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QUANTUM EQUILIBRIUM AND THE

ORIGIN OF ABSOLUTE UNCERTAINTY

Detlef Dürr,1,2 Sheldon Goldstein,1 and Nino Zangh́i1,3

Dedicated to the memory of J. S. Bell.

Abstract. The quantum formalism is a “measurement” formalism—a phenomenological
formalism describing certain macroscopic regularities. We argue that it can be regarded,

and best be understood, as arising from Bohmian mechanics, which is what emerges from

Schrödinger’s equation for a system of particles when we merely insist that “particles” means
particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory

of particles in motion, a motion choreographed by the wave function. We find that a Bohmian

universe, though deterministic, evolves in such a manner that an appearance of randomness
emerges, precisely as described by the quantum formalism and given, for example, by “ρ =

|ψ|2.” A crucial ingredient in our analysis of the origin of this randomness is the notion of the
effective wave function of a subsystem, a notion of interest in its own right and of relevance

to any discussion of quantum theory. When the quantum formalism is regarded as arising in

this way, the paradoxes and perplexities so often associated with (nonrelativistic) quantum
theory simply evaporate.

KEY WORDS: Quantum randomness; quantum uncertainty; hidden variables; effective

wave function; collapse of the wave function; the measurement problem; Bohm’s causal inter-

pretation of quantum theory; pilot wave; foundations of quantum mechanics.

1. Introduction

I am, in fact, rather firmly convinced that the essentially statistical character
of contemporary quantum theory is solely to be ascribed to the fact that this
(theory) operates with an incomplete description of physical systems. (Einstein,
in ref. 50, p. 666)
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What is randomness? probability? certainty? knowledge? These are old and difficult

questions, and we shall not focus on them here. Nonetheless, we shall obtain sharp, striking

conclusions concerning the relationship between these concepts.

Our primary concern in this paper lies with the status and origin of randomness in

quantum theory. According to the quantum formalism, measurements performed on a

quantum system with definite wave function ψ typically yield random results. Moreover,

even the specification of the wave function of the composite system including the apparatus

for performing the measurement will not generally diminish this randomness. However,

the quantum dynamics governing the evolution of the wave function over time, at least

when no measurement is being performed, and given, say, by Schrödinger’s equation, is

completely deterministic. Thus, insofar as the particular physical processes which we call

measurements are governed by the same fundamental physical laws that govern all other

processes,1 one is naturally led to the hypothesis that the origin of the randomness in the

results of quantum measurements lies in random initial conditions, in our ignorance of

the complete description of the system of interest—including the apparatus—of which we

know only the wave function.

But according to orthodox quantum theory, and most nonorthodox interpretations as

well, the complete description of a system is provided by its wave function alone, and there

is no property of the system beyond its wave function (our ignorance of) which might

account for the observed quantum randomness. Indeed, it used to be widely claimed, on

the authority of von Neumann [56], that such properties, the so called hidden variables, are

impossible, that as a matter of mathematics, averaging over ignorance cannot reproduce

statistics compatible with the predictions of the quantum formalism. And this claim is

even now not uncommon, despite the fact that a widely discussed counterexample, the

quantum theory of David Bohm [13,14], has existed for almost four decades.2

1And it is difficult to believe that this is not so; the very notion of measurement itself seems too
imprecise to allow such a distinction within a fundamental theory, even if we were otherwise somehow

attracted by the granting to measurement of an extraordinary status.
2For an analysis of why von Neumann’s and related “impossibility proofs” are not nearly so physically

relevant as frequently imagined, see Bell’s article [2]. (See also the celebrated article of Bell [3] for an “im-

possibility proof” which does have physical significance. See as well [6].) For a recent, and comprehensive,
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We shall call this theory, which will be “derived” and described in detail in Section 3,

Bohmian mechanics. Bohmian mechanics is a new mechanics, a completely deter-

ministic—but distinctly non-Newtonian—theory of particles in motion, with the wave

function itself guiding this motion. (Thus the “hidden variables” for Bohmian mechanics

are simply the particle positions themselves.) Moreover, while its formulation does not

involve the notion of quantum observables, as given by self-adjoint operators—so that its re-

lationship to the quantum formalism may at first appear somewhat obscure—it can in fact

be shown that Bohmian mechanics not only accounts for quantum phenomena [14,15,18],

but also embodies the quantum formalism itself as the very expression of its empirical

import [29]. (The analysis in the present paper establishes agreement between Bohmian

mechanics and the quantum formalism without addressing the question of how the detailed

quantum formalism naturally emerges—how and why specific operators, such as the en-

ergy, momentum, and angular momentum operators, end up playing the roles they do, as

well as why “observables” should rather generally be identified with self-adjoint operators.

We shall answer these questions in [29], in which a general analysis of measurement from

a Bohmian perspective is presented. We emphasize that the present paper is not at all

concerned directly with measurement per se, not even of positions.) That this is so is for

the most part quite straightforward, but it does involve a crucial subtlety which, so far as

we know, has never been dealt with in a completely satisfactory manner.

The subtlety to which we refer concerns the origin of the very randomness so charac-

teristic of quantum phenomena. The predictions of Bohmian mechanics concerning the

results of a quantum experiment can easily be seen to be precisely those of the quantum

formalism, provided it is assumed that prior to the experiment the positions of the particles

of the systems involved are randomly distributed according to Born’s statistical law, i.e.,

according to the probability distribution given by |ψ|
2
. And the difficulty upon which we

shall focus here concerns the status—the justification and significance—of this assumption

within Bohmian mechanics: not just why it should be satisfied, but also, and perhaps more

important, what—in a completely deterministic theory—it could possibly mean!

account of Bohm’s ideas see [20].
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In Section 2 we provide some background to Bohmian mechanics, describing its rela-

tionship to other approaches to quantum mechanics and how in fact it emerges from an

analysis of these alternatives. This section, which presents a rather personal perspective

on these matters, will play no role in the detailed analysis of the later sections and may

be skipped on a first reading of this paper.

The crucial concepts in our analysis of Bohmian mechanics are those of effective wave

function (Section 5) and quantum equilibrium (Sections 4, 6, 13, and 14). The latter

is a concept analogous to, but quite distinct from, thermodynamic equilibrium. In par-

ticular, quantum equilibrium provides us with a precise and natural notion of typicality

(Section 7), a concept which frequently arises in the analysis of “large systems” and of

the “long time behavior” of systems of any size. For a universe governed by Bohmian

mechanics it is of course true that, given the initial wave function and the initial positions

of all particles, everything is completely determined and nothing whatsoever is actually

random. Nonetheless, we show that typical initial configurations, for the universe as a

whole, evolve in such a way as to give rise to the appearance of randomness, with empir-

ical distributions (Sections 7 and 10) in agreement with the predictions of the quantum

formalism.

From a general perspective, perhaps the most noteworthy consequence of our analysis

concerns absolute uncertainty (Section 11). In a universe governed by Bohmian me-

chanics there are sharp, precise, and irreducible limitations on the possibility of obtaining

knowledge, limitations which can in no way be diminished through technological progress

leading to better means of measurement.

This absolute uncertainty is in precise agreement with Heisenberg’s uncertainty princi-

ple. But while Heisenberg used uncertainty to argue for the meaninglessness of particle

trajectories, we find that, with Bohmian mechanics, absolute uncertainty arises as a ne-

cessity, emerging as a remarkably clean and simple consequence of the existence of tra-

jectories. Thus quantum uncertainty, regarded as an experimental fact, is explained by

Bohmian mechanics, rather than explained away as it is in orthodox quantum theory.
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Our analysis covers all of nonrelativistic quantum mechanics. However, since our con-

cern here is mainly conceptual, we shall for concreteness and simplicity consider only

particles without spin, and shall ignore indistinguishability and the exclusion principle.

Spin and permutation symmetry arise naturally in Bohmian mechanics [2,30,13,46,35],

and an analysis explicitly taking them into account would differ from the one given here

in no essential way.

In fact, our analysis really depends only on rather general qualitative features of the

structure of abstract quantum theory, not on the details of any specific quantum theory—

such as nonrelativistic quantum mechanics or a quantum field theory. In particular, the

analysis does not require a particle ontology; a field ontology, for example, would do just

as well.

Our analysis is, however, fundamentally nonrelativistic. It may well be the case that

a fully relativistic generalization of the kind of physics explored here requires new con-

cepts [28,9,16,55]—if not new mathematical structures. But if one has not first understood

the nonrelativistic case, one could hardly know where to begin for the relativistic one.

Perhaps this paper should be read in the following spirit: In order to grasp the essence

of Quantum Theory, one must first completely understand at least one quantum theory.

2. Reality and the role of the wave function

For each measurement one is required to ascribe to the ψ-function a char-
acteristic, quite sudden change, which depends on the measurement result ob-

tained, and so cannot be forseen; from which alone it is already quite clear that
this second kind of change of the ψ-function has nothing whatever in common
with its orderly development between two measurements. The abrupt change by
measurement...is the most interesting point of the entire theory....For this reason
one can not put the ψ-function directly in place of...the physical thing...because
in the realism point of view observation is a natural process like any other and
cannot per se bring about an interruption of the orderly flow of natural events.
(Schrödinger [51])

The conventional wisdom that the wave function provides a complete description of a

quantum system is certainly an attractive possibility: other things being equal, monism—
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the view that there is but one kind of reality—is perhaps more alluring than pluralism. But

the problem of the origin of quantum randomness, described at the beginning of Section 1,

already suggests that other things are not, in fact, equal.

Moreover, wave function monism suffers from another serious defect, to which the prob-

lem of randomness is closely related: Schrödinger’s evolution tends to produce spreading

over configuration space, so that the wave function ψ of a macroscopic system will typi-

cally evolve to one supported by distinct, and vastly different, macroscopic configurations,

to a grotesque macroscopic superposition, even if ψ were originally quite prosaic. This is

precisely what happens during a measurement, over the course of which the wave function

describing the measurement process will become a superposition of components correspond-

ing to the various apparatus readings to which the quantum formalism assigns nonvanishing

probability. And the difficulty with this conception, of a world completely described by

such an exotic wave function, is not even so much that it is extravagantly bizarre, but

rather that this conception—or better our place in it, as well as that of the random events

which the quantum formalism is supposed to govern—is exceedingly obscure.3

What has just been said supports, not the impossibility of wave function monism, but

rather its incompatibility with the Schrödinger evolution. And the allure of wave function

monism is so strong that most interpretations of quantum mechanics in fact involve the

abrogation of Schrödinger’s equation. This abrogation is often merely implicit and, indeed,

is often presented as if it were compatible with the quantum dynamics. This is the case, for

example, when the measurement postulates, regarded as embodying “collapse of the wave

packet,” are simply combined with Schrödinger’s equation in the formulation of quantum

theory. The “measurement problem” is merely an expression of this inconsistency.

There have been several recent proposals—for example, by Wigner [63], by Leggett [42],

by Stapp [55], by Weinberg [57] and by Penrose [48]—suggesting explicitly that the quan-

tum evolution is not of universal validity, that under suitable conditions, encompassing

those which prevail during measurements, the evolution of the wave function is not gov-

erned by Schrödinger’s equation (see also [59]). A common suggestion is that the quantum

3What we have just described is often presented more colorfully as the paradox of Schrödinger’s cat [51].
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dynamics should be replaced by some sort of “nonlinear” (possibly nondeterministic) mod-

ification, to which, on the microscopic level, it is but an extremely good approximation.

One of the most concrete proposals along these lines is that of Ghirardi, Rimini, and

Weber [33].

The theory of GRW modifies Schrödinger’s equation by the incorporation of a random

“quantum jump,” to a macroscopically localized wave function. As an explanation of the

origin of quantum randomness it is thus not very illuminating, accounting, as it does, for

the randomness in a rather ad hoc manner, essentially by fiat. Nonetheless this theory

should be commended for its precision, and for the light it sheds on the relationship between

Lorentz invariance and nonlocality (see [9]).

A related, but more serious, objection to proposals for the modification of Schrödinger’s

equation is the following: The quantum evolution embodies a deep mathematical beauty,

which proclaims “Do not tamper! Don’t degrade my integrity!” Thus, in view of the

fact that (the relativistic extension of) Schrödinger’s equation, or, better, the quantum

theory, in which it plays so prominent a role, has been verified to a remarkable—and

unprecedented—degree, these proposals for the modification of the quantum dynamics ap-

pear at best dubious, based as they are on purely conceptual, philosophical considerations.

But is wave function monism really so compelling a conception that we must struggle

to retain it in the face of the formidable difficulties it entails? Certainly not! In fact, we

shall argue that even if there were no such difficulties, even in the case of “other things

being equal,” a strong case can be made for the superiority of pluralism.

According to (pre-quantum-mechanical) scientific precedent, when new mathematically

abstract theoretical entities are introduced into a theory, the physical significance of these

entities, their very meaning insofar as physics is concerned, arises from their dynamical

role, from the role they play in (governing) the evolution of the more primitive—more

familiar and less abstract—entities or dynamical variables. For example, in classical elec-

trodynamics the meaning of the electromagnetic field derives solely from the Lorentz force

equation, i.e., from the field’s role in governing the evolution of the positions of charged

particles, through the specification of the forces, acting upon these particles, to which
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the field gives rise; while in general relativity a similar statement can be made for the

gravitational metric tensor. That this should be so is rather obvious: Why would these

abstractions be introduced in the first place, if not for their relevance to the behavior of

something else, which somehow already has physical significance?

Indeed, it should perhaps be thought astonishing that the wave function was not also

introduced in this way—insofar as it is a field on configuration space rather than on physical

space, the wave function is an abstraction of even higher order than the electromagnetic

field.

But, in fact, it was! The concept of the wave function originated in 1924 with de

Broglie [24], who—intrigued by Einstein’s idea of the “Gespensterfeld”—proposed that just

as electromagnetic waves are somehow associated with particles, the photons, so should

material particles, in particular electrons, be accompanied by waves. He conceived of

these waves as “pilot waves,” somehow governing the motion of the associated particles in

a manner which he only later, in the late 1920’s, made explicit [25]. However, under an

onslaught of criticism by Pauli, he soon abandoned his pilot wave theory, only to return to

it more than two decades later, after his ideas had been rediscovered, extended, and vastly

refined by David Bohm [13,14].

Moreover, in a paper written shortly after Schrödinger invented wave mechanics, Born

too explored the hypothesis that the wave function might be a “guiding field” for the motion

of the electron [23]. As consequences of this hypothesis, Born was led in this paper both to

his statistical interpretation of the wave function and to the creation of scattering theory.

Born did not explicitly specify a guiding law, but he did insist that the wave function

should somehow determine the motion of the electron only statistically, that deterministic

guiding is impossible. And, like de Broglie, he later quickly abandoned the guiding field

hypothesis, in large measure owing to the unsympathetic reception of Heisenberg, who

insisted that physical theories be formulated directly in terms of observable quantities, like

spectral lines and intensities, rather than in terms of microscopic trajectories.

The Copenhagen interpretation of quantum mechanics can itself be regarded as giving

the wave function a role in the behavior of something else, namely of certain macroscopic
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objects, called “measurement instruments,” during “quantum measurements” [12,40]. In-

deed, the most modest attitude one could adopt towards quantum theory would appear to

be that of regarding it as a phenomenological formalism, roughly analogous to the thermo-

dynamic formalism, for the description of certain macroscopic regularities. But it should

nonetheless strike the reader as somewhat odd that the wave function, which appears to be

the fundamental theoretical entity of the fundamental theory of what we normally regard

as microscopic physics, should be assigned a role on the level of the macroscopic, itself an

imprecise notion, and specifically in terms, even less precise, of measurements, rather than

on the microscopic level.

Be that as it may, the modest position just described is not a stable one: It raises the

question of how this phenomenological formalism arises from the behavior of the micro-

scopic constituents of the macroscopic objects with which it is concerned. Indeed, this very

question, in the context of the thermodynamic formalism, led to the development of statis-

tical mechanics by Boltzmann and Gibbs, and, with some help from Einstein, eventually

to the (almost) universal acceptance of the atomic hypothesis.

