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Abstract. This paper investigates the possibility of using ensemble algorithms 

to improve the performance of network intrusion detection systems. We use an 

ensemble of three different methods, bagging, boosting and stacking, in order to 

improve the accuracy and reduce the false positive rate. We use four different 

data mining algorithms, naïve bayes, J48 (decision tree), JRip (rule induction) 

and iBK( nearest neighbour), as base classifiers for those ensemble methods. 

Our experiment shows that the prototype which implements four base classifi-

ers and three ensemble algorithms achieves an accuracy of more than 99% in 

detecting known intrusions, but failed to detect novel intrusions with the accu-

racy rates of around just 60%. The use of bagging, boosting and stacking is un-

able to significantly improve the accuracy. Stacking is the only method that was 

able to reduce the false positive rate by a significantly high amount (46.84%); 

unfortunately, this method has the longest execution time and so is insufficient 

to implement in the intrusion detection field. 

Keywords: Intrusion Detection System, bagging, boosting, stacking, ensemble 

classifiers  

1 Intrusion Detection System 

Intrusion detection is a process of gathering intrusion-related knowledge occurring in 

the process of monitoring events and analyzing them for signs of intrusion [1]. There 

are two basic IDS approaches: misuse detection (signature-based) and anomaly detec-

tion. The misuse detection system uses patterns of well-known attacks to match and 

identify known intrusions. It performs pattern matching between the captured network 

traffic and attack signatures. If a match is detected, the system generates an alarm. 

The main advantage of the signature detection paradigm is that it can accurately 

detect instances of known attacks. The main disadvantage is that it lacks the ability to 

detect new intrusions or zero-day attacks [16][17].  

The anomaly detection model works by identifying an attack by looking for beha-

viour that is out of the normal. It establishes a baseline model of behaviour for users 

and components in a computer or network. Deviations from the baseline cause alerts 

that direct the attention of human operators to the anomalies [17][18]. This system 



 

 

searches for anomalies either in stored data or in the system activity. The main advan-

tage of anomaly detection is that it does not require prior knowledge of an intrusion 

and thus can detect new intrusions. The main disadvantage is that it may not be able 

to describe what constitutes an attack and may have a high false positive rate 

[16][17][18]. We will develop a hybrid IDS which combines both misuse detection 

and anomaly detection system, but this paper focuses on the first technique. 

2 Data Mining for IDS 

Data mining studies automatic techniques for learning to make accurate predictions 

based on past observations [2]. In the intrusion detection case, data mining can be 

used to build a system that can distinguish intrusions or anomalies from normal net-

work traffic. To build this kind of system, the first step is for the machine learning 

algorithms to learn the training dataset, which contains both normal traffic and intru-

sions. This learning phase results in a model that can be used to determine whether 

the network traffic is normal or an intrusion. There are many possible algorithms that 

can be used in the intrusion detection problem; their performance is measured using 

accuracy rate and false positive rate. In order to achieve a higher accuracy and lower 

false positive rate, many data mining researchers have proposed various ensemble 

learning approaches. It is well known in the data mining literature that the appropriate 

combination of a number of weak classifiers can yield a highly accurate global 

classifier [1].  

3 Ensemble Classifier  

An ensemble classifier is a method which uses or combines multiple classifiers to 

improve robustness as well as to achieve an improved classification performance from 

any of the constituent classifiers. Furthermore, this technique is more resilient to noise 

compared to the use of a single classifier. This method uses a ‘divide and conquer 

approach’ where a complex problem is decomposed into multiple sub-problems that 

are easier to understand and solve. 

Ensemble approaches [2][15] have the advantage that they can be made to adapt to 

any changes in the monitored data stream more accurately than single model tech-

niques. An ensemble classifier has better accuracy than single classification tech-

niques. The success of the ensemble approach depends on the diversity in the individ-

ual classifiers with respect to misclassified instances [3]. According to Polikar [4], 

there are four ways to achieve this diversity, the first is to use different training data to 

train single classifiers, the second is to use different training parameters, the third is to 

use different features to train the classifiers and the final one is to combine different 

types of classifier. 

