Skip to main content

Mesoporous Transition Metal Oxide Ceramics

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

This review article gives an overview about mesoporous materials including conventional widely applied materials such as zeolites, as well as novel materials, especially functionalized transition metal oxide ceramics. While providing a broad insight into the processing and structure of conventional mesoporous materials, the article focuses on the synthesis, functionalization, and potential application of mesoporous transition metal oxide ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bekkum HV, Flanigen EM, Jansen JC (1991) Introduction to zeolite science and practice. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  2. Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702

    Google Scholar 

  3. Szostak R (1998) Molecular sieves. Springer, New York, USA

    Google Scholar 

  4. van der Waal J, van Bekkum H (1998) Molecular sieves; multifunctional microporous materials in organic synthesis. J Porous Mat 5:289–303

    Google Scholar 

  5. Flanigen EM (2005) Molecular sieve zeolites: an industrial research success story. Res Technol Manage 48:29–33

    Google Scholar 

  6. Sherman JD (1999) Synthetic zeolites and other microporous oxide molecular sieves. Proc Natl Acad Sci USA 96:3471–3478

    Google Scholar 

  7. Schmidt I, Madsen C, Jacobsen CJH (2000) Confined space synthesis. A novel route to nanosized zeolites. Inorg Chem 39:2279–2283

    Google Scholar 

  8. Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes – state of their development and perspective. Micropor Mesopor Mat 38:3–24

    Google Scholar 

  9. Millini R, Perego C (2009) The role of molecular mechanics and dynamics methods in the development of zeolite catalytic processes. Top Catal 52:42–66

    Google Scholar 

  10. Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768

    Google Scholar 

  11. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J Am Chem Soc 104:1146–1147

    Google Scholar 

  12. Balkus KJ, Gabrielov AG (1995) Zeolite encapsulated metal complexes. J Incl Phenom Macro 21:159–184

    Google Scholar 

  13. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314

    Google Scholar 

  14. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317

    Google Scholar 

  15. Ramamurthy V, Eaton DF, Caspar JV (1992) Photochemical and photophysical studies of organic molecules included within zeolites. Acc Chem Res 25:299–307

    Google Scholar 

  16. Wilson ST, Lok BM, Flanigen EM (1982) Crystalline metallophosphate compositions. US Patent 4310440

    Google Scholar 

  17. Casci J (1994) The preparation and potential applications of ultra-large pore molecular sieves: a review, Advanced zeolite science and applications. Elsevier, Amsterdam, Netherlands, pp 329–356

    Google Scholar 

  18. De Man AJM, Van Santen RA, Vogt ETC (1992) Modeling of AlPO4-8, VPI-5, and related structures. J Phys Chem 96:10460–10466

    Google Scholar 

  19. Davis ME (1991) Grand openings for cloverite. J Incl Phenom Macro 11:283–285

    Google Scholar 

  20. Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier, Amsterdam

    Google Scholar 

  21. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered Mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Google Scholar 

  22. Vartuli JC, Schmitt KD, Kresge CT, Roth WJ, Leonowicz ME, McCullen SB, Hellring SD, Beck JS, Schlenker JL (1994) Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem Mater 6:2317–2326

    Google Scholar 

  23. Cheng C, He H, Zhou W, Klinowski J (1995) Crystal morphology supports the liquid crystal formation mechanism for the mesoporous molecular sieve MCM-41. Chem Phys Lett 244:117–120

    Google Scholar 

  24. Alfredsson V, Anderson MW (1996) Structure of MCM-48 revealed by transmission electron microscopy. Chem Mater 8:1141–1146

    Google Scholar 

  25. Tanev PT, Pinnavaia TJ (1996) Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science 271:1267–1269

    Google Scholar 

  26. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191

    Google Scholar 

  27. Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schüth F, Stucky GD (1994) Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368:317–321

    Google Scholar 

  28. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO by a modified sol–gel method. Angew Chem Int Ed 34:2014–2017

    Google Scholar 

  29. Boyse RA, Ko EI (1996) Preparation and characterization of zirconia-phosphate aerogels. Catal Lett 38:225–230

    Google Scholar 

  30. Tian Z, Tong W, Wang J, Duan N, Krishnan VV, Suib SL (1997) Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 276:926–930