Of course, the Copenhagen interpretation is not quite so modest. It goes further, in-

sisting upon the impossibility of just such an explanation of the (origin of the) quantum

formalism. On behalf of this claim—which is really quite astounding in that it raises to

a universal level the personal failure of a generation of physicists to find a satisfactory

objective description of microscopic processes—the arguments which have been presented

are not, in view of the rather dramatic conclusions that they are intended to establish,

as compelling as might have been expected. Nonetheless, the very acceptance of these

arguments by several generations of physicists should lead us to expect that, if not impos-

sible, it should at best be extraordinarily difficult to account for the quantum formalism

in objective microscopic terms.

Exhortations to the contrary notwithstanding, suppose that we do seek a microscopic

origin for the quantum formalism, and that we do this by trying to find a role on the

microscopic level for the wave function, relating it to the behavior of something else. How

are we to proceed? A modest proposal: First try the obvious! Then proceed to the less
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obvious and, as is likely to be necessary, eventually to the not-the-least-bit-obvious. We

shall implement this proposal here, and shall show that we need nothing but the obvious!4

What we regard as the obvious choice of primitive ontology—the basic kinds of entities

that are to be the building blocks of everything else5—should by now be clear: Particles,

described by their positions in space, changing with time—some of which, owing to the dy-

namical laws governing their evolution, perhaps combine to form the familiar macroscopic

objects of daily experience.

However, the specific role the wave function should play in governing the motion of the

particles is perhaps not so clear, but for this, too, we shall find that there is a rather obvious

choice, which when combined with Schrödinger’s equation becomes Bohmian mechanics.

(That an abstraction such as the wave function, for a many-particle system a field that

is not on physical space but on configuration space, should be a fundamental theoretical

entity in such a theory appears quite natural—as a compact expression of dynamical prin-

ciples governing an evolution of configurations .6)

3. Bohmian mechanics

...in physics the only observations we must consider are position observations, if
only the positions of instrument pointers. It is a great merit of the de Broglie-
Bohm picture to force us to consider this fact. If you make axioms, rather than
definitions and theorems, about the ‘measurement’ of anything else, then you
commit redundancy and risk inconsistency. (Bell [8])

Consider a quantum system of N particles, with masses m1, . . . , mN and position co-

ordinates q1, . . . ,qN , whose wave function ψ = ψ(q1, . . . ,qN , t) satisfies Schrödinger’s

4Insofar as nonrelativistic quantum mechanics is concerned.
5Except, of course, the wave function.
6However, with wave function monism, without such a role and, indeed, without particle positions

from which to form configurations, how can we make sense of a field on the space of configurations? We

might well ask “What configurations?” (And the wave function really is on configuration space—it is in

this representation that quantum mechanics assumes its simplest form!)
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equation

i~
∂ψ

∂t
= −

N
∑

k=1

~
2

2mk
∆kψ + V ψ, (3.1)

where ∆k = ∇k ·∇k =
∂2

∂qk
2 and V = V (q1, . . . ,qN ) is the potential energy of the system.

Suppose that the wave function ψ does not provide a complete description of the system,

that the most basic ingredient of the description of the state at a given time t is provided

by the positions q1, . . . ,qN of its particles at that time, and that the wave function governs

the evolution of (the positions of) these particles. Insofar as first derivatives are simpler

than higher derivatives, the simplest possibility would appear to be that the wave function

determine the velocities v
ψ
1 , . . . ,v

ψ
N of all the particles. Here v

ψ
k ≡ v

ψ
k (q1, . . . ,qN ) is a

velocity vector field, on configuration space, for the k-th particle, i.e.,

dqk

dt
= v

ψ
k (q1, . . . ,qN ). (3.2)

Since (3.1) and (3.2) are first order differential equations, it would then follow that the

state of the system is indeed given by ψ and q ≡ (q1, . . . ,qN )—the specification of these

variables at any time would determine them at all times.

Since two wave functions of which one is a nonzero constant multiple of the other should

be physically equivalent, we demand that vψk be homogeneous of degree 0 as a function of

ψ,

v
cψ
k = v

ψ
k (3.3)

for any constant c 6= 0.

In order to arrive at a form for vψk we shall use symmetry as our main guide. Consider

first a single free particle of mass m, whose wave function ψ(q) satisfies the free Schrödinger

equation

i~
∂ψ

∂t
= −

~
2

2m
∆ψ. (3.4)

11



We wish to choose vψ in such a way that the system of equations given by (3.4) and

dq

dt
= vψ(q) (3.5)

is Galilean and time-reversal invariant.7 Rotation invariance, with the requirement that

vψ be homogeneous of degree 0, yields the form

vψ = α
∇ψ

ψ
,

where α is a constant scalar, as the simplest possibility.

This form will not in general be real, so that we should perhaps take real or imaginary

parts. Time-reversal is implemented on ψ by the involution ψ → ψ∗ of complex conju-

gation, which renders Schrödinger’s equation time reversal invariant. If the full system,

including (3.5), is also to be time-reversal invariant, we must thus have that

vψ
∗

= −vψ, (3.6)

which selects the form

vψ = α Im
∇ψ

ψ
(3.7)

with α real.

Moreover the constant α is determined by requiring full Galilean invariance: Since vψ

must transform like a velocity under boosts, which are implemented on wave functions by

ψ 7→ ei
m
~
v0·qψ, invariance under boosts requires that α = ~

m , so that (3.7) becomes

vψ =
~

m
Im

∇ψ

ψ
. (3.8)

7Note that a first-order (Aristotelian) Galilean invariant theory of particle motion may appear to be

an oxymoron.
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For a general N -particle system, with general potential energy V , we define the velocity

vector field by requiring (3.8) for each particle, i.e., by letting

v
ψ
k =

~

mk
Im

∇kψ

ψ
, (3.9)

so that (3.2) becomes

dqk

dt
=

~

mk
Im

∇kψ

ψ
(q1, . . . ,qN ). (3.10)

We’ve arrived at Bohmian mechanics: for our system of N particles the state is given

by

(q, ψ) (3.11)

and the evolution by

dqk

dt
=

~

mk
Im

∇kψ

ψ
(q1, . . . ,qN )

i~
∂ψ

∂t
= −

N
∑

k=1

~
2

2mk
∆kψ + V ψ.

(3.12)

We note that Bohmian mechanics is time-reversal invariant, and that it is Galilean

invariant whenever V has this property, e.g., when V is the sum of a pair interaction of

the usual form,

V (q1, . . . ,qN ) =
∑

i<j

φ(|qi − qj |). (3.13)

However, our analysis will not depend on the form of V .

Note also that Bohmian mechanics depends only upon the Riemannian structure g =

(gij) = (miδij) defined by the masses of the particles: In terms of this Riemannian struc-

ture, the evolution equations (3.1) and (3.10) of Bohmian mechanics become

dq

dt
= ~ Im

gradψ

ψ
(q)

i~
∂ψ

∂t
= −

~
2

2
∆ψ + V ψ,

(3.14)
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where q = (q1, . . . ,qN ) is the configuration, and ∆ and grad are, respectively, the Laplace-

Beltrami operator and the gradient on the configuration space equipped with this Riemann-

ian structure.

While Bohmian mechanics shares Schrödinger’s equation with the usual quantum for-

malism, it might appear that they have little else in common. After all, the former is a

theory of particles in motion, albeit of an apparently highly nonclassical, non-Newtonian

character; while the observational content of the latter derives from a calculus of noncom-

muting “observables,” usually regarded as implying radical epistemological innovations.

Indeed, if the coefficient in the first equation of (3.12) were other than ~

mk
, i.e., for gen-

eral constants αk, the corresponding theory would have little else in common with the

quantum formalism. But for the particular choice of αk, of the coefficient in (3.12), which

defines Bohmian mechanics, the quantum formalism itself emerges as a phenomenological

consequence of this theory.

What makes the choice αk = ~

mk
special—apart from Galilean invariance, which plays

little or no role in the remainder of this paper—is that with this value, the probability

distribution on configuration space given by |ψ(q)|
2
possesses the property of equivariance,

a concept to which we now turn.

Note well that ψ on the right hand side of (3.2) or (3.10) is a solution to Schrödinger’s

equation (3.1) and is thus time-dependent, ψ = ψ(t). It follows that the vector field v
ψ
k ,

the right hand side of (3.10), will in general be (explicitly) time-dependent. Therefore,

given a solution ψ to Schrödinger’s equation, we cannot in general expect the evolution

on configuration space defined by (3.10) to possess a stationary probability distribution,

an object which very frequently plays an important role in the analysis of a dynamical

system.

However, the distribution given by |ψ(q)|
2
plays a role similar to that of—and for all

practical purposes is just as good as—a stationary one: Under the evolution ρ(q, t) of

probability densities, of ensemble densities, arising from (3.10), given by the continuity

14



equation

∂ρ

∂t
+ div(ρvψ) = 0 (3.15)

with vψ = (vψ1 , . . . ,v
ψ
N ) the configuration space velocity arising from ψ and div the di-

vergence on configuration space, the density ρ = |ψ|
2
is stationary relative to ψ, i.e., ρ(t)

retains its form as a functional of ψ(t). In other words,

if ρ(q, t0) = |ψ(q, t0)|
2
at some time t0, then ρ(q, t) = |ψ(q, t)|

2
for all t. (3.16)

We say that such a distribution is equivariant.8

To see that |ψ|
2
is, in fact, equivariant observe that

Jψ = |ψ|
2
vψ (3.17)

where Jψ = (Jψ1 , . . . ,J
ψ
N ) is the quantum probability current,

J
ψ
k =

~

2imk
(ψ∗∇kψ − ψ∇kψ

∗); (3.18)

thus ρ(q, t) = |ψ(q, t)|
2
satisfies (3.15).

Now consider a quantum measurement, involving an interaction between a system “un-

der observation” and an apparatus which performs the “observation.” Let ψ be the wave

function and q = (qsys, qapp) the configuration of the composite system of system and ap-

paratus. Suppose that prior to the measurement, at time ti, q is random, with probability

8More generally, and more precisely, we say that a functional ψ → µψ, from wave functions to finite
measures on configuration space, is equivariant if the diagram

ψ −−−−−→ µψ

Ut





y





yF
ψ
t

ψt −−−−−→ µψt

is commutative, where Ut = e−
i
~
tH , with Hamiltonian H = −

∑N
k=1

~
2

2mk
∆kψ+ V ψ, is the solution map

for Schrödinger’s equation and Fψt is the solution map for the natural evolution on measures which arises

from (3.10), with initial wave function ψ. (Fψt (µ) is the measure to which µ evolves in t units of time

when the initial wave function is ψ.)

15



distribution given by ρ(q, ti) = |ψ(q, ti)|
2
. When the measurement has been completed,

at time tf , the configuration at this time will, of course, still be random, as will typically

be the outcome of the measurement, as given by appropriate apparatus variables, for ex-

ample, by the orientation of a pointer on a dial or by the pattern of ink marks on paper.

Moreover, by equivariance, the distribution of the configuration q at time tf will be given

by ρ(q, tf) = |ψ(q, tf)|
2
, in agreement with the prediction of the quantum formalism for

the distribution of q at this time. In particular, Bohmian mechanics and the quantum

formalism then agree on the statistics for the outcome of the measurement.9

4. The problem of quantum equilibrium

Then for instantaneous macroscopic configurations the pilot-wave theory gives
the same distribution as the orthodox theory, insofar as the latter is unambigu-
ous. However, this question arises: what is the good of either theory, giving
distributions over a hypothetical ensemble (of worlds!) when we have only one
world. (Bell [7])

Suppose a system has wave function ψ. We shall call the probability distribution on

configuration space given by ρ = |ψ|
2
the quantum equilibrium distribution. And we

shall say that a system is in quantum equilibrium when its coordinates are “randomly

distributed” according to the quantum equilibrium distribution. As we have seen, when

a system and apparatus are in quantum equilibrium the results of “measurement” arising

from the interaction between system and apparatus will conform with the predictions of

the quantum formalism for such a measurement.

More precisely(!), we say that a system is in quantum equilibrium when the quantum

equilibrium distribution is appropriate for its description. It is a major goal of this paper to

9This argument appears to leave open the possibility of disagreement when the outcome of the mea-

surement is not configurationally grounded, i.e., when the apparatus variables which express this outcome
are not functions of qapp. However, the reader should recall Bohr’s insistence that the outcome of a mea-

surement be describable in classical terms, as well as note that results of measurements must always be
at least potentially grounded configurationally, in the sense that we can arrange that they be recorded in

configurational terms without affecting the result. Otherwise we could hardly regard the process leading

to the original result as a completed measurement.
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explain what exactly this might mean and to show that, indeed, when understood properly,

it is typically the case that systems are in quantum equilibrium. In other words, our goal

here is to clarify and justify the quantum equilibrium hypothesis:

When a system has wave function ψ, the distribution ρ of its coordinates satisfies

ρ = |ψ|
2
. (4.1)

We shall do this in the later sections of this paper. In the rest of this section we will

elaborate on the problem of quantum equilibrium.

From a dynamical systems perspective, it would appear natural to attempt to jus-

tify (4.1) using such notions as “convergence to equilibrium,” “mixing,” or “ergodicity”—

suitably generalized. And if it were in fact necessary to establish such properties for

Bohmian mechanics in order to justify the quantum equilibrium hypothesis, we could not

reasonably expect to succeed, at least not with any degree of rigor. The problem of es-

tablishing good ergodic properties for nontrivial dynamical systems is extremely difficult,

even for highly simplified, less than realistic, models.

It might seem that Bohmian mechanics rather trivially fails to possess good ergodic

properties, if one considers the motion arising from the standard energy eigenstates of fa-

miliar systems. However, quantum systems attain such simple wave functions only through

complex interactions, for example with an apparatus during a measurement or prepara-

tion procedure, during which time they are not governed by a simple wave function. Thus

the question of the ergodic properties of Bohmian mechanics refers to the motion under

generic, more complex, wave functions.

We shall show, however, that establishing such properties is neither necessary nor suf-

ficient for our purposes: That it is not necessary follows from the analysis in the later

sections of this paper, and that it would not be sufficient follows from the discussion to

which we now turn.

The reader may wonder why the quantum equilibrium hypothesis should present any

difficulty at all. Why can we not regard it as an additional postulate, on say initial
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conditions (in analogy with equilibrium statistical mechanics, where the Gibbs distribution

is often uncritically accepted as axiomatic)? Then, by equivariance, it will be preserved by

the dynamics, so that we obtain the quantum equilibrium hypothesis for all times. In fact,

when all is said and done, we shall find that this is an adequate description of the situation

provided the quantum equilibrium hypothesis is interpreted in the appropriate way . But

for the quantum equilibrium hypothesis as so far formulated, such an account would be

grossly inadequate.

Note first that the quantum equilibrium hypothesis relates objects belonging to rather

different conceptual categories: The right hand side of (4.1) refers to a dynamical object,

which from the perspective of Bohmian mechanics is of a thoroughly objective character;

while the left refers to a probability distribution—an object whose physical significance

remains mildly obscure and moderately controversial, and which often is regarded as having

a strongly subjective aspect. Thus, some explanation or justification is called for.

One very serious difficulty with (4.1) is that it seems to be demonstrably false in a

great many situations. For example, the wave function—of system and apparatus—after a

measurement (arising from Schrödinger’s equation) is supported by the set of all configu-

rations corresponding to the possible outcomes of the measurement, while the probability

distribution at this time is supported only by those configurations corresponding to the

actual outcome, e.g., given by a specific pointer position, a main point of measurement

being to obtain the information upon which this probability distribution is grounded.

