

experiment shows that a misuse detection module which implements four base clas-

sifiers and three ensemble algorithms achieves an accuracy of more than 99% in de-

tecting known intrusions, but failed to detect novel intrusions with the accuracy rates

of around just 60%. The use of bagging, boosting and stacking is unable to signifi-

cantly improve the accuracy. Stacking is the only method that was able to reduce the

false positive rate by a relatively high amount; unfortunately, this method has the

longest execution time which is a serious disadvantage in the intrusion detection field.

Of the four single classifiers used, J48 outperformed the three other methods by

achieving the highest accuracy rates and the lowest false positive rate, with a relative-

ly fast execution time. To improve the ability to detect new intrusions, we propose to

develop an anomaly detection module and integrate both systems to produce a hybrid

intrusion detection system.

0.00

50.00

100.00

150.00

200.00

250.00

Single

Classfier

Bagging Boosting Stacking

S
e

co
n

d
 (

s)

Execution Time

Naive Bayes

iBK

Jrip

J48

References

1. Gudadhe, M., Prasad, P., Wankhade, K.: A new data mining based network intrusion de-

tection model. In: International Conference on Computer & Communication Technology

(ICCCT’10), pp. 731-735. (2010)

2. Schapire, R.A.: The Boosting Approach to Machine Learning An Overview. Nonlinear

Estimation and Classification. Springer (2003)

3. Lee, K.C., Cho, H.: Performance of Ensemble Classifier for Location Prediction Task:

Emphasis on Markov Blanket Perspective. International Journal of u- and e- Service,

Science and Technology, Vol. 3, No. 3, September 2010. (2010)

4. Polikar R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems

Magazine, 6(3). (2006)

5. Dietterich, T.G.: Machine learning research: Four current directions. AI Magazine 18(4)

pp. 97–136. (1997)

6. Breiman, L.: Bagging predictors, Machine Learning 24 (2), pp. 123-140. (1996)

7. Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S.: Boosting the margin: A new explana-

tion for the effectiveness of voting methods. The Annals of Statistics 26(5), pp 1651–1686.

(1998)

8. Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting

and Stacking Ensembles Applied to Real Estate Appraisal. In: ACIIDS'10 Proceedings of

the Second international conference on Intelligent information and database systems: Part

II Proceeding. Springer-Verlag Berlin, Heidelberg. (2010)

9. Freund, Y., Schapire, R.E.: A Decision-Theoritic Generalization of on-line Learning and

an Application to Boosting. (1995)

10. Zhou, Z.-H.: Ensemble Learning, Encyclopedia of Biometrics, Volume 1, pp. 270-273,

Berlin, Springer, ISBN: 978-0-387-73002-8 (2009)

11. DARPA Intrusion Detection Data Sets,

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html

12. KDD Cup’99 Intrusion Data Sets,

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

13. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A Detailed Analysis of the KDD CUP

99 Data Set. In: Second IEEE Symposium on Computational Intelligence for Security and

Defense Applications (CISDA), 2009.

14. Dong, L., Yuan, Y., Cai, Y.: Using Bagging Classifiers to Predict Protein Domain Struc-

tural Class. Journal of Biomolecular Structure & Dynamics, ISSN 0739-1102 Volume 24,

Issue Number 3, (2006)

15. Dong, Y.S., Han, K.S.: A comparison of several ensemble methods for text categorization.

In: the 2004 IEEE International Conference on Service Computing (SCC’04), IEEE Com-

puter Society, ISBN:0-7695-2225-4, pp 419-422, Washington DC. (2004)

16. Panda, M., Patra, M.R.: Ensemble of Classifiers for Detecting Network Intrusion. In: In-

ternational Conference on Advances in Computing, Communication and Control

(ICAC3’09), pp. 510-515. (2009)

17. Garcia-Teodoro,P., Diaz-Verdejo,J., Macia-Fernandez,G., Vazquez,E.: Anomaly-based

network intrusion detection: Techniques, systems and challenges. Computer & Security,

Volume 28, Issues 1-2, pp. 18-28. (2009)

18. Davis, J.J., Clark, A.J.: Data preprocessing for anomaly based network intrusion detection:

A review. Computer & Security, Volume 30, Issues 6-7, pp 353-375. (2011)

19. Whitman, M.,E., Mattord, H.,J. Principles of Information Security. Course Technology, 4th

Edition, ISBN: 1111138214. (2011)