    Google Scholar 

  31. Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10:2950–2963

    Google Scholar 

  32. Ciesla U, Schüth F (1999) Ordered mesoporous materials. Micropor Mesopor Mat 27:131–149

    Google Scholar 

  33. Schuth F (2001) Non-siliceous mesostructured and mesoporous materials. Chem Mater 13:3184–3195

    Google Scholar 

  34. Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Micropor Mesopor Mat 77:1–45

    Google Scholar 

  35. Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593

    Google Scholar 

  36. Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8:1682–1701

    Google Scholar 

  37. Voss R, Thomas A, Antonietti M, Ozin GA (2005) Synthesis and characterization of highly amine functionalized mesoporous organosilicas by an “all-in-one” approach. J Mater Chem 15:4010–4014

    Google Scholar 

  38. Choi D, Yang S (2003) Effect of two-step sol–gel reaction on the mesoporous silica structure. J Colloid Interface Sci 261:127–132

    Google Scholar 

  39. Wold A, Dwight K (1993) Solid state chemistry. Springer, New York, USA

    Google Scholar 

  40. Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Ch 18:259–341

    Google Scholar 

  41. Turova NY (2002) The chemistry of metal alkoxides. Springer, New York, USA

    Google Scholar 

  42. Bradley DC (1989) Metal alkoxides as precursors for electronic and ceramic materials. Chem Rev 89:1317–1322

    Google Scholar 

  43. Sakka S, Kamiya K (1982) The sol–gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films. J Non-Cryst Solids 48:31–46

    Google Scholar 

  44. Livage J, Sanchez C (1992) Sol–gel chemistry. J Non-Cryst Solids 145:11–19

    Google Scholar 

  45. Ding X, Qi Z, He Y (1995) Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol–gel process. J Mater Sci Lett 14:21–22

    Google Scholar 

  46. Xia H, Liu X, Zhang K (2008) Nano-architecture by molecular structure-directing agent. Chem Mater 20:2432–2434

    Google Scholar 

  47. Evans DF, Wennerström H (1999) The colloidal domain. Wiley-VCH, New York, USA

    Google Scholar 

  48. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, Hoboken, USA

    Google Scholar 

  49. Palmqvist AEC (2003) Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr Opin Colloid In 8:145–155

    Google Scholar 

  50. Attard GS, Corker JM, Göltner CG, Henke S, Templer RH (1997) Liquid-crystal templates for nanostructured metals. Angew Chem Int Ed 36:1315–1317

    Google Scholar 

  51. Renzo FD, Galarneau A, Trens P, Fajula F (2004) Ordered mesoporous oxides: micelle-templated materials. ChemInform 35:1311–1395

    Google Scholar 

  52. Beck JS, Vartuli JC (1996) Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Curr Opin Solid State Mater Sci 1:76–87

    Google Scholar 

  53. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867

    Google Scholar 

  54. Soler-Illia GJDAA, Crepaldi EL, Grosso D, Sanchez C (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid In 8:109–126

    Google Scholar 

  55. Liu F, Weng-hua Z, Shuo-kui H, Lian-sheng [1] W, Zheng Z (1996) Hydrolysis kinetics of phenylthio-carboxylates. Chemosphere 32:1691–1697

    Google Scholar 

  56. Luca V, Bertram WK, Widjaja J, Mitchell DR, Griffith CS, Drabarek E (2007) Synthesis of mesoporous zirconium titanates using alkycarboxylate surfactants and their transformation to dense ceramics. Micropor Mesopor Mat 103:123–133

    Google Scholar 

  57. Soler-Illia GJDAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138

    Google Scholar 

  58. Takenaka S, Takahashi R, Sato S, Sodesawa T (2000) Structural study of mesoporous titania prepared from titanium alkoxide and carboxylic acids. J Sol–gel Sci Techn 19:711–714

    Google Scholar 

  59. Sato S, Oimatsu S, Takahashi R (1997) Pore size regulation of TiO2 by use of a complex of titanium tetraisopropoxide and stearic acid. Chem Commun 12:2219–2220

    Google Scholar 

  60. Antonelli DM (1999) Synthesis and mechanistic studies of sulfated meso- and microporous zirconias with chelating carboxylate surfactants. Adv Mater 11:487–492