This difficulty is closely related to an ambiguity in the domain of physical applicability

of Bohmian mechanics. In order to avoid inconsistency we must regard Bohmian mechan-

ics as describing the entire universe, i.e., our system should consist of all particles in the

universe: The behavior of parts of the universe, of subsystems of interest, must arise from

the behavior of the whole, evolving according to Bohmian mechanics. It turns out, as we

shall show, that subsystems are themselves, in fact, frequently governed by Bohmian me-

chanics. But if we postulate that subsystems must obey Bohmian mechanics, we “commit

redundancy and risk inconsistency.”

Note also that the very nature of our concerns—the origin and justification of (local)
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randomness—forces us to consider the universal level: Local systems are not (always and

are never entirely) isolated. Recall that cosmological considerations similarly arise in

connection with the problem of the origin of irreversibility (see R. Penrose [49]).

Thus, strictly speaking, for Bohmian mechanics only the universe has a wave function,

since the complete state of an N particle universe at any time is given by its wave function

ψ and the configuration q = (q1, . . . ,qN ) of its particles. Therefore the right hand side of

the quantum equilibrium hypothesis (4.1) is also obscure as soon as it refers to a system

smaller than the entire universe—and the systems to which (4.1) is normally applied are

very small indeed, typically microscopic.

Suppose, as suggested earlier, we consider (4.1) for the entire universe. Then the right

hand side is clear, but the left is completely obscure: Focus on (4.1) for THE INITIAL

TIME. What physical significance can be assigned to a probability distribution on the

initial configurations for the entire universe? What can be the relevance to physics of such

an ensemble of universes? After all, we have at our disposal only the particular, actual

universe of which we are a part. Thus, even if we could make sense of the right hand side

of (4.1), and in such a way that (4.1) remains a consequence of the quantum equilibrium

hypothesis at THE INITIAL TIME, we would still be far from our goal, appearances to

the contrary notwithstanding.

Since the inadequacy of the quantum equilibrium hypothesis regarded as describing an

ensemble of universes is a crucial point, we wish to elaborate. For each choice of initial

universal wave function ψ and configuration q, a “history”—past, present, and future—is

completely determined. In particular, the results of all experiments, including quantum

measurements, are determined.

Consider an ensemble of universes initially satisfying (4.1), and suppose that it can

be shown that for this ensemble the outcome of a particular experiment is randomly dis-

tributed with distribution given by the quantum formalism. This would tell us only that

if we were to repeat the very same experiment—whatever this might mean—many times,

sampling from our ensemble of universes, we would obtain the desired distribution. But

this is both impossible and devoid of physical significance: While we can perform many
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similar experiments, differing, however, at the very least, by location or time, we cannot

perform the very same experiment more than once.

What we need to know about, if we are to make contact with physics, is empirical

distributions—actual relative frequencies within an ensemble of actual events—arising from

repetitions of similar experiments, performed at different places or times, within a single

sample of the universe—the one we are in. In other words, what is physically relevant

is not sampling across an ensemble of universes—across (initial) q’s—but sampling across

space and time within a single universe, corresponding to a fixed (initial) q (and ψ).

Thus, to demonstrate the compatibility of Bohmian mechanics with the predictions of

the quantum formalism, we must show that for at least some choice of initial universal ψ

and q, the evolution (3.12) leads to an apparently random pattern of events, with empirical

distribution given by the quantum formalism. In fact, we show much more.

We prove that for every initial ψ, this agreement with the predictions of the quantum

formalism is obtained for typical—i.e., for the overwhelming majority of—choices of initial

q. And the sense of typicality here is with respect to the only mathematically natural—

because equivariant—candidate at hand, namely, quantum equilibrium.

Thus, on the universal level, the physical significance of quantum equilibrium is as a

measure of typicality, and the ultimate justification of the quantum equilibrium hypothesis

is, as we shall show, in terms of the statistical behavior arising from a typical initial

configuration.

According to the usual understanding of the quantum formalism, when a system has

wave function ψ, (4.1) is satisfied regardless of whatever additional information we might

have. When we claim to have established agreement between Bohmian mechanics and the

predictions of the quantum formalism, we mean to include this statement among those

predictions. We are thus claiming to have established that in a universe governed by

Bohmian mechanics it is in principle impossible to know more about the configuration

of any subsystem than what is expressed by (4.1)—despite the fact that for Bohmian

mechanics the actual configuration is an objective property, beyond the wave function.

This may appear to be an astonishing claim, particularly since it refers to knowledge, a
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concept both vague and problematical, in an essential way. More astonishing still is this:

This uncertainty, of an absolute and precise character, emerges with complete ease, the

structure of Bohmian mechanics being such that it allows for the formulation and clean

demonstration of statistical statements of a purely objective character which nonetheless

imply our claims concerning the irreducible limitations on possible knowledge whatever this

“knowledge” may precisely mean, and however we might attempt to obtain this knowledge,

provided it is consistent with Bohmian mechanics. We shall therefore call this limitation

on what can be known absolute uncertainty .

5. The effective wave function

No one can understand this theory until he is willing to think of ψ as a real ob-

jective field rather than just a ‘probability amplitude.’ Even though it propagates

not in 3-space but in 3N -space. (Bell [7])

We now commence our more detailed analysis of the behavior of an N -particle non-

relativistic universe governed by Bohmian mechanics, focusing in this section on the notion

of the effective wave function of a subsystem. We begin with some notation.

We shall use Ψ as the variable for the universal wave function, reserving ψ for the

effective wave function of a subsystem, the definition and clarification of which is the aim

of this section. By Ψt we shall denote the universal wave function at time t. We shall use

q = (q1, . . . ,qN ) as the generic configuration space variable, which, to avoid confusion, we

shall usually distinguish from the actual configuration of the particles, for which we shall

usually use capitals. Thus we shall write Ψ = Ψ(q) and shall denote the configuration of

the universe at time t by Qt.

We remind the reader that according to Bohmian mechanics the state (Qt,Ψt) of the

universe at time t evolves via

dQt

dt
= vΨt(Qt)

i~
dΨt
dt

= −

N
∑

k=1

~
2

2mk
∆kΨt + VΨt,

(5.1)
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where vΨ = (vΨ
1 , . . . ,v

Ψ
N ) with vΨ

k defined by (3.9).

For any given subsystem of particles we obtain a splitting

q = (x, y), (5.2)

with x the generic variable for the configuration of the subsystem and y the generic variable

for the configuration of the complementary subsystem, formed by the particles not in the

given subsystem. We shall call the given subsystem the x-system, and we shall sometimes

call its complement—the y-system—the environment of the x-system.10

Of course, for any splitting (5.2) we have a splitting

Q = (X, Y ) (5.3)

for the actual configuration. And for the wave function Ψ we may write Ψ = Ψ(x, y).

Frequently the subsystem of interest naturally decomposes into smaller subsystems. For

example, we may have

x = (xsys, xapp), (5.4)

for the composite formed by system and apparatus, or

x = (x1, . . . , xM), (5.5)

for the composite formed fromM disjoint subsystems. And, of course, any of the xi in (5.5)

could be of the form (5.4).

Consider now a subsystem with associated splitting (5.2). We wish to explore the

circumstances under which we may reasonably regard this subsystem as “itself having

a wave function.” This will serve as motivation for our definition of the effective wave

10While we have in mind the situation in which the x-system consists of a set of particles selected by
their labels, what we say would not be (much) affected if the x-system consisted, say, of all particles in a

given region. In fact the splitting (5.2) could be more general than one based upon what we would normally
regard as a division into complementary systems of particles; for example, the x-system might include the

center of mass of some collection of particles, while the y-system includes the relative coordinates for this

collection.
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function of this subsystem. To this end, suppose first that the universal wave function

factorizes so that

Ψ(x, y) = ψ(x)Φ(y). (5.6)

Then we obtain the splitting

vΨ = (vψ, vΦ), (5.7)

and, in particular, we have that

dX

dt
= vψ(X) (5.8)

for as long as (5.6) is satisfied. Moreover, to the extent that the interaction between the

x-system and its environment can be ignored, i.e., that the Hamiltonian

H = −

N
∑

k=1

~
2

2mk
∆k + V (5.9)

in (5.1) can be regarded as being of the form

H = H(x) +H(y) (5.10)

where H(x) and H(y) are the contributions to H arising from terms involving only the par-

ticle coordinates of the x-system, respectively, the y-system11, the form (5.6) is preserved

by the evolution, with ψ, in particular, evolving via

i~
dψ

dt
= H(x)ψ. (5.11)

It must be emphasized, however, that the factorization (5.6) is extremely unphysical.

After all, interactions between system and environment, which tend to destroy the fac-

torization (5.6), are commonplace. In particular, they occur whenever a measurement is

11The sense of the approximation expressed by (5.10) is somewhat delicate. In particular, (5.10) should
not be regarded as a condition on H (or V ) so much as a condition on (the supports of) the factors ψ and

Φ of the wave function Ψ whose evolution is governed by H; namely, that these supports be sufficiently
well separated so that all contributions to V involving both particle coordinates in the support of ψ and

particle coordinates in the support of Φ are so small that they can be neglected when H is applied to such

a Ψ.
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performed on the x-system. Thus, the universal wave function Ψ should now be of an ex-

tremely complex form, involving intricate “quantum correlations” between x-system and

y-system, however simple it may have been originally!

Note, however, that if

Ψ = Ψ(1) +Ψ(2) (5.12)

with the wave functions on the right having (approximately12) disjoint supports, then

(approximately)

vΨ(Q) = vΨ
(i)

(Q) (5.13)

for Q in the support of Ψ(i). Of course, by mere linearity, if Ψ is of the form (5.12) at

some time τ , it will be of the same form

Ψt = Ψ
(1)
t +Ψ

(2)
t (5.14)

for all t, where Ψ
(i)
t is the solution agreeing with Ψ(i) at time τ of the second equation

of (5.1). Moreover, if the supports of Ψ(1) and Ψ(2) are “sufficiently disjoint” at this

time, we should expect the approximate disjointness of these supports, and hence the

approximate validity of (5.13), to persist for a “substantial” amount of time.

Finally, we note that according to orthodox quantum measurement theory [56,12,60,62],

after a measurement, or preparation, has been performed on a quantum system, the wave

function for the composite formed by system and apparatus is of the form

∑

α

ψα ⊗ φα (5.15)

with the different φα supported by the macroscopically distinct (sets of) configurations

corresponding to the various possible outcomes of the measurement, e.g., given by appa-

ratus pointer positions. Of course, for Bohmian mechanics the terms of (5.15) are not all

12in an appropriate sense, of course. Note in this regard that the simplest metrics d on the projective

space of rays {cΨ} are of the form d(Ψ,Ψ′) = ‖∇Ψ
Ψ

− ∇Ψ′

Ψ′
‖, where “‖ ‖” is a norm on the space of complex

vector fields on configuration space. Moreover the metric d is preserved by the space-time symmetries

(when “‖ ‖” is translation and rotation invariant).
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on the same footing: one of them, and only one, is selected, or more precisely supported,

by the outcome—corresponding, say, to α0—which actually occurs. To emphasize this we

may write (5.15) in the form

ψ ⊗ φ+ Ψ⊥ (5.16)

where ψ = ψα0
, φ = φα0

, and Ψ⊥ =
∑

α 6=α0
ψα ⊗ φα.

Motivated by these observations, we say that a subsystem, with associated splitting (5.2),

has effective wave function ψ (at a given time) if the universal wave function Ψ = Ψ(x, y)

and the actual configuration Q = (X, Y ) (at that time) satisfy

Ψ(x, y) = ψ(x)Φ(y) + Ψ⊥(x, y) (5.17)

with Φ and Ψ⊥ having macroscopically disjoint y-supports, and

Y ∈ suppΦ. (5.18)

Here, by the macroscopic disjointness of the y-supports of Φ and Ψ⊥ we mean not only

that their supports are disjoint but that there is a macroscopic function of y—think, say, of

the orientation of a pointer—whose values for y in the support of Φ differ by a macroscopic

amount from its values for y in the support of Ψ⊥.

The reader familiar with quantum measurement theory should convince himself (see (5.15)

and (5.16)) that our definition of effective wave function coincides with the usual practice

of the quantum formalism in ascribing wave functions to systems whenever the latter does

assign a wave function. In particular, whenever a system has a wave function for orthodox

quantum theory, it has an effective wave function for Bohmian mechanics.13 However,

there may well be situations in which a system has an effective wave function according

to Bohmian mechanics, but the standard quantum formalism has nothing to say. (We say

13Note that the x-system will not have an effective wave function—even approximately—when, for
example, it belongs to a larger microscopic system whose effective wave function does not factorize in the

appropriate way. Note also that the larger the environment of the x-system, the greater is the potential
for the existence of an effective wave function for this system, owing in effect to the greater abundance

of “measurement-like” interactions with a larger environment (see, for example, Point 20 of the Appendix

and the references therein).
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“may well be” because the usual quantum formalism is too imprecise and too controversial

insofar as these questions—for which “collapse of the wave packet” must in some ill-defined

manner be invoked—are concerned to allow for a more definite statement.) Readers who

are not familiar with quantum measurement theory can—as a consequence of our later

analysis—simply replace whatever vague notion they may have of the wave function of a

system with the more precise notion of effective wave function.

Despite the slight vagueness in the definition of effective wave function, arising from its

reference to the imprecise notion of the macroscopic, the effective wave function, when it

exists, is unambiguous. In fact, it is given by14 the conditional wave function

ψ(x) = Ψ(x, Y ), (5.19)

which, moreover, is (almost) always defined (assuming continuity, which, of course, we

must). In fact, the main result of this paper, concerning the statistical properties of

subsystems, remains valid when the notion of effective wave function is replaced by the

completely precise, and less restrictive, formulation provided by the conditional wave func-

tion (5.19).15

Note that by virtue of the first equation of (5.1), the velocity vector field for the x-system

is generated by its conditional wave function. However, the conditional wave function will

not in general evolve (even approximately) according to Schrödinger’s equation, even when

the x-system is dynamically decoupled from its environment. Thus (5.19) by itself lacks

the central dynamical implications, as suggested by the preliminary discussion, of our

definition (5.17), (5.18). And it is of course from these dynamical implications that the

wave function of a system derives much of its physical significance.16

14We identify wave functions related by a nonzero constant factor.
15We therefore need not be be too concerned here by the fact that our definition is also somewhat

unrealistic, in the sense that in situations where we would in practice say that a system has wave function
ψ, the terms on the right hand side of (5.17) are only approximately disjoint, or, what amounts to the

same thing, the first term on the right is only approximately of the product from, though to an enormously

good degree of approximation.
16In this regard note the following: Let WY (x) = VI (x, Y ), where VI is the contribution to V arising

from the terms which represent interactions between the x-system and the y-system, i.e., H = Hx+H(y)+

VI . Suppose that WY does not depend upon Y for Y in the support of Φ, WY = W for Y ∈ suppΦ.
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Note well that the notion of effective wave function, or conditional wave function, is

made possible by the existence of the actual configuration Q = (X, Y ) as well as Ψ! (In

particular, the effective—or conditional—wave function is objective, while a related notion

in Everett’s Many-Worlds or Relative State interpretation of quantum theory [26] is merely

relative.17) Note also that the conditional wave function is the function of x most naturally

arising from Ψ and Y .18

We emphasize that the effective wave function—as well as the conditional wave function—

is, like any honest to goodness attribute or objective property, a functional of state de-

scription, here a function-valued functional of Ψ and Q = (X, Y ) which depends on Q only

through Y . We shall sometimes write

ψ = ψY,Ψ (5.20)

to emphasize this relationship. For the conditional or effective wave function at time t we

shall sometimes write

ψt = ψYt,Ψt ≡ ψYtt , (5.21)

suppressing the dependence upon Ψ.

Note that though we speak of ψ as a property of the x-system, it depends not upon the

coordinates of the x-system but only upon the environment, a distinctly peculiar situation

from a classical perspective. In fact, it is precisely because of this that the effective wave

function behaves like a degree of freedom for the x-system which is independent of its

configuration X .