Dietterich [5] reported that there are three main reasons why an ensemble classifier 

is usually significantly better than a single classifier. Firstly, the training data does not 

always provide sufficient information for selecting a single accurate hypothesis. Se-

condly, the learning processes of the weak classifier might be imperfect, and thirdly, 



 

 

the hypothesis space being searched might not contain the true target function while 

an ensemble classifier can provide a good approximation. 

In this paper we evaluated and analyzed three different ensemble classifier tech-

niques, called bagging, boosting and stacking, using various weak classifiers, such as 

nearest neighbour, decision tree, rule induction and naïve bayes; these were applied 

on a network intrusion dataset [11][12][13]. 

3.1 Bagging 

Bagging, which means bootstrap aggregation, is one of the simplest but most success-

ful ensemble methods for improving unstable classification problems. For example, 

weak classifiers, such as decision tree algorithms, can be unstable, especially when 

the position of a training point changes slightly and can lead to a very different tree. 

This method is usually applied to decision tree algorithms, but it also can be used with 

other classification algorithms such as naïve bayes, nearest neighbour, rule induction, 

etc. The bagging technique is very useful for large and high-dimensional data, such as 

intrusion data sets, where finding a good model or classifier that can work in one step 

is impossible because of the complexity and scale of the problem.  

Bagging was first introduced by Leo Breiman [6] to reduce the variance of a pre-

dictor. It uses multiple versions of a training set which is generated by a random draw 

with the replacement of N examples where N is the size of original training set. Each 

of these data sets is used to train a different model. The outputs of the models are 

combined by voting to create a single output. Details of the bagging algorithm and its 

pseudo-code were given in [10]. 

3.2 Boosting 

Boosting, which was introduced by Schapire et al.[7], is an ensemble method for 

boosting the performance of a set of weak classifiers into a strong classifier. This 

technique can be viewed as a model averaging method and it was originally designed 

for classification, but it can also be applied to regression. Boosting provides sequen-

tial learning of the predictors. The first one learns from the whole data set, while the 

following learns from training sets based on the performance of the previous one. The 

misclassified examples are marked and their weights increased so they will have a 

higher probability of appearing in the training set of the next predictor. It results in 

different machines being specialized in predicting different areas of the dataset [8].  

In this paper, we select an AdaBoost algorithm, which is one of the most widely 

used boosting techniques for constructing a strong classifier as a linear combination 

of weak classifiers. The AdaBoost algorithm was first introduced by Freund and 

Schapire [9] and has been shown to solve many of the practical difficulties of earlier 

boosting algorithms, since it has solid theoretical foundation and produces very accu-

rate predictions. Details of the boosting algorithm and its pseudo-code were given in 

[10]. 



 

 

3.3 Stacking 

Stacking or stacked generalization, is a different technique of combining multiple 

classifiers. Unlike bagging and boosting, stacking is usually used to combine various 

different classifiers, e.g. decision tree, neural network, rule induction, naïve bayes, 

logistic regression, etc. Stacking consists of two levels which are base learner as lev-

el-0 and stacking model learner as level-1. Base learner (level-0) uses many different 

models to learn from a dataset. The outputs of each of the models are collected to 

create a new dataset. In the new dataset, each instance is related to the real value that 

it is suppose to predict. Then that dataset is used by stacking model learner (level-1) 

to provide the final output [8]. For example, the predicted classifications from the 

three base classifiers, naïve bayes, decision tree and rule induction can be used as 

input variables into a nearest neighbour classifier as a stacking model learner, which 

will attempt to learn from the data how to combine the predictions from the different 

models to achieve the best classification accuracy.  Details of the boosting algorithm 

and its pseudo-code were given in [10]. 

4 Experimental Settings 

The following section describes the intrusion data sets used in the experiment, the 

performance metric used to evaluate the proposed system and the experimental set-

tings and its results. 