    Google Scholar 

  61. Arpornpong N, Charoensaeng A, Sabatini D, Khaodhiar S (2010) Ethoxy carboxylate extended surfactant: micellar, adsorption and adsolubilization properties. J Surfactants Deterg. doi:10.1007/s11743-010-1179-6

    Google Scholar 

  62. Vaudry F, Khodabandeh S, Davis ME (1996) Synthesis of pure alumina mesoporous materials. Chem Mater 8:1451–1464

    Google Scholar 

  63. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 11:2813–2826

    Google Scholar 

  64. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155

    Google Scholar 

  65. Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Hierarchically ordered oxides. Science 282:2244–2246

    Google Scholar 

  66. Harnley IW (2003) Nanostructure fabrication using block copolymers. Nanotechnology 14:R39

    Google Scholar 

  67. Smarsly B, Antonietti M (2006) Block copolymer assemblies as templates for the generation of mesoporous inorganic materials and crystalline films. Eur J Inorg Chem 206:1111–1119

    Google Scholar 

  68. Chen D, Li Z, Wan Y, Tu X, Shi Y, Chen Z, Shen W, Yu C, Tu B, Zhao D (2006) Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. J Mater Chem 16:1511–1519

    Google Scholar 

  69. Li M, Ober CK (2006) Block copolymer patterns and templates. Mater Today 9:30–39

    Google Scholar 

  70. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    Google Scholar 

  71. Brezesinski T, Smarsly B, Iimura K, Grosso D, Boissière C, Amenitsch H, Antonietti M, Sanchez C (2005) Self-assembly and crystallization behavior of mesoporous, crystalline HfO2 thin films: a model system for the generation of mesostructured transition-metal oxides. Small 1:889–898

    Google Scholar 

  72. Grosso D, Babonneau F, Sanchez C, GDeAA S-I, Crepaldi E, Albouy P, Amenitsch H, Balkenende A, Brunet-Bruneau A (2003) A first insight in the mechanisms involved in the self-assembly of 2D-hexagonal templated SiO2 and TiO2 mesostructured films during dip-coating. J Sol–gel Sci Techn 26:561–565

    Google Scholar 

  73. Grosso D, Cagnol F, Soler-Illia G, Crepaldi E, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14:309–322

    Google Scholar 

  74. Gibaud A, Grosso D, Smarsly B, Baptiste A, Bardeau JF, Babonneau F, Doshi DA, Chen Z, Brinker CJ, Sanchez C (2003) Evaporation-controlled self-assembly of silica surfactant mesophases. J Phys Chem B 107:6114–6118

    Google Scholar 

  75. Soler-Illia GJDAA, Louis A, Sanchez C (2002) Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly. Chem Mater 14:750–759

    Google Scholar 

  76. Luca V, Hook JM (1997) Study of the structure and mechanism of formation through self-assembly of mesostructured vanadium oxide. Chem Mater 9:2731–2744

    Google Scholar 

  77. Kleitz F (2002) Ordered mesoporous materials: template removal, frameworks and morphology. PhD thesis, Ruhr-Universität Bochum

    Google Scholar 

  78. Feng X, Fryxell GE, Wang L, Kim AY, Liu J, Kemner KM (1997) Functionalized monolayers on ordered mesoporous supports. Science 276:923–926

    Google Scholar 

  79. Mercier L, Pinnavaia TJ (1998) Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake. Environ Sci Technol 32:2749–2754

    Google Scholar 

  80. Liu J, Feng X, Fryxell GE, Wang L, Kim AY, Gong M (1998) Hybrid mesoporous materials with functionalized monolayers. Adv Mater 10:161–165

    Google Scholar 

  81. Cosnier S, Gondran C, Senillou A, Grätzel M, Vlachopoulos N (1997) Mesoporous TiO2 films: new catalytic electrode fabricating amperometric biosensors based on oxidases. Electroanal 9:1387–1392

    Google Scholar 

  82. Mutin PH, Guerrero G, Vioux A (2003) Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C R Chim 6:1153–1164

    Google Scholar 

  83. Crepaldi EL, Soler-Illia GJDAA, Grosso D, Sanchez C, Albouy P (2001) Design and post-functionalisation of ordered mesoporous zirconia thin films. Chem Commun 11:1582–1583

