Skip to main content

Magnetite and Other Fe-Oxide Nanoparticles

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Magnetic NPs containing 3D transition metal oxides or relative mixtures are one of the most studied nanomaterials in view of their prospective, ubiquitous applications in quite different areas, the most important being biomedicine, sensor technology, and magnetic recording [1]. According to their usage, magnetic NPs are often either embedded in a diamagnetic solid [2] or dispersed in a fluid; in some cases they are surrounded by an outer shell of a diamagnetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reiss G, Hutten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726

    Article  Google Scholar 

  2. Allia P, Tiberto P, Coisson M, Chiolerio A, Celegato F, Vinai F, Sangermano M, Suber L, Marchegiani G (2011) Evidence for magnetic interactions among magnetite nanoparticles dispersed in photoreticulated PEGDA-600 matrix. J Nanopart Res 13:5615–5626

    Article  Google Scholar 

  3. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic Iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterization and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  4. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  5. Teja AS, Koh PY (2009) Synthesis, properties and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  Google Scholar 

  6. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    Article  Google Scholar 

  7. Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61:151–170

    Article  Google Scholar 

  8. Schlueter C, Lübbe M, Gigler AM, Moritz W (2011) Growth of iron oxides on Ag(111) – reversible Fe2O3/Fe3O4 transformation. Surf Sci 605:1986–1993

    Article  Google Scholar 

  9. Baldokhin YV, Suzdalev IP, Prusakov VE, Burnazyan DA, Korneev VP, Kovalenko LV, Folmanis GE (2012) A study of nanostructures formed in the hydrogen reduction of Fe(OH)3. Russ J Phys Chem B 6:81–88

    Article  Google Scholar 

  10. Fei X, Shao Z, Chen X (2013) Hematite nanostructures synthesized by a silk fibroin-assisted hydrothermal method. J Mater Chem B 1:213–220

    Article  Google Scholar 

  11. Bayat M, Yang H, Ko F (2011) Electromagnetic properties of electrospun Fe3O4/carbon composite nanofibers. Polymer 52:1645–1653

    Article  Google Scholar 

  12. Zhan Y, Meng F, Yang X, Zhao R, Liu X (2011) Solvothermal synthesis and characterization of functionalized graphene sheets (FGSs)/magnetite hybrids. Mater Sci Eng B 176:1333–1339

    Article  Google Scholar 

  13. Zhan Y, Meng F, Yang X, Liu X (2011) Magnetite-graphene nanosheets (GNs)/poly(arylene ether nitrile) (PEN): fabrication and characterization of a multifunctional nanocomposite film. Colloids Surf A Physicochem Eng Aspects 390:112–119

    Article  Google Scholar 

  14. Maity D, Choo SG, Yi J, Ding J, Xue JM (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321:1256–1259

    Article  Google Scholar 

  15. Asuhan S, Wan HL, Zhao S, Deligeer W, Wu HY, Song L, Tegus O (2012) Water-soluble, mesoporous Fe3O4: synthesis, characterization, and properties. Ceram Int 38:6579–6584

    Article  Google Scholar 

  16. Liu J, Wang L, Wang J, Zhang L (2013) Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe3O4 nanoparticles. Mater Res Bull 48:416–421

    Article  Google Scholar 

  17. Cheng JP, Ma R, Shi D, Liu F, Zhang XB (2011) Rapid growth of magnetite nanoplates by ultrasonic irradiation at low temperature. Ultrason Sonochem 18:1038–1042

    Article  Google Scholar 

  18. Liu XM, Kim JK (2009) Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Mater Lett 63:428–430

    Article  Google Scholar 

  19. Podoliak N, Buchnev O, Bavykin DV, Kulak AN, Kaczmarek M, Sluckin TJ (2012) Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory. J Colloid Interface Sci 386:158–166

    Article  Google Scholar 

  20. Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219:209–216

    Article  Google Scholar 

  21. Monti M, Santos B, Mascaraque A, Rodrıguez de la Fuente O, Niño MA, Mentes TO, Locatelli A, McCarty KF, Marco JF, de la Figuera J (2012) Magnetism in nanometer-thick magnetite. Phys Rev B 85:020404

    Article  Google Scholar 

  22. Zajac M, Freindl K, Slezak T, Slezak M, Spiridis N, Wilgocka-Slezak D, Korecki J (2011) Electronic and magnetic properties of ultra-thin epitaxial magnetite films on MgO(001). Thin Solid Films 519:5588–5595