 

4.1 Intrusion Dataset  

One of the most widely used data sets for evaluating intrusion detection systems 

(IDS) is the DARPA/Lincoln Laboratory off-line evaluation dataset or IDEVAL [11].  

IDEVAL is the most comprehensive testset available today and it was used to develop 

the 1999 KDD Cup data mining competition [12]. In this experiment, we use the 

NSL-KDD intrusion data, which was provided to solve some problems in KDD’99, 

particularly that its training and test sets contained a huge number of redundant 

records with about 78% and 75% of the records being duplicated in the training and 

test sets, respectively. This may cause the classification algorithms to be biased to-

wards these redundant records and thus prevent it from classifying other records [13].  

Table 1. List of intrusions in training and testing data 

Intrusions which exist in both  
training and testing data 

Intrusions which only exist  
in testing data 

back, buffer_overflow,  ftp_write, guess_passwd, imap, 

ipsweep, land, loadmodule, multihop, neptune, nmap, 

phf, pod, portsweep, rootkit, satan, smurf, spy, tear-

drop, warezclient, warezmaster 

apache2, httptunnel, mailbomb, mscan, named, perl, 

processtable, ps, saint, sendmail, snmpgetattack, 

snmpguess, sqlattack, udpstorm, worm, xlock, xsnoop, 

xterm 

 

The intrusion data set consists of forty different intrusions classified into four main 

categories: DoS (Denial of Service), R2L (Remote to Local Attack), U2R (User to 



 

 

Root Attack) and Probing Attack. The training dataset consists of 25,191 instances 

and the testing dataset consists of 11,950 instances. The testing data set has many 

intrusions which do not exist in the training data, as shown in table 1. 

4.2 Performance Metric 

We use accuracy rate and false positive rate as the performance criteria based on the 

following metric shown in Table 2 below.  

Table 2. Performance metric 

 

Actual Result 

Intrusion Normal 

Predicted 
Result 

Intrusion  True Positive (TP) False Positive (FP) 

Normal False Negative (FN) True Negative (TN) 

 

True Positive (TP) is a condition when an actual attack is successfully detected by the 

IDS and True Negative (TN) is a condition when no attack has taken place and no 

IDS alert is raised. False Positive (FP) is an alarm/alert that indicates that an attack is 

in progress when in fact there was no such attack. False Negative (FN) is a failure of 

IDS to detect an actual attack [19]. The accuracy rate and false positive rate are meas-

ured using these following formulas: 
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4.3 Experimental Settings 

We apply various data mining algorithms in the misuse detection module in order to 

find the best method for detecting intrusion based on accuracy, false positives and 

speed (computation time). We use four single algorithms from the Weka Data Mining 

Tools: Naïve Bayes, iBK, Jrip and J48, then apply these algorithms into three differ-

ent ensemble classifiers, which are bagging, boosting and stacking, as shown in Fig-

ure 1 below.  
 

Fig. 1. Misuse detection model 



 

 

These algorithms were executed on a PC with Intel Xeon quad core processors 

2.67 GHz and 12 Gb RAM. In the first experiment, we use 10-fold cross validation as 

a performance measurement while in the second experiment we use testing data 

which contains many new intrusions. 

4.3.1. Cross validation 

For performance measurement, we first use the 10-fold cross validation technique, 

which only needs training data. In 10-fold cross-validation, the original training data 

is randomly partitioned into 10 subsamples. Of the 10 subsamples, a single subsample 

is retained as the validation data for testing the model, and the remaining 9 subsam-

ples are used as training data. The cross-validation process is then repeated 10 times 

with each of the 10 subsamples used exactly once as the validation data. The 10 re-

sults from the folds then can be averaged to produce a single estimate. The results of 

the first experiment are given in Tables 3 and 4 below. 