    Google Scholar 

  84. Vichi FM, Tejedor-Tejedor MI, Anderson MA (2000) Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide. Chem Mater 12:1762–1770

    Google Scholar 

  85. Kapoor S, Girish TS, Mandal SS, Gopal B, Bhattacharyya AJ (2010) Inhibition of a protein tyrosine phosphatase using mesoporous oxides. J Phys Chem B 114:3117–3121

    Google Scholar 

  86. Das SK, Kapoor S, Yamada H, Bhattacharyya AJ (2009) Effects of surface acidity and pore size of mesoporous alumina on degree of loading and controlled release of ibuprofen. Micropor Mesopor Mat 118:267–272

    Google Scholar 

  87. Huang Z, Tang F (2005) Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J Colloid Interface Sci 281:432–436

    Google Scholar 

  88. Sanchez C, Soler-Illia GJDAA, Ribot F, Grosso D (2003) Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. C R Chim 6:1131–1151

    Google Scholar 

  89. Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker CJ (2000) Rapid prototyping of patterned functional nanostructures. Nature 405:56–60

    Google Scholar 

  90. Juan FD, Ruiz-Hitzky E (2000) Selective functionalization of mesoporous silica. Adv Mater 12:430–432

    Google Scholar 

  91. Jia M, Seifert A, Berger M, Giegengack H, Schulze S, Thiel WR (2004) Hybrid mesoporous materials with a uniform ligand distribution: synthesis, characterization, and application in epoxidation catalysis. Chem Mater 16:877–882

    Google Scholar 

  92. Mbaraka IK, Shanks BH (2006) Acid strength variation due to spatial location of organosulfonic acid groups on mesoporous silica. J Catal 244:78–85

    Google Scholar 

  93. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251

    Google Scholar 

  94. Brunel D, Cauvel A, Fajula F, DiRenzo F (1995) MCM-41 type silicas as supports for immobilized catalysts, zeolites: a refined tool for designing catalytic sites. Proceedings of the international zeolite symposium. Elsevier, pp 173–180

    Google Scholar 

  95. Sayari A, Kruk M, Jaroniec M, Moudrakovski IL (1998) New approaches to pore size engineering of mesoporous silicates. Adv Mater 10:1376–1379

    Google Scholar 

  96. Wight AP, Davis ME (2002) Design and preparation of organic − inorganic hybrid catalysts. Chem Rev 102:3589–3614

    Google Scholar 

  97. Park SS, Ha C (2006) Organic–inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control. Chem Rec 6:32–42

    Google Scholar 

  98. Shi J, Hua Z, Zhang L (2004) Nanocomposites from ordered mesoporous materials. J Mater Chem 14:795–806

    Google Scholar 

  99. Radu DR, Lai C, Huang J, Shu X, Lin VS (2005) Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method. Chem Commun 14:1264–1266

    Google Scholar 

  100. Aliev A, Ou DL, Ormsby B, Sullivan AC (2000) Porous silica and polysilsesquioxane with covalently linked phosphonates and phosphonic acids. J Mater Chem 10:2758–2764

    Google Scholar 

  101. Corriu RJP, Leclercq D, Mutin PH, Sarlin L, Vioux A (1998) Nonhydrolytic sol–gel routes to layered metal(IV) and silicon phosphonates. J Mater Chem 8:1827–1833

    Google Scholar 

  102. Hu W, Yuan C, Li S (2002) Synthesis of hindered alkyl phosphonates and phosphonic and phosphinic acids. Chin Chem Lett 3:167–170

    Google Scholar 

  103. Dudarko O, Mel’nyk I, Zub Y, Chuiko A, Dabrowski A (2006) Template-directed synthesis of mesoporous silicas containing phosphonic acid derivatives in the surface layer. Inorg Mater 42:360–367

    Google Scholar 

  104. Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435

    Google Scholar 

  105. Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768

    Google Scholar 

  106. Moyer BA (2009) Ion exchange and solvent extraction. CRC Press, Boca Raton, USA

    Google Scholar 

  107. Colella C (1996) Ion exchange equilibria in zeolite minerals. Miner Deposita 31:554–562

    Google Scholar 

  108. Marinin DV, Brown GN (2000) Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Manag 20:545–553

    Google Scholar 

  109. Killey RWD, McHugh JO, Champ DR, Cooper EL, Young JL (1984) Subsurface cobalt-60 migration from a low-level waste disposal site. Environ Sci Technol 18:148–157