    Article  Google Scholar 

  23. Deng Y, Zhang Q, Shi Z, Han L, Peng F, Chen G (2012) Synergies of the crystallinity and conductive agents on the electrochemical properties of the hollow Fe3O4 spheres. Electrochim Acta 76:495–503

    Article  Google Scholar 

  24. Nguyen DT, Kim KS (2012) One-pot synthesis of multifunctional magnetite hollow nanospheres. 2012 International conference on biomedical engineering and biotechnology. doi:10.1109/iCBEB.2012.288

    Google Scholar 

  25. Yu X, Chen K (2011) A facile surfactant-free fabrication of single-crystalline truncated Fe3O4 cubes. Mater Sci Eng B 176:750–755

    Article  Google Scholar 

  26. Abu Bakar M, Tan WL, Abu Bakar NHH (2007) A simple synthesis of size-reduce magnetite nano-crystals via aqueous to toluene phase-transfer method. J Magn Magn Mater 314:1–6

    Article  Google Scholar 

  27. Wang J, Xia T, Wu C, Feng J, Meng F, Shi Z, Meng L (2012) Self-assembled magnetite peony structures with petal-like nanoslices: one-step synthesis, excellent magnetic and water treatment properties. RSC Adv 2:4220–4227

    Article  Google Scholar 

  28. Qin Z, Jiao X, Chen D (2011) Preparation of coral-like magnetite through a glucose-assisted solvothermal synthesis. Cryst Eng Commun 13:4646–4651

    Article  Google Scholar 

  29. Chen F, Gao Q, Hong G, Ni J (2008) Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J Magn Magn Mater 320:1775–1780

    Article  Google Scholar 

  30. Guo C, Hu Y, Qian H, Ning J, Xu S (2011) Magnetite (Fe3O4) tetrakaidecahedral microcrystals: synthesis, characterization, and micro-Raman study. Mater Charact 62:148–151

    Article  Google Scholar 

  31. Singh RK, Kim TH, Patel KD, Knowles JC, Kim HW (2012) Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A 100A:1734–1742

    Article  Google Scholar 

  32. Li D, Jiang D, Chen M, Xie J, Wu Y, Dang S, Zhang J (2010) An easy fabrication of monodisperse oleic acid-coated Fe3O4 nanoparticles. Mater Lett 64:2462–2464

    Article  Google Scholar 

  33. Sun S et al (2000) Monodisperse FePt nanoparticles and Ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  Google Scholar 

  34. Tang J et al (2001) Magnetic properties of nanocrystalline Fe3O4 films. J Appl Phys 89:7690–7692

    Article  Google Scholar 

  35. Pu HT et al (2005) Towards high sedimentation stability: magnetorheological fluids based on CNT/Fe3O4 nanocomposites. Nanotechnology 16:1486–1489

    Article  Google Scholar 

  36. Atarashi T, Shimoiizaka J (1990) On the preparation of the colored water-based magnetic fluids (red, yellow, blue and black). J Magn Magn Mater 85:3–6

    Article  Google Scholar 

  37. Hofmann-Amtenbrink M et al (2009) Superparamagnetic nanoparticles for biomedical applications. In: Tan MC (ed) Nanostructured materials for biomedical applications. Transworld Research Network, Trivandrum, p 119

    Google Scholar 

  38. Kim DK et al (2001) Biomedical application of ferrofluids containing magnetite nanoparticles. Mat Res Soc Symp Proc 676:Y8.32.1

    Google Scholar 

  39. Tartaj P et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 36:R182–R197

    Article  Google Scholar 

  40. Dutta P et al (2009) Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles. J Appl Phys 105:07B501/1–07B501/3

    Google Scholar 

  41. Del Bianco L, Hernando A, Fiorani D (2005) Exchange coupling in iron and iron/oxide nanogranular systems. In: Fiorani DP (ed) Surface effects in magnetic nanoparticles. Springer, Heidelberg, p 217

    Chapter  Google Scholar 

  42. Coey JMD (2009) Magnetism and magnetic materials. Cambridge University Press, New York

    Google Scholar 

  43. Knobel M et al (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857

    Google Scholar 

  44. Husband B et al (2005) A superparamagnetic bead driven fluidic device. In: Cane C, Chiao J-C, Vidal Verdu F (eds) Smart sensors, actuators, and MEMS II, Proc. SPIE, The International Society for Optical Engineering, Canberra, ACT, Australia, vol 5836. pp 607–611