Table 3. The performance of ensemble classifiers using 10-fold cross validation 

Algo-
rithm 

Accuracy False Positive 

Single Bagging Boosting  Single Bagging Boosting  

Naïve 
Bayes 

89.59% 89.57% 94.56% 10.60% 10.70% 5.30% 

iBK 99.44% 99.44% 99.44% 0.60% 0.60% 0.60% 

Jrip 99.58% 99.71% 99.73% 0.40% 0% 0.30% 

J48 99.56% 99.67% 99.80% 0.40% 0.30% 0.20% 

Table 4. The performance of stacking algorithm using 10-fold cross validation 

Base 
Learner 

Stacking Model 
Learner 

Accuracy 
(%) 

False 
Positive (%) 

Naïve Bayes 

Jrip 99.64% 0.40% iBK 

J48 

Jrip 

Naïve Bayes 99.75% 0.30% iBK 

J48 

Naïve Bayes 

iBK 99.51% 0.50% J48 

Jrip 

Naïve Bayes 

J48 99.63% 0.40% iBK 

Jrip 



 

 

In the stacking method, we use three different algorithms as base learners and an 

algorithm as a stacking model learner. We use various combinations of naïve bayes, 

iBK, J48 and JRip. The classifications predicted by the base learners will be used as 

input variables into a stacking model learner. Each input classifier computes predicted 

classifications using cross validation from which overall performance characteristic 

can be computed. Then the stacking model learner will attempt to learn from the data 

how to combine the predictions from the different models to achieve maximum classi-

fication accuracy. The stacking algorithm experiment results are given in the Table 4. 

4.3.1.1. Results 

Overall, all the algorithms achieved good results, with the highest accuracy being 

99.80% and the lowest being 89.59%. Tables 3 and 4 above show that Adaboost when 

implement with J48 as a weak classifier achieves the highest accuracy, which is 

99.80%, with a false positive (FP) rate of 0.30%. On the other hand, the J48 Bagging 

algorithm achieves the lowest FP rate of 0%. Unfortunately the computation time of 

the three ensemble classifiers are all very high; the slowest one is stacking followed in 

turn by boosting and bagging.  

Table 5. Accuracy improvement on 10 fold cross validation experiment 

Algorithm 
Single  
Classifier 

Accuracy Improvement 

Bagging % Boosting  % Stacking % 

Naïve Bayes 89.59% 89.57% -0.02% 94.56% 5.55% 99.75% 11.34% 

iBK 99.44% 99.44% 0.00% 99.44% 0.00% 99.51% 0.07% 

Jrip 99.58% 99.71% 0.13% 99.73% 0.15% 99.64% 0.06% 

J48 99.56% 99.67% 0.11% 99.80% 0.24% 99.63% 0.07% 

 

Table 5 and Table 6 show that the use of the bagging, boosting and stacking algo-

rithms did not improve the accuracy significantly. Only the use of boosting and stack-

ing on the Naïve Bayes algorithm were able to improve the accuracy, by 5.55% and 

11.22% respectively, while the others showed a less than 1% improvement. 

Table 6. False positive reduction on 10 fold cross validation experiment 

Algorithm 
Single 
Classifier 

False Positive Improvement 

Bagging % Boosting % Stacking % 

Naïve Bayes 10.60% 10.70% -0.94% 5.30% 50.00% 0.30% 97.17% 

iBK 0.60% 0.60% 0.00% 0.60% 0.00% 0.50% 16.67% 

Jrip 0.40% 0.30% 25.00% 0.30% 25.00% 0.40% 0.00% 

J48 0.40% 0.30% 25.00% 0.20% 50.00% 0.40% 0.00% 

 

While the three ensemble algorithms failed to improve the accuracy, they succeed 

in reducing the false positive rates. Bagging was able to reduce the false positive rate 



 

 

by up to 25% when implemented with Jrip and J48, boosting by up to 50% for Naïve 

Bayes and J48, and stacking by up to 96.23% for Naïve Bayes. 

4.3.2. Testing Data 

In the second stage, we implement various single algorithms against the training data 

set to build an intrusion model then apply this model to the testing data which con-

tains a lot of unknown attacks (see Table 1). The results are given in Tables 7 and 8 

below.  