    Google Scholar 

  110. Hou X, Dahlgaard H, Rietz B, Jacobsen U, Nielsen SP, Aarkrog A (1999) Determination of chemical species of iodine in seawater by radiochemical neutron activation analysis combined with ion-exchange preseparation. Anal Chem 71:2745–2750

    Google Scholar 

  111. Vaaramaa K, Lehto J (2003) Removal of metals and anions from drinking water by ion exchange. Desalination 155:157–170

    Google Scholar 

  112. Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29

    Google Scholar 

  113. Moon J, Kim K, Jung C, Shul Y, Lee E (2000) Preparation of organic–inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions. J Radioan Nucl Ch 246:299–307

    Google Scholar 

  114. Helfferich FG (1995) Ion exchange. Courier Dover, New York, USA

    Google Scholar 

  115. Muraviev D, Gorshkov VI, Warshawsky A (1999) Ion exchange. CRC Press, Boca Raton, USA

    Google Scholar 

  116. De Bokx PK, Boots HMJ (1989) The ion-exchange equilibrium. J Phys Chem 93:8243–8248

    Google Scholar 

  117. Helfferich F (1965) Ion-exchange kinetics. V. Ion exchange accompanied by reactions. J Phys Chem 69:1178–1187

    Google Scholar 

  118. Marcus Y, SenGupta AK (2004) Ion exchange and solvent extraction. CRC Press, Boca Raton, USA

    Google Scholar 

  119. Buckingham AD (1957) A theory of ion-solvent interaction. Discuss Faraday Soc 24:151–157

    Google Scholar 

  120. Essington ME (2004) Soil and water chemistry. CRC Press, Boca Raton, USA

    Google Scholar 

  121. Nightingale ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387

    Google Scholar 

  122. Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton, USA

    Google Scholar 

  123. Zagorodni AA (2007) Ion exchange materials. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  124. Knepper TP (2003) Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trends Anal Chem 22:708–724

    Google Scholar 

  125. Valsami-Jones E (2004) Phosphorus in environmental technologies. IWA Publishing, London, UK

    Google Scholar 

  126. Ahearn JS, Davis GD (1989) Improved durability of aluminum adhesive bonds with phosphonic acid inhibitors. J Adhes 28:75

    Google Scholar 

  127. Matienzo LJ, Shaffer DK, Moshier WC, Davis GD (1986) Environmental and adhesive durability of aluminium-polymer systems protected with organic corrosion inhibitors. J Mater Sci 21:1601–1608

    Google Scholar 

  128. Thi Xuan Hang T, Truc TA, Nam TH, Oanh VK, Jorcin J, Pébère N (2007) Corrosion protection of carbon steel by an epoxy resin containing organically modified clay. Surf Coat Technol 201:7408–7415

    Google Scholar 

  129. Gu Y, Yeung AT, Koenig A, Li H (2009) Effects of chelating agents on zeta potential of cadmium-contaminated natural clay. Sep Sci Technol 44:2203

    Google Scholar 

  130. Schwartz M (2008) Smart materials. CRC Press, Boca Raton, USA

    Google Scholar 

  131. Ma T, Zhang X, Yuan Z (2009) Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J Phys Chem C 113:12854–12862

    Google Scholar 

  132. Ma T, Zhang X, Yuan Z (2009) High selectivity for metal ion adsorption: from mesoporous phosphonated titanias to meso-/macroporous titanium phosphonates. J Mater Sci 44:6775–6785

    Google Scholar 

  133. Sizgek GD, Griffith CS, Sizgek E, Luca V (2009) Mesoporous zirconium titanium oxides. Part 3. Synthesis and adsorption properties of unfunctionalized and phosphonate-functionalized hierarchical polyacrylonitrile-F-127-templated beads. Langmuir 25:11874–11882