Then the effective wave function ψ satisfies i~
dψ

dt
= (H(x) +W )ψ. The reader should think, for example,

of a gas confined by the walls of a box, or of a particle moving among obstacles. The interaction of the gas
or the particle with the walls or the obstacles—which after all are part of the environment—is expressed

thru W .
17For an incisive critique of the Many-Worlds interpretation, as well as a detailed comparison with

Bohmian mechanics, see Bell [4,7].
18For particles with spin our definition (5.17), (5.18) needs no essential modification. However, (5.19)

would have to be replaced by Ψ(x, Y ) = ψ(x)⊗Φ, where “⊗” here denotes the tensor product over the spin

degrees of freedom. In particular, for particles with spin, a subsystem need not have even a conditional

wave function.
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Consider now a composite x = (x1, . . . , xM) of microscopic subsystems, withM not too

large, i.e., not “macroscopically large.” Suppose that (simultaneously) each xi-system has

effective wave function ψi. Then the x-system has effective wave function

ψ(x) = ψ1(x1)ψ2(x2) · · ·ψM (xM ), (5.22)

in agreement with the quantum formalism.19 To see this, note that for each i we have that

Ψ = ψi(xi)Φi(yi) + Ψ⊥
i (xi, yi) (5.23)

with Φi and Ψ⊥
i having macroscopically disjoint yi-supports and hence, because the xi-

systems are microscopic, having disjoint y-supports as well.20 Moreover,

Y ∈ suppΦ1 ∩ suppΦ2 ∩ · · · ∩ suppΦM , (5.24)

and for all such Y we have

Ψ(x1, . . . , xM , Y ) = ψi(xi)Φi(x̂i, Y ) (5.25)

for all i, where x̂i = (x1, . . . , xM) with xi missing. It follows by separation of variables,

writing

Ψ(x, Y ) = ψ1(x1) · · ·ψM (xM )Φ(x, Y ) (5.26)

and dividing by
∏

i ψi, that for Y satisfying (5.24)

Ψ(x, Y ) = ψ1(x1) · · ·ψM (xM )Φ(Y ) (5.27)

19As far as the quantum formalism is concerned, recall that from a purely operational perspective,
whatever procedure simultaneously prepares each system in the corresponding quantum state is a prepa-

ration of the product state for the composite. Moreover, an analysis of such a simultaneous preparation
in terms of quantum measurement theory would, of course, lead to the same conclusion. Note also that if

the x-system is described by a density matrix whose reduced density matrix for each xi-system is given by

the wave function ψi, then this density matrix is itself, in fact, given by the corresponding product wave
function.

20It is at this point that the condition that M not be “too large”—so large that x can be used to form

a macroscopic variable—becomes relevant. And while the problematical situation which worries us here
may seem far fetched, it is not as far fetched as it initially might appear to be. It may be that SQUIDs,

superconducting quantum interference devices, can be regarded as giving rise to a situation just like the
one with which we are concerned, in which lots of microscopic systems have, say, the same effective wave

function, but the composite does not have the corresponding product as effective wave function. See,

however, the comment following the proof of (5.22).

28



and, indeed, that the x-system has an effective wave function, given by the product (5.22).

Note that this result would not in general be valid for conditional wave functions. In

fact, the derivation of (5.22), which is used for the equal-time analysis of Section 7, is the

only place where more than (5.19) is required for our results, and even here only the more

precise consequence (5.25) is needed. Moreover, our more general, multitime analysis (see

Sections 8–10) does not appeal to (5.22) and requires only (5.19).

We wish to point out that while the qualifications under which we have established (5.22)

are so mild that in practice they exclude almost nothing, (5.22) is nonetheless valid in much

greater generality. In fact, whenever it is “known” that the subsystems have the ψi as their

respective effective wave functions—by investigators, by devices, or by any records or traces

whatsoever—insofar as this “knowledge” is grounded in the environment of the composite

system, i.e., is reflected in y, (5.22) follows without further qualification.

Nonetheless, in order better to appreciate the significance of the qualification “micro-

scopic” for (5.22), the reader should consider the following unrealistic but instructive ex-

ample: Consider a pair of macroscopic systems with the composite system having effective

wave function ψ(x) = ψL(x1)ψL(x2) + ψR(x1)ψR(x2), where ψL is a wave function sup-

ported by configurations in which a macroscopic coordinate is “on the left,” and similarly

for ψR. Suppose that X1 and X2 are “on the left.” Then each system has effective wave

function ψL.

What wave function would the quantum formalism assign to, say, system 1 in the

previous example? Though we can imagine many responses, we believe that the best answer

is, perhaps, that while the quantum formalism is for all practical purposes unambiguous, we

are concerned here with one of those “impractical purposes” for which the usual quantum

formalism is not sufficiently precise to allow us to make any definite statement on its behalf.

In this regard, see Bell [11].

We shall henceforth often say “wave function” instead of “effective wave function.”
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6. The fundamental conditional probability formula

The intellectual attractiveness of a mathematical argument, as well as the
considerable mental labor involved in following it, makes mathematics a pow-
erful tool of intellectual prestidigitation—a glittering deception in which some
are entrapped, and some, alas, entrappers. Thus, for instance, the delicious
ingenuity of the Birkhoff ergodic theorem has created the general impression
that it must play a central role in the foundations of statistical mechanics....
The Birkhoff theorem does us the service of establishing its own inability to
be more than a questionably relevant superstructure upon [the] hypothesis [of
absolute continuity]. (Schwartz [53])

We are ready to begin the detailed analysis of the quantum equilibrium hypothesis (4.1).

We shall find that by employing, purely as a mathematical device, the quantum equilibrium

distribution on the universal scale, at, say, THE INITIAL TIME, we obtain the quantum

equilibrium hypothesis in the sense of empirical distributions for all scales at all times.

The key ingredient in the analysis is an elementary conditional probability formula.

Let us now denote the initial universal wave function by Ψ0 and the initial universal

configuration by Q, and for definiteness let us take THE INITIAL TIME to be t = 0.

For the purposes of our analysis we shall regard Ψ0 as fixed and Q as random. More

precisely, for given fixed Ψ0 we equip the space Q = {Q} of initial configurations with

the quantum equilibrium probability distribution P(dQ) = PΨ0(dQ) = |Ψ0(Q)|
2
dQ. Qt is

then a random variable on the probability space {Q,P}, since it is determined via (5.1) by

the initial condition given by Q0 = Q and Ψ0. Thus, for any subsystem, with associated

splitting (5.2), Xt, Yt, and ψt are also random variables on {Q,P}, where Qt = (Xt, Yt)

is the splitting of Qt arising from (5.2), and ψt is the (conditional) wave function of the

x-system at time t (see equation (5.21)).21

We wish again to emphasize that, taking into account the discussion in Section 4,

we regard the quantum equilibrium distribution P, at least for the time being, solely

21The reader may wonder why we don’t also treat Ψ0 as random. First of all, we don’t have to—we
are able to establish our results for every initial Ψ0, without having to invoke in any way any randomness

in Ψ0. Moreover, if it had proven necessary to invoke randomness in Ψ0, the results so obtained would be
of dubious physical significance, since to account for the nonequilibrium character of our world, the initial

wave function must be a nonequilibrium, i.e., “atypical,” wave function. See the discussion in Sections

12–14.
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as a mathematical device, facilitating the extraction of empirical statistical regularities

from Bohmian mechanics22, and otherwise devoid of physical significance. (However, as

a consequence of our analysis, the reader, if he so wishes, can safely also regard P as

providing a measure of subjective probability for the initial configuration Q.23)

Note that by equivariance the distribution of the random variable Qt is given by |Ψt|
2
.

It thus follows directly from (5.17), and even more directly from (5.19), that for the condi-

tional probability distribution of the configuration of a subsystem, given the configuration

of its environment, we have the fundamental conditional probability formula24

P(Xt ∈ dx|Yt) = |ψt(x)|
2dx, (6.1)

where ψt = ψYtt is the (conditional) wave function of the subsystem at time t. In par-

ticular, this conditional distribution on the configuration of a subsystem depends on the

configuration of its environment only through its wave function—an object of quite inde-

pendent dynamical significance. In other words, Xt and Yt are conditionally independent

given ψt. The entire empirical statistical content of Bohmian mechanics flows from (6.1)

with remarkable ease.

We wish to emphasize that (6.1) involves conditioning on the detailed microscopic config-

uration of the environment—far more information than could ever be remotely accessible.

Thus (6.1) is extremely strong. Note that it implies in particular that

P(Xt ∈ dx|ψt) = |ψt(x)|
2dx, (6.2)

which involves conditioning on what we would be minimally expected to know if we were

testing Born’s statistical law (4.1). However, it would be very peculiar to know only this—

to know no more than the wave function of the system of interest. But (6.1) suggests—and

we shall show, see Section 11—that whatever additional information we might have can

22in a manner roughly analagous to the use of ergodicity in deriving the pointwise behavior of time

averages for dynamical systems.
23After all, P could in fact be somebody’s subjective probability for Q.
24ψ is to be understood as normalized whenever we write |ψ|2.
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be of no relevance whatsoever to the possible value of Xt.
25

7. Empirical distributions

...a single configuration of the world will show statistical distributions over its
different parts. Suppose, for example, this world contains an actual ensemble
of similar experimental set-ups....it follows from the theory that the ‘typical’
world will approximately realize quantum mechanical distributions over such
approximately independent components. The role of the hypothetical ensemble
is precisely to permit definition of the word ‘typical.’ (Bell [7])

In this section we present the simplest application of (6.1), to the empirical distribution

on configurations arising from a large collection of subsystems, all of which have the “same”

wave function at a common time. This is the situation relevant to an equal-time test

of Born’s statistical law. In practice the subsystems in our collection would be widely

separated, perhaps even in different laboratories.

Consider M subsystems, with configurations x1, . . . , xM , where xi are coordinates rela-

tive to a frame of reference convenient for the i-th subsystem. Suppose that with respect

to these coordinates each subsystem has at time t the same wave function ψ, with the

composite x = (x1, . . . , xM) having the corresponding product

ψt(x) = ψ(x1) · · ·ψ(xM ) (7.1)

as its wave function at that time. Then applying the fundamental conditional probability

formula to the x-system, we obtain

P
(

Xt ∈ dx
∣

∣ Yt = Y
)

= |ψ(x1)|
2
· · · |ψ(xM)|

2
dx1 · · ·dxM , (7.2)

25It immediately follows from (6.1) that for random Ψ0 we have that

P(Xt ∈ dx|Yt,Ψ0) = |ψt(x)|
2dx,

where now P(dQ, dΨ0) = |Ψ0(Q)|2dQµ(dΨ0) with µ any probability measure whatsoever on initial wave

functions. Moreover (6.2) remains valid.
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where Yt = Y is the configuration of the environment at this time. In other words, we

find that relative to the conditional probability distribution PYt (dQ) ≡ P(dQ|Yt = Y )

given the configuration of the environment of the composite system at time t, the (actual)

coordinates X1, . . . , XM of the subsystems at this time form a collection of independent

random variables, identically distributed, with common distribution ρqe = |ψ|2.

In any test of the quantum equilibrium hypothesis (4.1), it is the empirical distribu-

tion

ρemp(z) =
1

M

M
∑

i=1

δ(z −Xi) (7.3)

of (X1, . . . , XM ) which is directly observed—so that the operational significance of the

quantum equilibrium hypothesis is that ρemp be (approximately) given by ρqe. Notice

that ρemp is a (distribution-valued) random variable on (Q,P), and that ρemp(Γ) ≡
∫

Γ
ρemp(z) dz is the relative frequency in our ensemble of subsystems of the event “Xi ∈ Γ”.

It now follows from the weak law of large numbers that when the number M of sub-

systems is large, ρemp is very close to ρqe for (PYt -)most initial configurations Q ∈ QY
t ≡

{

Q ∈ Q
∣

∣ Yt = Y
}

, the fiber of Q for which Yt = Y : For any bounded function f(z), and

any ǫ > 0, let the “agreement set” A(M, f, ǫ, t) ⊂ QY
t be the set of initial configurations

Q ∈ QY
t for which

‖ρemp − ρqe‖f ≡

∣

∣

∣

∣

∫

(ρemp(z) − ρqe(z)) f(z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

1

M

M
∑

i=1

f(Xi)−

∫

f(z) |ψ(z)|
2
dz

∣

∣

∣

∣

≤ ǫ.

(7.4)

(We suppress the dependence of A upon Y and on the subsystems under consideration.)

Then by the weak law of large numbers

PYt
(

A(M, f, ǫ, t)
)

= 1− δ(M, f, ǫ) (7.5)

where δ → 0 as M → ∞.
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For a single function f , ‖ ‖f cannot provide a very good measure of closeness. Therefore,

consider any finite collection f = (fα) of bounded functions, corresponding for example to

a coarse graining of value space, and let

A(M, f , ǫ, t) ≡
⋂

α

A(M, fα, ǫ, t)

≡

{

Q ∈ QY
t

∣

∣

∣

∣

‖ρemp − ρqe‖f ≡ sup
α

‖ρemp − ρqe‖fα ≤ ǫ

}

.

(7.6)

It follows from (7.5) that

PYt
(

A(M, f , ǫ, t)
)

= 1− δ(M, f , ǫ) (7.7)

where δ(M, f , ǫ) ≤
∑

α δ(M, fα, ǫ).

The empirical distribution ρemp does not probe in a significant way the joint distribu-

tion (7.2), i.e., the independence, of X1, . . . , XM—the law of large numbers is valid under

conditions far more general than independence. To explore independence one might em-

ploy pair functions f(Xi, Xj), or functions of several variables, in a manner analogous to

that of the preceding analysis. Rather than proceeding in this way, we merely note—more

generally—the following:

For any decision regarding the joint distribution of the Xi, we have at our disposal

only the values which happen to occur. On the basis of some feature of these values, we

must arrive at a (possibly rather tentative) conclusion. With any such feature we may

associate a subset T of the space R
DM =

{

(x1, . . . , xM )
}

of possible joint values, where

D = dim(Xi) is the dimension of our subsystems.

Let T ⊂ R
DM be a statistical test for the hypothesis that X1, . . . , XM are independent,

with distribution |ψ|
2
. This means that the failure to occur of the event (X1, . . . , XM) ∈ T

can be regarded as a strong indication that X1, . . . , XM are not generated by such a joint

distribution; in other words, it means that

P(T ) = 1− δ(T ) (7.8)
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with δ ≪ 1, where P(dx1, . . . , dxM ) = |ψ(x1)|
2
· · · |ψ(xM )|

2
dx1 · · ·dxM is the joint distri-

bution under examination. 1− δ(T ) is a measure of the reliability of the test T .

Let

A(T , t) =
{

Q ∈ QY
t

∣

∣ Xt ≡ (X1, . . . , XM) ∈ T
}

(7.9)

Then, trivially,

PYt
(

A(T , t)
)

= 1− δ(T ); (7.10)

i.e., the PYt -size of the set of initial configurations in QYt for which the test is passed

matches precisely the reliability of the test. (We remind the reader that the existence of

useful tests, analogous to, but more general than, the one defined for example by (7.4), is

a consequence of the weak law of large numbers.) In particular, the size of M required for

δ in (7.7) to be “sufficiently” small is precisely the size required for the corresponding test

T =

{

(x1, . . . , xM) ∈ R
DM

∣

∣

∣

∣

∣

sup
α

∣

∣

∣

∣

1

M

M
∑

i=1

fα(xi)−

∫

fα(z) |ψ(z)|
2
dz

∣

∣

∣

∣

≤ ǫ

}

(7.11)

to be “sufficiently” reliable.26

Equations (7.5), (7.7), and (7.10) are valid only for Y as described, i.e., when the x-

system has (conditional) wave function ψt ≡ ψY,Ψt of the form (7.1), with which we are

primarily concerned. We remark, however, that for a general Y these equations remain

valid, provided the agreement sets which appear in them are sensibly defined in terms of

the conditional distribution P
Y
t (dx) = |ψY,Ψt(x)|2 dx of Xt given Yt = Y . For example, we

may let

A(Y, t) =
{

Q ∈ QY
t

∣

∣ Xt ∈ T (PYt )
}

, (7.12)

where, for any distribution P (on R
DM ), T = T (P) is a test for P, satisfying (7.8) with

δ(T ) ≪ 1.