    Google Scholar 

  45. Hansen MF, Mørup S (1999) Estimation of blocking temperatures from ZFC/FC curves. J Magn Magn Mater 203:214–216

    Article  Google Scholar 

  46. Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, Hoboken

    Google Scholar 

  47. Guardia P et al (2005) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316:e756–e759

    Article  Google Scholar 

  48. Jimenez-Villacorta F, Prieto C (2008) Magnetic properties and interaction mechanisms of iron-based core–shell structures prepared by sputtering at low substrate temperatures. J Phys Condens Matter 20:085216/1–085216/10

    Google Scholar 

  49. Tosco T et al (2012) Zerovalent iron nanoparticles for groundwater remediation: surface and magnetic properties, colloidal stability, and perspectives for field application. In: Chiolerio A, Allia P (eds) Nanoparticles featuring electromagnetic properties: from science to engineering. Research Signpost, Trivandrum, p 201

    Google Scholar 

  50. Tiberto P, Barrera G, Celegato F, Coisson M, Chiolerio A, Martino P, Pandolfi P, Allia P (2013) Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur Phys J B. 86:1-6

    Article  Google Scholar 

  51. Roser MR, Corruccini LR (1990) Dipolar ferromagnetic order in a cubic system. Phys Rev Lett 65:1064–1067

    Article  Google Scholar 

  52. Panissod P, Drillon M (2002) Magnetic ordering due to dipolar interaction. In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV. Wiley-VCH, Weinheim, p 232

    Google Scholar 

  53. Zhang H, Widom M (1995) Spontaneous magnetic order in random dipolar solids. Phys Rev B 51:8951–8957

    Article  Google Scholar 

  54. Dormann JL et al (1999) On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J Magn Magn Mater 202:251–257

    Article  Google Scholar 

  55. Allia P et al (2001) Granular Cu-Co alloys as interacting superparamagnets. Phys Rev B 64:144420–1–144420–12

    Article  Google Scholar 

  56. Knobel M et al (2004) Interaction effects in magnetic granular systems. Physica B Condens Matter 354:80–87

    Article  Google Scholar 

  57. Franco V et al (2005) Relationship between coercivity and magnetic moment of superparamagnetic particles with dipolar interaction. Phys Rev B 72:174424–1–174424–10

    Article  Google Scholar 

  58. Allia P, Tiberto P (2012) Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles. J Nanopart Res 13:7277–7293

    Article  Google Scholar 

  59. Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107:123909–1–123909–13

    Article  Google Scholar 

  60. Fiory AT (1970) Electric dipole interactions among polar defects in alkali halides. Phys Rev B 4:614–627

    Article  Google Scholar 

  61. Lu JJ et al (1999) Hysteretic behavior of magnetic particles with dipole interaction. J Appl Phys 85:5558–5560

    Article  Google Scholar 

  62. Vasilakaki M et al (2012) Monte Carlo simulations on the magnetic behaviour of nanoparticle assemblies: interparticle interactions effects. In: Chiolerio A, Allia P (eds) Nanoparticles featuring electromagnetic properties: from science to engineering. Research Signpost, Trivandrum, p 105

    Google Scholar 

  63. Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, Oxford

    Google Scholar 

  64. Besser PJ et al (1967) Magnetocrystalline anisotropy of pure and doped Hematite. Phys Rev 153:632–642

    Article  Google Scholar 

  65. Bowles J et al (2010) Interpretation of low-temperature data Part II: the Hematite Morin transition. IRM Q 20:1–10

    Google Scholar 

  66. Özdemir Ö et al (2008) Morin transition in hematite: size dependence and thermal hysteresis. G3 Geochem Geophys Geosyst 9:1–12

    Google Scholar 

  67. Freyria FS et al (2013) Eu-doped α-Fe2O3 nanoparticles with modified magnetic properties. J Solid State Chem. doi:10.1016/j.jssc.2013.03.018

    Google Scholar 

  68. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  Google Scholar 

  69. Quiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293.

    Article  Google Scholar 

  70. Veintemillas-Verdaguer S, del Puerto Morales M, Bomati-Miguel O, Bautista C, Zhao X, Bonville P, Pérez de Alejo R, Ruiz-Cabello J, Santos M, Tendillo-Cortijo FJ, Ferreirò J (2004) Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agent. J Phys D Appl Phys 37:2054–2059

    Article  Google Scholar 

  71. Zhang W, Rittmann B, Chen Y (2011) Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ Sci Technol 45:2172–2178

    Article  Google Scholar 

  72. Popplewell J (1985) Technological applications of ferrofluids. Phys Technol 15:150–158

    Article  Google Scholar 

  73. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74(6):489–520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Chiolerio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiolerio, A., Chiodoni, A., Allia, P., Martino, P. (2014). Magnetite and Other Fe-Oxide Nanoparticles. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_34

Download citation

Publish with us

Policies and ethics