    Google Scholar 

  134. Nowack B (2008) Chelating agents and the environment. Environ Pollut 153:1–20

    Google Scholar 

  135. Chesnut CH, McClung MR, Ensrud KE, Bell NH, Genant HK, Harris ST, Singer FR, Stock JL, Yood RA, Delmas PD, Kher U, Pryor-Tillotson S, Santora AC (1995) Alendronate treatment of the postmenopausal osteoporotic woman: effect of multiple dosages on bone mass and bone remodeling. Am J Med 99:144–152

    Google Scholar 

  136. Tucci JR, Tonino RP, Emkey RD, Peverly CA, Kher U, Santora AC II (1996) Effect of three years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med 101:488–501

    Google Scholar 

  137. Yasui T, Fujita K, Sasaki S, Iguchi M, Hirota S, Nomura S, Azuma Y, Ohta T, Kohri K (1998) Alendronate inhibits osteopontin expression enhanced by parathyroid hormone-related peptide (PTHrP) in the rat kidney. Urol Res 26:355–360

    Google Scholar 

  138. Roelofs AJ, Thompson K, Gordon S, Rogers MJ (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12:6222s–6230s

    Google Scholar 

  139. Kuljanin J, Jankovic I, Nedeljkovic J, Prstojevic D, Marinkovic V (2002) Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J Pharm Biomed Anal 28:1215–1220

    Google Scholar 

  140. Ostović D, Stelmach C, Hulshizer B (1993) Formation of a chromophoric complex between alendronate and copper(II) ions. Pharm Res 10:470–472

    Google Scholar 

  141. Kontturi M, Peräniemi S, Vepsäläinen JJ, Ahlgrén M (2005) X-ray diffraction study of bisphosphonate metal complexes: Mg and Ca complexes of (dichloromethylene)bisphosphonic acid P, P′-diisopropyl ester. Polyhedron 24:305–309

    Google Scholar 

  142. Balas F, Manzano M, Horcajada P, Vallet-Regí M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 128:8116–8117

    Google Scholar 

  143. Nieto A, Balas F, Colilla M, Manzano M, Vallet-Regí M (2008) Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage. Micropor Mesopor Mat 116:4–13

    Google Scholar 

  144. Gao Y, Oshita K, Lee K, Oshima M, Motomizu S (2002) Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry. Analyst 127:1713–1719

    Google Scholar 

  145. Mao J, Clearfield A (2002) Metal carboxylate-phosphonate hybrid layered compounds: synthesis and single crystal structures of novel divalent metal complexes with N-(phosphonomethyl)iminodiacetic acid. Inorg Chem 41:2319–2324

    Google Scholar 

  146. Crans DC, Jiang F, Boukhobza I, Bodi I, Kiss T (1999) Solution characterization of vanadium(V) and -(IV) N-(phosphonomethyl)iminodiacetate complexes: direct observation of one enantiomer converting to the other in an equilibrium mixture. Inorg Chem 38:3275–3282

    Google Scholar 

  147. Shi F, Almeida Paz FA, Girginova PI, Mafra L, Amaral VS, Rocha J, Makal A, Wozniak K, Klinowski J, Trindade T (2005) Hydrothermal synthesis, structural characterisation and magnetic behaviour of hybrid complexes of N-(phosphonomethyl)iminodiacetate. J Mol Struct 754:51–60

    Google Scholar 

  148. Papastefanou C (2010) Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review. J Environ Radioact 101:191–200

    Google Scholar 

  149. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Google Scholar 

  150. Galarneau A (2001) Zeolites and mesoporous materials at the dawn of the 21st century. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  151. Eccles H (1995) Removal of heavy metals from effluent streams -why select a biological process? Int Biodeter Biodegr 35:5–16

    Google Scholar 

  152. Choppin GR (2006) Actinide speciation in aquatic systems. Mar Chem 99:83–92

    Google Scholar 

  153. Moulin V, Moulin C (2001) Radionuclide speciation in the environment: a review. Radiochimica Acta 89:773

    Google Scholar 

  154. Ju YH, Webb OF, Dai S, Lin JS, Barnes CE (2000) Synthesis and characterization of ordered mesoporous anion-exchange inorganic/organic hybrid resins for radionuclide separation. Ind Eng Chem Res 39:550–553