In terms of such conditioned agreement sets A(Y, t), we may define an unconditioned

agreeement set A(t) by requiring that

A(t) ∩QY
t = A(Y, t); (7.13)

26See Point 12 of the Appendix.
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directly in terms of the tests T ,

A(t) =
{

Q ∈ Q
∣

∣ Xt ∈ T (PYtt )
}

. (7.14)

Corresponding to equations (7.5), (7.7), and (7.10) we then have that

P(A(t)) = 1− δ(t) (7.15)

where

δ(t) =

∫

δ(Yt, t) dP ≪ 1 (7.16)

with δ(Y, t) ≡ δ(T (PYt )).

Having said this, we wish to emphasize that equations (7.5), (7.7), and (7.10) (for a

general Y ), expressing the “largeness” of the conditioned agreement sets, are much stronger

and much more relevant than the equations (7.15), (7.16) which we have just obtained:

The original equations demand that the disagreement set B(t) = A(t)c ≡ Q \ A(t) be

“small,” not just for “most” fibers QY
t corresponding to the possible environments Y at

time t, but for all such fibers. Insofar as the actual environment Yt at time t might be

rather special—for example, because it describes a world containing (human) life—the

fact that “disagreement” has “insignificant probability” for every environment, regardless

of how special, is quite important.27 Indeed, it is the crucial element in our analysis of

absolute uncertainty in Section 11.

We may summarize the conclusion at which we have so far arrived with the assertion

that for Bohmian mechanics typical initial configurations lead to empirical statistics at

time t which are governed by the quantum formalism (see the last paragraph of Section 3).

Typicality is to be here understood in the sense of quantum equilibrium: something is

true for typical initial configurations if the set of initial configurations for which it is

false is small in the sense provided by the quantum equilibrium distribution P (and the

appropriate conditional quantum equilibrium distributions PYt arising from P).

27Note, in particular, that for any condition C on environments implying, among other things, that the

wave function of the x-system at time t is of the form (7.1), we have the same statement of the “smallness”

of the disagreement set with respect to the conditional distribution given Yt ∈ C.
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We wish to emphasize the role of equivariance in our analysis. Notice that equa-

tions (7.6), (7.7) would remain valid—with δ small—if, for example, ρqe were replaced

by |ψ|
4
, provided the sense P of typicality were given, not by |Ψ|

4
(which is not equivari-

ant), but by the density to which |Ψt|
4
would (backwards) evolve as the time decreases from

t to THE INITIAL TIME 0. This distribution, this sense of typicality, would presumably

be extravagantly complicated and exceedingly artificial.

More important, it would depend upon the time t under consideration, while equiv-

ariance provides a notion of typicality that works for all t. In fact, because of this time

independence of typicality for quantum equilibrium, we immediately obtain the typicality

of joint agreement for a not-too-large collection of times t1, . . . , tJ

P





⋃

j

B(tj)



 ≪ 1, (7.17)

as well as the typicality of joint agreement at most times of a collection of any size. We

shall not go into this in more detail here because equivariance in fact yields results far more

powerful than these, covering the empirical distribution for configurations X1, . . . , XM re-

ferring to times t1, . . . , tM which may all be different, to which we now turn. We shall find

that in exploring this general situation, further novelties of the quantum domain emerge.

8. Multitime experiments: the problem28

In the previous section we analyzed the joint distribution of the simultaneous configu-

rations X1, . . . , XM of M (distinct and disjoint) subsystems, each of which has the same

wave function ψ. We would now like to consider the more general, and more realistic, sit-

uation in which X1, . . . , XM refer to any M subsystems, some or all of which might in fact

be the same, at respective times t1, . . . , tM , which might all be different. And we would

again like to conclude that suitably conditioned, X1, . . . , XM are independent, each with

28Sections 8–10 should perhaps be skipped at first reading.
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distribution given by |ψ|
2
; this would imply, precisely as in Section 7, the corresponding

results about empirical distributions and tests.

We shall find, however, that this multitime situation requires considerably more care

than we have so far needed; in particular, what we might think at first glance we would

like to be true, in fact turns out to be in general false!

To begin to appreciate the difficulty, consider configurations X1 and X2 referring to the

same system but at different times t1 < t2, and suppose this system has wave function

ψ at both of these times. Can we conclude that X1 and X2 are independent? Of course

not! For example, if the system is suitably isolated between the times t1 and t2, so that

its configuration undergoes an autonomous evolution, then X2 will in fact be a function of

X1; in the simplest case, when the wave function ψ is a ground state, we will in fact have

that X2 = X1.

What has just been described is not, however, an instance of disagreement with the

quantum formalism, which concerns only the results of observation—and in the previous

example observation would destroy the isolation upon which the strong correlation between

X1 and X2 was based. Moreover, the particular difficulty just described is easily remedied

by taking “observation” into account. However, it is perhaps worth noting that for the

equal-time analysis it was not necessary in any way to take observation directly into account

to obtain agreement with the quantum formalism—X1, . . . , XM had the distribution given

by the quantum formalism regardless of whether these variables were observed.

A much more serious, and subtle, difficulty arises from the fact that the wave function

ψt of a system at time t is itself a random variable (see (5.21)), while we wish to consider

situations in which our systems each have the same (non-random) wave function ψ. In the

equal-time case this consideration led to no difficulty—and was barely noticed—since ψt

is nonrandom relative to the environment Yt upon which we there conditioned. For the

multitime case, however, it is at first glance by no means clear how we should capture the

stipulation that our systems each have wave function ψ.

One possibility would be to treat this stipulation as further conditioning, i.e., to con-

sider the conditional distribution of X1, . . . , XM given, among other things, that the wave
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functions ψti of our respective systems at the respective times t1, . . . , tM satisfy ψti = ψ for

all i. This would be a bad idea! The conditioning just described can affect the distribution

of the configurations X1, . . . , XM in surprising, and uncontrollable, ways.

For example, suppose that when the result of an observation of X1 is “favorable,” the

happy experimenter proceeds somehow to prepare the second system in state ψ at time t2,

while if the result is “unfavorable,” the depressed experimenter requires some extra time

to recuperate, and prepares the second system in state ψ at time t′2 > t2. In this situation

X1 need not be independent of ψt2 , so that conditioning on ψt2 may bias the distribution

of X1.

Moreover, we believe that this example is not nearly so artificial as it may at first

appear. In the real world, of which the experimenters and their equipment are a part,

which experiments get performed where and when can, and typically will, be correlated

with the results of previous experiments, with each other, and with any number of other

factors, such as, for example, the weather, which we would not normally take into account.

Therefore, stochastic conditioning can be a very tricky business here, yielding conditional

distributions of a surprising, and thoroughly unwanted, character.

What has just been said suggests that our multitime formulation is, while nonetheless

inadequate, also perhaps not as general as we might want. The times at which our exper-

iments are performed, and indeed the subsystems upon which they are performed, may

themselves be random, and a more general formulation, like the one we shall give, should

take this into account. However, we wish to emphasize that, as we shall see, the primary

value of such a “random system” formulation is not increased generality. Rather, it is

first of all simply the case that, strictly speaking, the systems upon which experiments get

performed are, in fact, themselves random—not just the results, or the state of the system,

but the time of the experiment as well as the specific system, the particular collection of

particles, upon which we focus and act. Furthermore, when we properly take this into

account, the difficulty we have been discussing vanishes!
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9. Random systems

Consider a pair σ = (π, T ), where T ∈ R (with T ≥ 0 if THE INITIAL TIME is 0) and

π is a splitting

q = (x, y) ≡ (πq, π⊥q) (9.1)

(see Section 5); we identify π with the projection Q ≡ R
3N → R

3m onto the configuration

of the (m-particle) x-system, with the components of x ≡ πq ordered, say, as in q. π comes

together with π⊥, the complementary projection, onto the coordinates of the environment

(also ordered as in q). Thus we may identify π with the subset of {1, . . . , N} corresponding

to the particles of the x-system. σ specifies a subsystem at a given time, for example, the

system upon which we experiment and the time at which the experiment begins.29

Now allow both T and π to be random, i.e., allow T to be a real-valued, and π to be

a projection-valued, function on the space Q of initial configurations. (π may thus be

identified with a random subset of {1, . . . , N}.) For σ = (π, T ) we write

Xσ = πQT (9.2)

for the configuration of the system and

Yσ = π⊥QT (9.3)

for the configuration of its environment.30

We say that a pair

σ = (π, T ), (9.5)

consisting of a random projection and a random time as described, is a random system

provided

{σ = σ0} ∈ F(Yσ0
) (9.6)

29If indistinguishability were taken into account, our identification of π would have to be modified
accordingly. We might then associate it, for example, with a subset of R3. (See footnote 15.)

30More explicitly, when π and T are random, Xσ is the random variable

Xσ(Q) = π(Q)
(

QT (Q)

)

(9.4)

and similarly for Yσ .
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for any (nonrandom) σ0 = (π0, t).
31 Here we use the notation A ∈ F(W1,W2, . . . ) to

convey that IA, the indicator function of the event A ⊂ Q, is a function of W1,W2, . . . .
32

We emphasize that for a random system σ, the configuration Xσ (Yσ) of the system (of

its environment) is doubly random—σ is itself random, and for a given value σ0 of σ, Xσ0

(Yσ0
) is, of course, still random.

The condition (9.6) says that the value of a random system, i.e., the identity of the

particular subsystem and time that it happens to specify, is reflected in its environment.

In practice, this value is expressed by the state of the experimenters, their devices and

records, and whatever other features of the environment form the basis of its selection. It

is for this reason that we usually fail to notice that our systems are random: relative to

“ourselves,” which we naturally don’t think of as random, they are completely determined.

Notice also that (9.6) fits nicely with the notion of the wave function of a subsystem, as

expressed, e.g., by (5.19).33

We shall write ψσ for the (effective or conditional) wave function of the random system

σ—given Q ∈ Q, the wave function at time T (Q) of the system defined by π(Q). Using

31The condition (9.6), which is formally what we need, technically suffers from “measure-0 defects”—
since a random time T will typically be a continuous random variable, the event {σ = σ0} will typically

have measure 0, while conditional probabilities, for which (9.6) is formally utilized, are strictly defined

only up to sets of measure 0. This defect can be eliminated by replacing (9.6) by the condition that for
any t there exist a number ǫ0(t) > 0 such that

{π = π0, t− ǫ ≤ T ≤ t} ∈ F(Y(π0,t))

for all 0 < ǫ < ǫ0(t), using which our formal analysis becomes rigorous via standard continuity-density

arguments. (Of course, if time were discrete no such technicalities would arise.)
32More precisely, F(W1,W2, . . . ) denotes the sigma-algebra generated by the random variablesW1,W2, . . . .
33While the preceding informal description may not appear to discriminate between (9.6) and the

perhaps equally natural condition

σ ∈ F(Yσ),

which we may formally write as

{σ = σ0} ∈ F(Yσ), (9.7)

a careful reading should convey (9.6). The conditions (9.6) and (9.7) are not, in fact, equivalent, nor
even comparable. In practice both are satisfied, the validity of (9.7) deriving mainly from the existence of

“clocks.” We have defined the notion of random system using only (9.6) because this is what turns out to

be relevant for our analysis. (Note also that, trivially, σ ∈ F(Yσ , σ).)
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the notation of equation (5.21), we have that

ψσ = ψYσT,π, (9.8)

where the subscript π makes explicit the dependence of ψYt upon the splitting q = (x, y).

Note that ψσ is a functional of both σ and Yσ.

The crucial ingredient in our multitime analysis is the observation that the fundamental

conditional probability formula (6.1) remains valid for random systems: For any random

system σ34

P(Xσ ∈ dx|Yσ, σ) = |ψσ(x)|
2dx, (9.9)

which can in a sense be regarded as the most compact expression of the entire quantum

formalism. To see this note that for any value σ0 = (π0, t) of σ, we have that on {σ = σ0}

P(Xσ ∈ dx|Yσ, σ) = P(Xσ ∈ dx|Yσ, σ = σ0)

= P(Xσ0
∈ dx|Yσ0

, σ = σ0)

= P(Xσ0
∈ dx|Yσ0

) ≡ P(Xt ∈ dx|Yt)

= |ψt(x)|
2dx ≡ |ψσ0

(x)|2dx

= |ψσ(x)|
2dx,

(9.10)

where we have used (6.1) and (9.6), as well as the obvious fact that Xσ, Yσ, and ψσ agree

respectively with Xσ0
(≡ Xt), Yσ0

(≡ Yt), and ψσ0
(≡ ψt) on {σ = σ0}.

35

10. Multitime distributions

...every atomic phenomenon is closed in the sense that its observation is based
on registrations obtained by means of suitable amplification devices with ir-
reversible functioning such as, for example, permanent marks on the photo-
graphic plate...the quantum-mechanical formalism permits well-defined appli-
cations only to such closed phenomena... (Bohr, ref. 22, pp. 73 and 90)

34The conditioning here on σ can of course be removed if σ ∈ F(Yσ) or, more generally, if ψσ ∈ F(Yσ),
e.g., if ψσ = ψ is constant, i.e., nonrandom.

35The reader familiar with stochastic processes should note the similarity between (9.6) and (9.9) on the
one hand, and the notions of stopping time and the strong Markov property from Markov process theory.

Indeed, (6.1) can be regarded as a kind of Markov property, in relation to which (9.9) then becomes a

strong Markov property.
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Now consider a sequence σi = (πi, Ti), i = 1, . . . ,M , of random systems, ordered so

that (with probability 1)

T1 ≤ T2 ≤ · · · ≤ TM . (10.1)

We write Xi for Xσi , Yi for Yσi , and let

Fi = F(Yσi , σi). (10.2)

Suppose that for the wave function of the i-th system we have

ψσi = ψi (10.3)

where ψi is nonrandom, i.e., (with probability 1) the random wave function ψσi is the

specific wave function ψi. This will be the case if the requirement that the i-th system

have wave function ψi forms part of the basis of selection for this system, i.e., for σi—

for example, if the i-th experiment, by prior decision, must be preceded by a successful

preparation of the state ψi.

Finally, suppose that

Xi ∈ Fj for all i < j, (10.4)

i.e., for all i < j Xi is a function of Yj and σj . This will hold, for example, if, with

probability 1, each Xi is measured—if the i-th measurement has not been completed, and

the result “recorded,” prior to time Tj , then the i-th system, together with the apparatus

which measures it, must still be isolated at time Tj , from σj as well as from the rest of its

environment, remaining so until the completion of this measurement.

Notice that since ψj is nonrandom, it follows from (10.4) and the fundamental condi-

tional probability formula (9.9) that

P(Xj ∈ dxj|X1, . . . , Xj−1) = P(Xj ∈ dxj |Yj, σj)

= |ψj(xj)|
2dxj .