4.3.2.1. Results 

Overall none of the algorithms in the misuse detection module performed very well in 

detecting data with a lot of new intrusions. The best accuracy was only 67.90%, 

which was achieved by the stacking algorithm with iBK as a model learner and three 

other algorithms (Naïve Bayes, Jrip and J48) as base classifiers. Bagging was only 

able to improve it by less than 1% in three methods (Naïve Bayes, iBK, J48) while 

boosting failed to improve any method. The stacking method was able to improve the 

accuracy to 6.90% (Naïve Bayes) and 8.05% (iBK).  

Table 7. Accuracy improvement using testing data experiment 

Algorithm 
Single 
Classifier 

Accuracy Improvement 

Bagging % Boosting  % Stacking % 

Naïve Bayes 55.77% 56.10% 0.59% 37.60% -32.58% 59.62% 6.90% 

iBK 62.84% 
 

62.95% 0.18% 20.90% -66.74% 67.90% 8.05% 

Jrip 63.69% 59.40% -6.74% 18.40% -71.11% 64.31% 0.97% 

J48 63.97% 64.51% 0.84% 18.80% -70.61% 61.23% -4.28% 

 

The bagging algorithm failed to reduce the false positive rates in three base clas-

sifiers (Naïve Bayes, iBK, JRip) and was only able to reduce it by 1.12% with J48 as 

a base classifier. Boosting is worse than bagging because it failed to reduce the false 

positive rates on all four base classifiers.  

Table 8. False positive reduction using testing data experiment 

Algorithm 
Single 
Classifier 

False Positive Improvement 

Bagging % Boosting  % Stacking % 

Naïve Bayes 34.80% 35.10% -0.86% 37.60% -8.05% 18.50% 46.84% 

iBK 20.90% 20.90% 0.00% 20.90% 0.00% 17.40% 16.75% 

Jrip 18.00% 19.00% -5.56% 18.40% -2.22% 16.90% 6.11% 

J48 17.90% 17.70% 1.12% 18.80% -5.03% 19.60% -9.50% 



 

 

Stacking algorithm is the only approach which was able to reduce the false positive 

rates significantly, with a 46.84% reduction on Naïve Bayes, a 16.75% reduction on 

iBK and a 6.11% reduction on JRip, even though it failed on J48 (-9.50%). 

 

 

Fig. 2. Execution time comparison for single classifier bagging, boosting and stacking 

Figure 2 shows that the use of bagging, boosting and stacking significantly in-

creases the execution time. The slowest is stacking followed in turn by bagging and 

boosting. The stacking method was able to reduce the false positive rate, but it would 

be too slow to implement in a misuse detection module. The bagging method, espe-

cially when applied to the iBK and Naïve Bayes algorithms, did not increase the ex-

ecution time significantly and only improves the accuracy by 0.18% (iBK) and 0.59% 

(Naïve Bayes). Furthermore, bagging failed to reduce the false positive rate in either 

algorithm.  

5 Conclusions 

We investigated the possibility of using ensemble algorithms (bagging, boosting and 

stacking) to improve the performance on network intrusion detection systems. Our 

experiment shows that a misuse detection module which implements four base clas-

sifiers and three ensemble algorithms achieves an accuracy of more than 99% in de-

tecting known intrusions, but failed to detect novel intrusions with the accuracy rates 

of around just 60%. The use of bagging, boosting and stacking is unable to signifi-

cantly improve the accuracy. Stacking is the only method that was able to reduce the 

false positive rate by a relatively high amount; unfortunately, this method has the 

longest execution time which is a serious disadvantage in the intrusion detection field. 

Of the four single classifiers used, J48 outperformed the three other methods by 

achieving the highest accuracy rates and the lowest false positive rate, with a relative-

ly fast execution time. To improve the ability to detect new intrusions, we propose to 

develop an anomaly detection module and integrate both systems to produce a hybrid 

intrusion detection system. 
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