    Google Scholar 

  155. Birnbaum JC, Busche B, Lin Y, Shaw WJ, Fryxell GE (2002) Synthesis of carbamoylphosphonate silanes for the selective sequestration of actinides. Chem Commun 11:1374–1375

    Google Scholar 

  156. Sportsman KS, Bluhm EA, Abney KD (2005) Removal of actinides from acidic solution via carrier-mediated facilitated transport across mesoporous substrates with nanoengineered surfaces: thiol self-assembled monolayers with D(tBu)ΦD(iBu)CMPO – ligands. Sep Sci Technol 40:709–719

    Google Scholar 

  157. Yantasee W, Fryxell GE, Addleman RS, Wiacek RJ, Koonsiripaiboon V, Pattamakomsan K, Sukwarotwat V, Xu J, Raymond KN (2009) Selective removal of lanthanides from natural waters, acidic streams and dialysate. J Hazard Mater 168:1233–1238

    Google Scholar 

  158. Weber W, Ewing R, Catlow C, Diaz de la Rubia T, Hobbs L, Kinoshita C, Matzke H, Motta A, Nastasi M, Salje E, Vance E, Zinkle S (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484

    Google Scholar 

  159. Kim TK, Yang XM, Peters RD, Sohn BH, Nealey PF (2000) Chemical modification of self-assembled monolayers by exposure to soft X-rays in air. J Phys Chem B 104:7403–7410

    Google Scholar 

  160. Feulner P, Niedermayer T, Eberle K, Schneider R, Menzel D, Baumer A, Schmich E, Shaporenko A, Tai Y, Zharnikov M (2004) Strong temperature dependence of irradiation effects in organic layers. Phys Rev Lett 93:178302

    Google Scholar 

  161. Zharnikov M, Frey S, Heister K, Grunze M (2000) Modification of alkanethiolate monolayers by low energy electron irradiation: dependence on the substrate material and on the length and isotopic composition of the alkyl chains. Langmuir 16:2697–2705

    Google Scholar 

  162. Mincher B, Modolo G, Mezyk S (2009) Review article: the effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction. Solvent Extr Ion Exc 27:579–606

    Google Scholar 

  163. Wagner R, Kinderman E, Towle L (1959) Radiation stability of organophosphorous compounds. J Ind Eng Chem 51:45–46

    Google Scholar 

  164. Chiarizia R, Horwitz E (2000) Radiolytic stability of some recently developed ion exchange and extraction chromatographic resins containing diphosphonic acid groups. Solvent Extr Ion Exc 18:109–132

    Google Scholar 

  165. Huai-Yu S, Zhi-Zhong W, Yao-Huan C, Yong-Hai H, Qi-Zhong W, Jin-Tai C, Ren-Zhong L (1989) A study of the radiation chemistry of phosphorous compounds. Int J Radiat Appl Inst Pt C Radiat Phys Ch 33:585–597

    Google Scholar 

  166. Allcock HR, Hofmann MA, Ambler CM, Lvov SN, Zhou XY, Chalkova E, Weston J (2002) Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells. J Membr Sci 201:47–54

    Google Scholar 

  167. Alberti G, Costantino U, Szirtes L (1997) Effect of ionising radiation on intercalation compounds and organic derivatives of zirconium phosphates I. Effect of irradiation on carboxyethylphosphonic and phenylphosphonic acids and on the corresponding layered zirconium phosphonates. Radiat Phys Chem 50:369–376

    Google Scholar 

  168. Shakshooki S, Szirtes L, Dehair A, Elmismary Y, Haraga S, Benfaid N, Benhamed A, Maiof A (1988) Mixed insoluble acidic salts of tetravalent metals V. Effect of gamma radiation and drying temperature on granular mixed zirconium-titanium phosphates. J Radioan Nuclear Ch 121:185–193

    Google Scholar 

  169. Szirtes L, Megyeri J, Riess L, Kuzmann E, Havancsák K (2005) Swift heavy ion and gamma-ray irradiation of various double metal phosphates. Radiat Phys Chem 73:39–44

    Google Scholar 

  170. De Los Reyes M, Majewski P, unpublished data

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Majewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Los Reyes, M., Majewski, P. (2014). Mesoporous Transition Metal Oxide Ceramics. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_5

Download citation

Publish with us

Policies and ethics