(10.5)
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Thus

P (Xi ∈ dxi, i ≤ j) = P (Xi ∈ dxi, i ≤ j − 1)P (Xj ∈ dxj |X1 = x1, . . . , Xj−1 = xj−1)

= P (Xi ∈ dxi, i ≤ j − 1) |ψj(xj)|
2dxj

= |ψ1(x1)|
2 · · · |ψj(xj)|

2dx1 · · ·dxj ,

(10.6)

and

X1, . . . , XM are independent, with each Xi having distribution given by |ψi|
2
. (10.7)

As it stands (10.7) is mildly useless, since the probability distribution P with respect to

which it is formulated does not take into account any “prior” information, some of which we

might imagine to be relevant to the outcomes of our sequence of experiments. Therefore, it

is significant that our entire random system analysis (including (10.1), (10.3), and (10.4))

can be relativized to any set M ⊂ Q—i.e., we may replace (Q,P) by (M,PM) where

PM(dQ) = P(dQ|M)—without essential modification, provided the random systems σ

under consideration satisfy

M ∈ F(Yσ, σ). (10.8)

In particular, (10.7) is valid even with respect to PM provided that for all i

M ∈ Fi. (10.9)

We might think of M as reflecting the “macroscopic state” at a time prior to all of our

experiments, though one might argue about whether (10.9) would then be satisfied. Be

that as it may, any event M describing any sort of prior information to which we could

conceivably have access would be expected to satisfy (10.9), particularly if this information

were recorded.

Now suppose that ψi = ψ for all i. Then the joint distribution of X1, . . . , XM with

respect to PM is precisely the same as in the equal time situation of Section 7.36 Since

36Notice that equal-time experiments are covered by our multitime analysis—all the Ti can be identical—

and in this case (10.4) is automatically satisfied. However, for our earlier equal-time results it was necessary

that ψ be the effective wave function, while here conditional is sufficient.
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the analysis there depended only upon this joint distribution, we may draw the same

conclusions concerning empirical distributions and tests as before. We thus find for our

sequence of experiments that typical initial configurations—typical with respect to P or

PM—yield empirical statistics governed by the quantum formalism.

Perhaps this claimed agreement with the quantum formalism requires elaboration. We

have been explicitly concerned here only with the statistics governing the outcomes of

position measurements. Now we were also concerned only with configurations in our equal-

time analysis of Section 7. But our results there directly implied agreement with the

quantum formalism for the results of measurements of any observable:

Our statistical conclusions there were valid regardless of whether or not the configura-

tions—the Xi—were “measured.” Thus, for the equal time case the joint distribution of

any functions Zi = fi(Xi) of the configurations must be inherited from the distribution of

the Xi themselves. In particular, by considering subsystems of the form (5.4), where the

apparatus “measures the observable”—i.e., self-adjoint operator—Ẑi, with wave functions

ψ̂i = ψi ⊗ φi where φi is the initial(ized) wave function of the i-th apparatus, letting Zi

be the outcome of this “measurement of Ẑi” and using what we know about the joint

distribution of the Xi, it follows that the Zi are independent, and, as in the last paragraph

of Section 3, that each Zi must have the distribution provided by the quantum formalism,

namely, that given by the spectral measure ρψi
Ẑi
(dz) for Ẑi in the state ψi. (For a detailed

account of how this comes about see [14,18,29].)

The corresponding result for the multitime case does not, in fact, follow from (10.7).

The latter does require that the configurations be “measured,” and a “measurement of Ẑi”

need not involve, and indeed may be incompatible with, a “measurement” of Xi.

But, while it does not follow from the result for the Xi, the corresponding result for

“general measurements” does, in fact, follow from the analysis for the Xi. We need merely

suppose for the Zi what we did for the Xi, namely, that

Zi ∈ Fj for all i < j, (10.10)

to conclude, for the sequence of outcomes Zi of “measurements of observables” Ẑi in states
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ψi, that (with respect to PM for M satisfying (10.8))

Z1, . . . , ZM are independent, with each Zi having distribution given by ρ
ψi
Ẑi
, (10.11)

from which the usual conclusions concerning empirical distributions and tests follow im-

mediately.37

We emphasize that the assumptions (10.4), (10.10), and (10.9) are minimal. They

demand merely that facts about results and initial experimental conditions not be “forgot-

ten.” Thus they are hardly assumptions at all, but almost the very conditions essential to

enable us, at the conclusion of our sequence of experiments, to talk in an informed manner

about the experimental conditions and results and compare these with theory.

Moreover, it is not hard to see that if these conditions are relaxed, the “predictions”

should not be expected to agree with those of the quantum formalism.38 This is a striking

illustration of the way in which Bohmian mechanics does not merely agree with the quan-

tum formalism, but, eliminating ambiguities, illuminates, clarifies, and sharpens it.39

11. Absolute uncertainty

That the quantum equilibrium hypothesis ρ = |ψ|
2
conveys the most detailed knowledge

possible concerning the present configuration of a subsystem (of which the “observer” or

37That Zi = fi(Xi) will in fact be the outcome of what would normally be considered a measurement

of Ẑi can be expected only if ψi is the effective wave function of the i-th system, and not merely the

conditional wave function: The functional form of Zi is based upon the evolution of a system initially

with effective wave function ψi interacting with a suitable apparatus but otherwise isolated. However, the
conclusion (10.11) for Zi = fi(Xi) is valid even for ψi merely the conditional wave function, though in

this case Zi may have little connection with what is actually observed.
38Note that by selectively “forgetting” results we can dramatically alter the statistics of those that we

have not “forgotten.”
39The analysis we have presented does not allow for the possibility that with nonvanishing probability

Ti = ∞, i.e., the conditions for the selection of σi are never satisfied. Our results extend to this case

provided that (X1, . . . , Xi) and {Ti+1 < ∞} are conditionally independent given {Ti < ∞} for all i =

1, . . . ,M − 1, in which case our results are valid given {TM <∞}. Note that without the aforementioned
conditional independence our results would not be expected to hold: Suppose, for example, that if the

initial results are “unfavorable,” the depressed experimenter destroys humankind, and systems no longer
get prepared properly. Thus, conditioning on {TM <∞} yields a “biased” sample. The preceding points to

perhaps a different, albeit rather minor, ambiguity in the quantum formalism, of which Bohmian mechanics

again forces one to take note, and in so doing to rectify.
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“knower” is not a part—see Point 23 of the Appendix), what we have called absolute

uncertainty, is implicit in the results of Sections 7 and 10.40 The key observation relevant

to this conclusion is this: Whatever we may reasonably mean by knowledge, information, or

certainty—and what precisely these do mean is not at all an easy question—it simply must

be the case that the experimenters, their measuring devices, their records, and whatever

other factors may form the basis for, or representation of, what could conceivably be

regarded as knowledge of, or information concerning, the systems under investigation,

must be a part of or grounded in the environment of these systems.

The possession by experimenters of such information must thus be reflected in correla-

tions between the system properties to which this information refers and the features of

the environment which express or represent this information. We have shown, however,

that given its wave function there can be no correlation between (the configuration of) a

system and (that of) its environment, even if the full microscopic environment Y—itself

grossly more than what we could conceivably have access to—is taken into account.

Because we consider absolute uncertainty to be a very important conclusion, with signif-

icance extending beyond the conceptual foundations of quantum theory, we shall elaborate

on how our results, for both the equal-time and the general multitime cases, entail this

conclusion. The crucial point is that the possession of knowledge or information implies

the existence of certain features of the environment, an environmentally based selection

criterion, such that systems selected on the basis of this criterion satisfy the conditions

expressed by this information. (For example, when a measuring device registers, or the

associated computer printout records, that “|X | < 1”, it should in fact be more or less the

case that |X | < 1.)

40Note, however, that as far as knowledge of the past is concerned, it is possible to do a good deal better
than what would be permitted by absolute uncertainty for knowledge of the present: Having prepared our

subsystem in a specific (not-too-localized) quantum state, with known wave function ψ, we may proceed to

measure the configuration X of this system, thereby obtaining detailed knowledge of both its wave function
and its configuration for some past time. But note well that the determination of the configuration may—

indeed, as we show, must—lead to an appropriate “collapse” of ψ, and hence our knowledge of the (present)

configuration will be compatible with ρ = |ψ|2 for the present wave function. (Note also that for quantum

orthodoxy as well it is sometimes argued that knowledge of the past need not be constrained by the

uncertainty principle.)
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Suppose that ourM systems of Section 7 have been chosen on the basis of some features

of the environment, say by selection from an ensemble ofM ′ systems, also of the form con-

sidered there. The selection criterion can be based upon any property of the environment

Yt = Y of the original (preselection) ensemble. (We allow for a rather arbitrary selection

criterion, though in practice selection would of course be quite constrained. In particular,

a realistic selection criterion should, perhaps, be the “same” for each system; i.e., whether

or not the i-th system is selected should depend, for all i, upon the same property of Y

relative to this system. However, we need here no such constraints.)

Since, with respect toPYt , the configurations of the systems of our original ensemble were

independent, with each having distribution given by |ψ|
2
, and since our selection criterion

is based solely upon the environment Y of the original ensemble and in no way directly on

the values of the configurations themselves, it follows that the configurations X1, . . . , XM

of our selected subsystems have precisely the same distribution (also relative to PYt ) as

the original ensemble. Thus, for typical initial universal configurations, the empirical

distribution of configurations across our selected ensemble will be given (approximately)

by |ψ|
2
, just as for the original ensemble. It follows that, whatever else it may be, our

selection criterion cannot be based upon what we could plausibly regard as information

concerning system configurations (more detailed than what is already expressed by |ψ|
2
).

For the general case, of multitime experiments as described in Section 10, the analysis is

perhaps even simpler. In fact, for this case there is really nothing to do, beyond observing

that any (environmentally based) selection criterion, whatever it may be, can be incorpo-

rated into the definition of our random systems, as part of the basis for their selection.

It thus follows from the results of Section 10 that no such criterion can be regarded as

reflecting any information, beyond |ψ|
2
, about the configurations of these systems. There-

fore, no devices whatsoever, based on any present or future technology, will provide us

with the corresponding knowledge. In a Bohmian universe such knowledge is absolutely

unattainable!41

41The reader concerned that we have overlooked the possibility that information may sometimes be

grounded in non-configurational features of the environment, for example in velocity patterns, should
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We emphasize that we do not claim that knowledge of the detailed configuration of a

system is impossible, a claim that would be manifestly false. We maintain only that—as a

consequence of the fact that the configuration X of a system and the configuration Y of its

environment are conditionally independent given its wave function ψ—all such knowledge

must be mediated by ψ. And we emphasize that a major reason for the not insignificant

length of our argument, as presented in Sections 6-11, was the necessity to extract from

the aforementioned conditional independence analogous conclusions concerning empirical

correlations.

From our conclusion that when a system has wave function ψ we cannot know more

about its configuration X than what is expressed by |ψ|
2
, it follows trivially that knowledge

that its wave function is ψ similarly constrains our knowledge of the configuration. It also

trivially follows that detailed knowledge of X , for example that X ∈ I for a given set of

values I, entails detailed conclusions concerning the wave function, for example that the

(conditional) wave function of the system is supported by I.42

Finally, in order to further sharpen the character of our absolute uncertainty, one more

point must be made. We have focused here primarily on the statistical aspect of the wave

function of a system. But any “absolute uncertainty” based solely upon the fact that

knowledge of the configuration X of a system must be mediated by (knowledge of) some

“object,” in the sense that the distribution of X can be expressed simply in terms of that

consider the following (recall as well footnote 12):

(1) Knowledge and information are, in fact, almost always, if not always, configurationally grounded.
Examples are hardly necessary here, but we mention one—synaptic connections in the brain.

(2) Dynamically relevant differences between environments, e.g., velocity differences, which are not

instantaneously correlated with configurational differences quickly generate them anyway. And
we need not be concerned with differences which are not dynamically relevant!

(3) Knowledge and information must be communicable if they are to be of any social relevance; their

content must be stable under communication. But communication typically produces configura-
tional representations, e.g., pressure patterns in sound waves.

(4) In any case, in view of the effective product form (5.17), when a system has an effective wave
function, the configuration Y provides an exhaustive description of the state of its environment

(aside from the universal wave function Ψ—and through it Φ—which for convenience of exposition

we are regarding as given—see also footnotes 27 and 31).

42And even if the system does not have an effective wave function, we have that any density matrix

describing the system must also be “supported” by I.
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“object,” may be sorely lacking in substance if the “object” is merely statistical. In such

a case, knowledge of the “object” need amount to nothing more than knowledge that X

has the distribution so expressed.

What lends substance to the “absolute uncertainty” in Bohmian mechanics—and jus-

tifies our use of that phrase—is the fact that the relevant “object,” the wave function ψ,

plays a dual role: it has, in addition to its statistical aspect, also a dynamical one, as

expressed, e.g., in equations (5.8) and (5.11). Thus, knowledge of the wave function of a

system, which sharply constrains our knowledge of its configuration, is knowledge of some-

thing in its own right, something “real,” and not merely knowledge that the configuration

has distribution |ψ|
2
.

Moreover, the detailed character of this dynamical aspect is such that a wave function

with narrow support quickly spreads, owing to the dispersion in Schrödinger’s equation, to

one with broad support, a change which generates a similar change in the distribution of

the configuration. It follows that the unavoidable price we must pay for sharp knowledge of

the present configuration of a system is at best hazy knowledge of its future configuration,

i.e., of its “effective velocity.” In particular, our absolute uncertainty embodies absolute

unpredictability. More generally, the usual uncertainty relations for noncommuting “ob-

servables” become a corollary of the quantum equilibrium hypothesis ρ = |ψ|
2
as soon as

the dynamical role of the wave function is taken into account; a detailed analysis can be

found in [14,18,29].

12. Knowledge and nonequilibrium

The alert reader may be troubled that we have established results about randomness

and uncertainty, results of a flavor often associated with “chaos” and “strong ergodic

properties,” without having to invoke any of the hard estimates and delicate analysis

usually required to establish such properties. Indeed, our analysis neither used nor referred

to any such properties. How can this be?

The short answer is quantum equilibrium, with all that the notion of equilibrium entails
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and conveys, an answer upon which we shall elaborate in the next section. Here we would

like merely to observe that what is truly remarkable is not absolute uncertainty, irreducible

limitations on what we can know, but rather that it is possible to know anything at all!

We take (the possibility of) knowledge, our information gathering and storing abilities,

too much for granted. (And we conclude all too readily that the unknowable is unreal.)

Of course, it is not at all surprising that we should do so, in view of the essential role such

abilities play in our existence and survival. But that there should arise stable systems

embodying (what can reasonably be regarded as) such abilities is a perhaps astonishing

fact about the way our universe works, about the laws of nature!

The point is that we, the knowers, are separate and distinct from the things about which

we know, and know in marvelous detail. How can there be, between completely disjoint

entities, sufficiently strong correlations to allow for a representation in one of these entities

of detailed features of the other? Indeed, such correlations are absent in thermodynamic

equilibrium. With respect to (any of the distributions describing) global thermodynamic

equilibrium, disjoint systems are more or less independent, and systems are more or less

independent of their environments, facts incompatible with the existence of knowledge or

information.

What renders knowledge at all possible is nonequilibrium. In fact, rather trivially, the

very existence of the devices and records, not to mention brains, yielding or embodying any

sort of information is impossible under global equilibrium. And, according to Heisenberg,

“every act of observation is by its very nature an irreversible process” [37], and thus

fundamentally nonequilibrium.

Thus, the very notion of quantum equilibrium, of equilibrium of configurations relative

to the wave function, already suggests the unknowability of these configurations beyond

the wave function. Our results merely provide a firm foundation for this suggestion. What

is, however, striking is the simplicity of the analysis and how absolute and clean are the

conclusions.

Insofar as equilibrium is associated with the impossibility of knowledge, equilibrium

alone does not provide an adequate perspective on our analysis. In particular, our results
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say perhaps little of physical relevance unless some knowledge is possible, e.g., of the wave

function of a particular system, or of the results of observations. But for this nonequilib-

rium is essential.

13. Quantum equilibrium and thermodynamic (non)equilibrium

[In] a complete physical description, the statistical quantum theory would...take
an approximately analogous position to the statistical mechanics within the
framework of classical mechanics. (Einstein, in ref. 50, p.672)

We would like now to place quantum equilibrium within a broader context by comparing

it with classical thermodynamic equilibrium.

According to the quantum equilibrium hypothesis, when a system has wave function ψ,

the distribution ρ of its configuration is given by

ρ = |ψ|
2
. (13.1)

Similarly, the Gibbs postulate of statistical mechanics asserts that for a system at temper-

ature T , the distribution ρ of its phase space point is given by

ρ =
e−H/kT

Z
, (13.2)

where H is the classical Hamiltonian of the system (including, say, the “wall potential”),

k is Boltzmann’s constant, and Z, the partition function, is a normalization.

In addition, we found that (13.1) assumed sharp mathematical form when understood

as expressing the conditional probability formula (6.1). (13.2) is perhaps also best regarded

as a conditional probability formula, for the distribution of the phase point of the system

given that of its environment—after all, the Hamiltonian H typically involves interactions

with the environment, and the temperature T (like the wave function) can be regarded as

a function of (the state of)the environment. (How otherwise would we know the temper-

ature?) Furthermore, for a rigorous analysis of equilibrium distributions in the thermo-

dynamic limit—i.e., of (the idealization given by) global thermodynamic equilibrium—the
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equations of Dobrushin and Lanford-Ruelle [27,41], stipulating that (13.2)—regarded as

expressing such a conditional distribution—be satisfied for all subsystems, often play a

defining role.43

Moreover, what we have just described is only a part of a deeper and broader analogy,

between the scheme

classical mechanics =⇒ equilibrium statistical mechanics =⇒ thermodynamics, (13.3)

which outlines the (classical) connection between the microscopic level of description and

a phenomenological formalism on the macroscopic level; and the scheme

Bohmian mechanics =⇒
quantum equilibrium:
statistical mechanics rel-
ative to the wave function

=⇒ the quantum formalism, (13.4)

which outlines the (quantum) connection between the microscopic level and another phe-

nomenological formalism—the quantum measurement formalism. We began this section

by comparing only the middle components of (13.3) and (13.4), but it is in fact the full

schemes which are roughly analogous.

In particular, note that the middle of both schemes concerns the equilibrium distribution

for the complete state description of the structure on the left with respect to the state for

the structure on the right—the macrostate, as described by temperature (or energy) and,

say, volume; or the quantum state, specified by the wave function. However, the quantum

formalism does not live entirely on the macroscopic level, since the wave function for, say,

an atom is best regarded as inhabiting (mainly) the microscopic level, at least for Bohmian

mechanics.

The second arrow of (13.3) is, of course, associated primarily with the work of J. Willard

Gibbs [34]; the corresponding arrow of (13.4), upon which we have not focused here,

43However, for a universe which, like ours, is not in global thermodynamic equilibrium, there is pre-

sumably no probability distribution on initial phase points with respect to which the probabilities (13.2),
for all subsystems which happen to be “in thermodynamic equilibrium” and all times, are the conditional

probabilities given the environments of the subsystems. In other words, roughly speaking, (13.2) is not

equivariant. (See Krylov [39], as well as the discussion after (13.4).)
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will be the subject of [29]. (See also [14,18].) We have here focused on the first arrow

of (13.4), i.e., on deriving the quantum equilibrium hypothesis from Bohmian mechanics.

The corresponding arrow of (13.3) remains an active area of research, though it does

not appear likely that a comprehensive rigorous analysis will be forthcoming any time

soon. Conventional wisdom to the contrary notwithstanding, the problem of the rigorous

justification, from first principles, of the use of the “standard ensembles,” i.e., of the

derivation of randomness governed by detailed probabilities, is far more difficult for classical

thermodynamic equilibrium than for quantum theory!

How can this be? How is it possible so easily to derive the quantum equilibrium hypoth-

esis from first principles (i.e., from Bohmian mechanics), while the corresponding result for

thermodynamics—the rigorous derivation of the Gibbs postulate from first principles—is

so very difficult? The answer, we believe, is that “pure equilibrium” is easy, while nonequi-

librium, even a little bit, is hard. In our nonequilibrium universe, systems which happen

to be in thermodynamic equilibrium are surrounded by, and arose from, (thermodynamic)

nonequilibrium. Thus with thermodynamic equilibrium we are dealing with islands of

equilibrium in a sea of nonequilibrium. But with quantum equilibrium we are in effect

dealing with a global equilibrium, albeit relative to the wave function.

What makes nonequilibrium so very difficult is the fact that for nontrivial dynamics it is

extremely hard to get a handle on the evolution of nonequilibrium ensembles adequate to

permit us rigorously to conclude much of anything concerning the present distribution that

would arise from a given nonequilibrium distribution in the (distant) past. To establish

“convergence to equilibrium” for times t → ∞ (mixing) is itself extremely difficult, but

even this would be of little physical relevance, since we generally deal with, and can survive

only during, times much earlier than the epoch of global thermodynamic equilibrium.

We should perhaps elaborate on why global equilibrium is so easy. A key aspect of

equilibrium is, of course, stationarity—or equivariance. But how can this be sufficient

for our purposes? Mere stationarity is not normally sufficient in a dynamical system

analysis to conclude that typical behavior embodies randomness governed by the stationary

distribution. Such “almost everywhere”-type assertions usually require the ergodicity of
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the dynamics. Why did we not find it necessary to establish some sort of ergodicity?

The answer, we believe, lies in another critical aspect of the notion of equilibrium, shared

by the schemes (13.3) and (13.4), and arising from the fact that both schemes are concerned

with large “systems,” with the thermodynamic limit as it were. In equilibrium, whether

quantum or thermodynamic, most configurations or phase points are “macroscopically

similar”: quantities given by suitable spatial averages—e.g., density, energy density, or

velocity fluctuations for thermodynamic equilibrium, and empirical correlations for quan-

tum equilibrium—are more or less constant over the state space, in a sense defined by

the equilibrium distribution. To say that a system is in equilibrium is then to say that its

configuration or phase point is typical, in the sense that the values of these spatial averages

are typical.

Now while the individual subsystems with which we have been concerned may be micro-

scopic, our analysis, in fact, is effectively a “large system analysis.” This is manifest in the

equal-time analysis of Section 7, and for the general, multitime analysis it is implicit in our

measurability conditions (10.4) and (10.8), which are plausible only for a universe having

a large number of degrees of freedom. Thus, just as for a system already in thermodynamic

equilibrium, we have no need for the ergodicity of the dynamics—just “stationarity”—since

the kind of behavior we wish to establish occurs for a huge set of initial configurations, the

“overwhelming majority.”

(It might also be argued that we have, in fact, established for Bohmian mechanics a kind

of effective Bernoulliness, and hence an effective ergodicity. And, again, the fact that we

can do this with little work comes from the “thermodynamic limit” aspect of our analysis.)

The reader should compare the impossibility of perpetual motion machines, which is

associated with the scheme (13.3), with that of “knowledge machines,” as expressed by

absolute uncertainty, associated with the scheme (13.4). In both cases the existence of

devices of a certain character is precluded by general theoretical considerations—more or

less equilibrium considerations for both—rather than by a detailed analysis of the workings

of the various possible devices.
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14. Global equilibrium beneath nonequilibrium

But to admit things not visible to the gross creatures that we are is, in my
opinion, to show a decent humility, and not just a lamentable addiction to
metaphysics. (Bell [9])

The schemes (13.3) and (13.4) refer to different universes, a classical universe and a

quantum (Bohmian) universe. Since our universe happens to be a quantum one, it would,

perhaps, be better to consider, instead of (13.3), the analogous quantum scheme44

Bohmian mechanics =⇒ quantum statistical mechanics =⇒ thermodynamics. (14.1)

While the second arrow of (14.1) is standard, and presumably nonproblematical, research

on the first arrow has not yet reached its infancy.

Note that it would make little sense to ask for a derivation of quantum statistical me-

chanics from the first principles provided by orthodox quantum theory. The very meaning

of orthodox quantum theory is so entwined with processes, such as measurements, in which

thermodynamic considerations play a crucial role that it is difficult to imagine where such

a derivation might begin, or, for that matter, what such a derivation could possibly mean!

(And insofar as Bohmian mechanics clarifies the meaning and significance of the wave

function of a system, and permits a coherent analysis of the microscopic and macroscopic

domains within a common theoretical framework, it may well be that the last word has

not yet been written concerning the connection represented by the second arrow.)

If nonequilibrium is an essential aspect of our universe, and if configurations are in

quantum equilibrium, i.e., pure equilibrium relative to the wave function, what then is the

source, in our universe, of nonequilibrium? What is it that is not in equilibrium? The wave

function, of course—both the universal wave function Ψ and, as a consequence, subsystem

44While it can be shown that in the “macroscopic limit”

Bohmian mechanics =⇒ classical mechanics,

a proper understanding of thermodynamics must be in terms of the actual behavior of the constituents of

equilibrium systems, i.e., quantum behavior.
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wave functions ψ. At the same time, the middle of the scheme (14.1) can be regarded as

concerned with the distribution of the subsystem wave function ψ for subsystems which

happen to be in thermodynamic equilibrium. But by exploiting global thermodynamic

nonequilibrium we are able to see beneath the thermodynamic-macroscopic level of de-

scription, while with global quantum equilibrium there is no quantum nonequilibrium to

reveal the system configuration X beneath the system wave function ψ.

It is important, however, not to succumb to the temptation to conclude, as does Heisen-

berg [37], that configurations therefore provide merely an “ideological superstructure” best

left out of quantum theory; for, as we have seen, the very meaning of the wave function ψ

of a subsystem requires the existence of configurations, i.e., those of its environment. And

when we determine the wave function of a system we do so on the basis of the configuration

of the environment. Recall also that both aspects of the wave function of a subsystem,

the statistical and the dynamical, cannot coherently be formulated without reference to

configurations. It is therefore not at all astonishing that orthodox quantum theory, by

refusing to accept configurations as part of the description of the state of a system, has

led to so much conceptual confusion.

Note that the fact that thermodynamics seems to depend only upon ψ, and not on any

contribution to the total thermodynamic entropy from the actual configuration X , is an

immediate consequence of quantum equilibrium: For a universe in quantum equilibrium

the entropy associated with configurations is maximal, i.e., constant as a functional of ψ,

and thus plays no thermodynamic role.

A crucial feature of our quantum universe is the peaceful coexistence between global

equilibrium (quantum) and nonequilibrium (thermodynamic), providing us with what we

may regard as an “equilibrium laboratory,” a glimpse, as it were, of pure equilibrium,

with all the surprising consequences it entails. Our analysis has shown how the interplay

between the corresponding levels of structure—the nonequilibrium level given by the wave

function, and, beneath the level of the wave function, that of the particles, described by

their positions, in equilibrium relative to the wave function—leads to the randomness and

uncertainty so characteristic of quantum theory. We shall explore elsewhere [30] how this
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(hierarchical) structure itself naturally arises, and what its deeper significance might be.

(See also Bohm [17].)

We have argued, and believe our analysis demonstrates, that quantum randomness can

best be understood as arising from ordinary “classical” uncertainty—about what is there

but unknown. The denial of the existence of this unknowable—or only partially knowable—

reality leads to ambiguity, incoherence, confusion, and endless controversy. What does it

gain us?

Appendix: Random points

In the following remarks we expand upon concepts introduced in this paper, placing our

conclusions within a broader perspective and comparing ours with related approaches.

1. Bohmian mechanics is what emerges from Schrödinger’s equation, which is said to

describe the evolution of the wave function of a system of particles , when we take this

language seriously, i.e., when we insist that “particles” means particles. Thus Bohmian

mechanics is the minimal interpretation of nonrelativistic quantum theory, arising as it

does from the assertion that a familiar word has its familiar meaning.

In particular, if Bohmian mechanics is somehow strange or unacceptable, it must be

because either Schrödinger’s equation, or the assertion that “particles” means particles,

or their combination is strange or unacceptable. Now the assertion that “particles”

means particles can hardly be regarded as in any way problematical. On the other hand,

Schrödinger’s equation, for a field on configuration space, is a genuine innovation, though

one that physicists by now, of course, take quite for granted. However, as we have seen

in Section 2, when it is appropriately combined with the assertion that “particles” means

particles, its strangeness is, in fact, very much diminished.

2. Quantum mechanics is notoriously nonlocal [52], a novelty which is in no way amelio-

rated by Bohmian mechanics. In fact, “in this theory an explicit causal mechanism exists

whereby the disposition of one piece of apparatus affects the results obtained with a distant
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piece” [2]. We wish to emphasize, however, that relative to the wave function, Bohmian

mechanics is completely local : the nonlocality in Bohmian mechanics derives solely from

the nonlocality built into the structure of standard quantum theory, as provided by a wave

function on configuration space.

That the guiding wave, in the general case, propagates not in ordinary three-
space but in a multidimensional-configuration space is the origin of the notorious
‘nonlocality’ of quantum mechanics. It is a merit of the de Broglie-Bohm version
to bring this out so explicitly that it cannot be ignored. (Bell [5])

3. A rather fortunate property of Bohmian mechanics is that the behavior of the parts—of

subsystems—reflects that of the whole. Indeed, if this were not the case it would have

been difficult, if not impossible, to have ever discovered the full theory. We believe that

a major reason nonlocality is so often regarded as problematical is not nonlocality per se

but rather that it suggests the breakdown of precisely this feature.

4. Notice that the effective wave function ψ is, in effect, a “collapsed” wave function. Thus

our analysis implicitly explains the status and role of “collapse of the wave packet” in the

quantum formalism. (See also Point 21, recalling that the Wigner formula [60] for the

joint distribution of the outcomes of a sequence of quantum measurements, to which we

there refer, is usually based upon collapse.)

In particular, note that the effective wave function of a subsystem evolves according

to Schrödinger’s equation only when this system is suitably isolated. More generally, the

evolution ψ(t) of the effective wave function defines a stochastic process, one which embod-

ies collapse in just the right way—with respect to the conditional probability distribution

given the (initial) configuration of the environment of the composite system which includes

the apparatus, with ψ the effective wave function of the system alone, i.e., not including

the apparatus. For details see [29].

Note also that the very notion of effective wave function, as well as its behavior, depends

upon the location of the split between the “observed” and the “observer,” i.e., between

the system of interest and the rest of the world, a dependence whose importance has been

emphasized by Bohr [22], by von Neumann [56], and by a great many others, see for
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example [12,40,43]. In particular, while the effective wave function will “collapse” during

measurement if the apparatus is not included in the system, it need not, in principle,

collapse if the apparatus is included, precisely as emphasized by von Neumann [56]. But

von Neumann was left with the “measurement paradox,” while with Bohmian mechanics

no hint of paradox remains.

5. The fact that knowledge of the configuration of a system must be mediated by its

wave function may partially account, from a Bohmian perspective, for how the physics

community could identify the state of a quantum system—its complete description—with

its wave function without encountering any practical difficulties. Indeed, the conclusion of

our analysis can be partially summarized with the assertion that the wave function ψ of

a subsystem represents maximal information about its configuration X . This is primarily

because of the wave function’s statistical role, but its dynamical role is also relevant here.

Thus it is natural, even in Bohmian mechanics, to regard the wave function as the “state”

of the system.

6. It has been clear, at least since von Neumann [56], that for all practical purposes

the quantum formalism, regarded in strictly operational terms, is consistent. However,

it has not, at least for many (e.g., Einstein), been clear that the “full” quantum theory,

regarded as including the assertion of “completeness” based upon Heisenberg’s uncertainty

principle—which has itself traditionally been regarded as arising from the apparent impos-

sibility of certain measurements described in more or less classical terms—is also consistent.

(See [54] for a recent expression of related concerns.) If nothing else, Bohmian mechanics

establishes and makes clear this consistency—even including absolute uncertainty.

Indeed, as is well known, Einstein tried for many years to devise thought experiments

in which the limitations expressed by the uncertainty principle could be evaded. The

reason Einstein persisted in this endeavor is presumably connected with the fact that the

arguments presented by Heisenberg and Bohr against such a possibility were, to say the

least, not entirely convincing, relying, as they did, on a peculiar, nearly contradictory,

combination of quantum and classical “reasoning.” In this regard, recall that in order
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to rescue (a version of) the uncertainty principle from one of Einstein’s final onslaughts

(see [21]), Bohr felt compelled to exploit certain effects arising from Einstein’s general

theory of relativity [21].

However, from the perspective of a Bohmian universe the uncertainty principle is sharp

and clear. In particular, from such a perspective it makes no sense to try to devise thought

experiments by means of which the uncertainty principle can be evaded, since this principle

is a mathematical consequence of Bohmian mechanics itself. One could, of course, imagine

a universe governed by different laws, in which the uncertainty principle, and a great deal

else, would be violated, but there can be no universe governed by Bohmian mechanics—and

in quantum equilibrium— which fails to embody absolute uncertainty and the uncertainty

principle which it entails.

7. The notion of effective wave function developed in Section 5 should perhaps be compared

with a related notion of Bohm, namely, the “active” piece of the wave function [19,20] (see

also Bohm [13]): If Ψ is of the form (5.12) with the supports of Ψ(1) and Ψ(2) “sufficiently

disjoint,” then Ψ(i) is “active” if the actual configuration Q is in the support of Ψ(i).

(See (5.13) and the surrounding discussion.) When this active wave function appropriately

factorizes—see (5.6)—the (active) wave function of a subsystem could be defined in terms

of the obvious factor.

This notion of subsystem wave function will agree with ours if, as is likely to be the

case, the active and inactive pieces have suitably disjoint y-supports, and it will otherwise

disagree. (In this regard see also Point 20.) For example, if

Ψ(i)(x, y) = ψ(i)(x)Φ(y) (A.1)

with ψ(1) and ψ(2) suitably disjoint (e.g., because the x-system is macroscopic and ...)

then the “active” wave function of the x-system is the appropriate ψ(i), while using our

notion the x-system has effective wave function ψ(1) +ψ(2). Note, in particular, that with

our notion the effective wave function of the universe is the universal wave function Ψ, not

the active piece of Ψ.
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Our notion of effective wave function—and not the notion based upon the active piece—

has a distinctly epistemological aspect: While for both choices we have that “ρ = |ψ|
2
”,

the latter will be the conditional distribution given the configuration of the environment

only if ψ agrees with our effective (or conditional) wave function. Moreover, whenever we

can be said to “know that the x-system has wave function ψ,” then the x-system indeed

has effective wave function ψ in our sense.

Note that while both of these choices are somewhat vague, in that they appeal to the

notion of the “macroscopic”—or to some such notion—our effective wave function, when

it exists, is, as we have seen, completely unambiguous. Moreover, as we have also seen,

with our notion reference to something like the macroscopic is not critical. Removing such

a reference—as we did in defining the notion of the conditional wave function—leads to

a precise formulation which remains entirely adequate (in fact, perfect) for our purposes.

But for the choice based on the active piece, removing such a reference would lead to utter

vagueness.

There is, of course, no real physics contingent upon a particular choice of (notion of)

“effective wave function”; rather this choice is simply a matter of convenience of expression,

of how we talk most efficiently about the physics. But such considerations can be quite

important!

8. Sometimes it is helpful to try to imagine how things appear to God. This is of course

audacious, but, in fact, the very activity of a physicist, his attempting to find the deepest

laws of nature, is nothing if not audacious. Indeed, one might even argue that the defining

activity of the physicist is the search for the divine perspective.

Be that as it may, to create a universe God must first decide upon the ontology—on

what there is—and then on the dynamical laws—on how what is behaves. But this alone

would not be sufficient. What is missing is a particular realization, out of all possible

solutions, of the dynamics—the one corresponding to the actual universe. In other words,

at least for a deterministic theory, what is further required is a choice of initial conditions.

And unless there is somehow a natural special choice, the simplest possibility would appear
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to be a completely random initial condition, with an appropriate natural measure for the

description of this randomness (whatever this might mean, even given the measure). The

notion of typicality so defined would, in a sense, be an essential ingredient of the theory

governing this hypothetical universe.

For Bohmian mechanics, with somehow given initial wave function Ψ0, this measure of

typicality is given by the quantum equilibrium distribution |Ψ0|
2
. Moreover, the dynamics

itself is also generated by Ψ0. It seems most fitting that God should design the universe in

so efficient a manner, that a single object, the wave function Ψ0, should generate all the

necessary (extra-ontological) ingredients.

9. Regarding the question of universal initial conditions, we should perhaps contrast the

issue of the initial configuration with that of the initial wave function. Insofar as the

latter is a nonequilibrium wave function, the initial wave function must correspond to low

entropy—it must be very atypical, i.e., of a highly improbable character. As has been much

emphasized by R. Penrose [49], in order to understand our nonequilibriuim world we must

face the problem of why God should have chosen such improbable initial conditions as

demanded by nonequilibrium. On the other hand, for the universal initial configuration—

in quantum equilibrium—we of course have no such problem. On the contrary, quantum

randomness itself, including even absolute uncertainty, arising as it does from quantum

equilibrium, in effect requires no explanation. (Concerning the choice of initial universal

wave function, see also Point 13.)

10. Naive agreement with the quantum formalism demands the existence of a small set

of bad initial configurations, corresponding to outcomes which are very unlikely but not

impossible. It is thus hard to see how our results could be improved upon or significantly

strengthened.

More generally, for any theory with probablistic content, particularly one describing

a relativistic universe, we arrive at a similar conclusion: Once we recognize that there

is but one world (of relevance to us), only one actual space-time history, we must also

recognize that the ultimate meaning of probability, insofar as it employed in the formulation
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of the predictions of the theory, must be in terms of a specification of typicality—one

such that theoretically predicted empirical distributions are typical. When all is said and

done, the physical import of the theory must arise from its provision of such a notion

of typical space-time histories (at the very least of “macroscopic” events), presumably

specified via a probability distribution on the set of all (kinematically) possible histories.

And given a theory, i.e., such a probability distribution, describing a large but finite

universe, atypical space-time histories, with empirical distributions disagreeing with the

theoretical predictions, are, though extremely unlikely, not impossible.

11. It is quite likely that the fiber QY
t ≡

{

Q ∈ Q
∣

∣ Yt = Y
}

of Q for which Yt = Y ,

discussed in Section 7, is extremely small, owing to the expansive and dispersive effects of

the Laplacian ∆ in Schrödinger’s equation. If so, it follows that any regular (continuous)

Ψ0 (or |Ψ0|
2
) should be approximately constant on QY

t (as on any sufficiently small set of

initial conditions). This would imply that PYt , the conditional measure given QY
t , should

be approximately the same as the uniform distribution—Lebesgue measure—on QY
t , so

that typicality defined in terms of quantum equilibrium agrees with typicality in terms of

Lebesgue measure.

Now, as we have already indicated in Section 4, under more careful scrutiny this argu-

ment does not sustain its appearance of relevance. However, it may nonetheless have some

heuristic value.

12. We wish to emphasize that a byproduct of our analysis, quite aside from the relevance of

this analysis to the interpretation of quantum theory, is the clarification and illumination of

the meaning and role of probability in a deterministic (or even nondeterministic) universe.

Moreover, our analysis of statistical tests in Section 7—the very triviality of this analyis, see

equations (7.8) and (7.10)—sharply underlines the centrality of typicality in the elucidation

of the concept of probability.

13. We should mention some examples of nonequilibrium (initial) universal wave functions:

(1) Suppose that physical space is finite, say the 3-torus T3 rather than R
3, and suppose,

say, that the potential energy V = 0. Let Ψ0(q1, . . . ,qN ) = 1 if all qi ∈ B, where B ⊂ T
3
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is a “small” region in physical space, and be otherwise 0. Then Ψ0 is a nonequilibrium wave

function, since an equilibrium wave function should be “spread out” over T3. Moreover the

initial quantum equilibrium distribution on configurations is uniform over configurations

of N particles in B.

More generally, any well localized Ψ0 is a nonequilibrium wave function. And if physical

space is R
3, any localized or square-integrable wave function is a nonequilibrium wave

function.

(2) For a nonequilibrium wave function of a rather different character, consider the

following: Take T
3 again for physical space, but instead of considering free particles,

suppose that V arises from Coulomb interactions, with half of the particles having charge

+e and half −e. Now suppose that Ψ0 is constant, Ψ0 = 1 on T
3. (Thus, quantum

equilibrium now initially corresponds to a uniform distribution on configurations.) That

this Ψ0, though “spread out,” is nevertheless a nonequilibrium wave function can be seen

in various ways. Dynamically, the Schrödinger evolution should presumably lead to the

formation of “atoms,” of suitable pairing in the (support properties of the) wave function.

Entropically, Ψ0 is very special. An equilibrium ensemble of initial wave functions is

determined by the values of the infinite set of constants of the motion given by the absolute

squares of the amplitudes with respect to a basis of energy eigenfunctions. Wave functions

in this ensemble are then specified by the phases of these amplitudes. A random choice of

phases leads to an equilibrium wave function, which should reflect the existence of “atoms.”

On the other hand, the wave function Ψ0 = 1 corresponds to a particular, very special

choice of phases, so that “atoms cancel out.”

Note also that this example is relevant to the Penrose problem mentioned in Point 9.

What choice of initial wave function could be simpler—and thus in a sense more natural—

than the one which is everywhere constant? And, again, while it might at first glance seem

that this choice corresponds to equilibrium, the attractive (in both senses) effects of the

Coulomb interaction presumably imply that this is not so!

From a classical perspective the situation is similar: The initial state in which the

particles are uniformly distributed in space with velocities all 0 (or with independent
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Maxwellian velocities) is a nonequilibrium state. In fact, an infinite amount of entropy

can be extracted from suitable clustering of the particles, arising from the great volume in

momentum space liberated when pairs of oppositely charged particles get close. (Of course,

for Newtonian gravitation—as well as for general relativity—this tendency to cluster is, in

a sense, far stronger still.)

14. To account for (the) most (familiar) applications of the quantum formalism one rarely

needs to apply (the conclusions of) our quantum equilibrium analysis to systems of the

form (5.4): Randomness in the result of even a quantum measurement usually arises

solely from randomness in the system, randomness in the apparatus making essentially no

contribution. This is because most real-world measurements are of the scattering-detection

type—and a particle (or atom ...) will be detected more or less where it’s at. Think, for

example, of a two-slit-type experiment, or of the purpose of a cloud chamber, or of a

Stern-Gerlach measurement of spin.

15. When all is said and done, what does the incorporation of actual configurations buy

us? A great deal! It accounts for:

(1) randomness

(2) absolute uncertainty

(3) the meaning of the wave function of a (sub)system

(4) collapse of the wave packet

(5) coherent—indeed, familiar—(macroscopic) reality

Moreover, it makes possible an appreciation of the basic significance of the universal wave

function Ψ, as an embodiment of law , which cannot be clearly discerned without a coherent

ontology to be governed by some law.

16. Recall that in principle the wave function ψ of a (sub)system could depend upon

the universal wave function Ψ and on the choice of system σ = (π, T ), as well as on the

configuration Y of the environment of this system. In practice, however, in situations in

which we in fact know what ψ is, it must be given by a function of Y alone, not depending

upon σ, nor even on Ψ (for “reasonable” nonequilibrium Ψ). After all, what else, beyond Y ,

66



do we have at our disposal to take into account when we conclude that a particular system

has wave function ψ? In particular, Ψ is unknown, apart from what we can conclude about

it on the basis of Y (and perhaps some a priori assumptions about reasonable initial Ψ0’s.

But even if Ψ0 were known precisely, this information would be of little use here, since

solving Schrödinger’s equation to obtain Ψ would be out of the question!)

Thus, whatever we can in practice conclude about ψ must be based upon a universal

function—of Y . It would be worthwhile to explore and elucidate the details of this function,

analyzing the rules we follow in obtaining knowledge and trying to understand the validity

of these rules. However, such considerations are not directly relevant to our purposes in this

paper, where our goal has been primarily to establish sharp limitations on the possibility

of knowledge rather than to analyze what renders it at all possible. We have argued that

the latter problem is perhaps far more difficult than the former, and, indeed, that this is

not terribly astonishing.

17. In view of the similarity between Bohmian mechanics and stochastic mechanics

[44,45,46], for which similarity see [35,28], all of our arguments and results can be trans-

ferred to stochastic mechanics without significant modification. More important, the moti-

vation for stochastic mechanics is the rather plausible suggestion that quantum randomness

might originate from the merging of classical dynamics with intrinsic randomness, as de-

scribed by a diffusion process, and with “noise” determined by ~. Insofar as our results

demonstrate how quantum randomness naturally emerges without recourse to any such

“noise,” they rather drastically erode the evidential basis of stochastic mechanics.

18. The analyis of Bohmian mechanics presented here is relevant to the problem of the

interpretation and application of quantum theory in cosmology, specifically, to the problem

of the significance of ρ = |ψ|
2
on the cosmological level—where there is nothing outside of

the system to perform the measurements from which ρ = |ψ|
2
derives its very meaning in

orthodox quantum theory.

19. Our random system analysis illuminates the flexibility of Bohmian mechanics: It

illustrates how joint probabilities as predicted by the quantum formalism, even for config-
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urations, may arise from measurement and bear little resemblance to the probabilities for

unmeasured quantities. And our analysis highlights the mathematical features which make

this possible. This flexibility could be quite important for achieving an understanding of

the relativistic domain, where it may happen that quantum equilibrium prevails only on

special space-time surfaces (see [28]). Our (random system) multitime analysis illustrates

how this need entail no genuine obstacle to obtaining the quantum formalism. (Our argu-

ment here of course involved the natural hypersurfaces given by {t = const.}, but the only

feature of these surfaces critical to our analysis was the validity of quantum equilibrium,

or, more precisely, of the fundamental conditional probability formula (6.1).)

20. A notion intermediate between that of the effective wave function and that of the condi-

tional wave function of a subsystem, a more-general-effective wave function which like the

effective wave function is “stable,” may be obtained by replacing, in the definition (5.17)–

(5.18) of effective wave function, the reference to macroscopically disjoint y-supports by

“sufficiently disjoint” y-supports. This notion of more-general-effective wave function is,

of course, rather vague. But we wish to emphasize that the y-supports of Φ and Ψ⊥ may

well be sufficiently disjoint to render negligible the (effects of) future interference between

the terms of (5.17)—so that if (5.18) is satisfied, ψ will indeed fully function dynamically

as the wave function of the x-system—without their having to be actually macroscopically

disjoint.

In fact, owing to the interactions—expressed in Schrödinger’s equation—among the

many degrees of freedom, the amount of y-disjointness in the supports of Φ and Ψ⊥ will

typically tend to increase dramatically as time goes on, with, as in a chain reaction,

more and more degrees of freedom participating in this disjointness (see [13,42,64,38]; see

also [12])). When the effects of this dissipation or “decoherence” are taken into account,

one finds that a small amount of y-disjointness will often tend quickly to become “suffi-

cient,” indeed becoming “much more sufficient” as time goes on, and very often indeed

becoming macroscopic. Moreover, if ever we are in the position of knowing that a system

has more-general-effective wave function ψ, then ψ must be its effective wave function,
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since our knowledge must be based on or grounded in macroscopic distinctions (if only in

the eye or brain).

Concerning dissipation, we wish also to emphasize that in practice the problem is not

how to arrange for it to occur but how to keep it under control, so that superpositions of

(sub)system wave functions retain their coherence and thus may interfere.

21. If we relax the condition (10.3), requiring that ψσi be nonrandom, and stipulate instead

merely that

ψσi ∈ F(Z1, . . . , Zi−1), (A.2)

we find that Z1, . . . , ZM have joint distribution given by the familiar (Wigner) formula [60]

(see also [56] and [1]).

22. We wish to compare (what we take to be the lessons of) Bohmian mechanics with

the approach of Gell-Mann and Hartle (GMH) [31,32]. Unhappy about the irreducible

reference to the observer in the orthodox formulation of quantum theory, particularly

insofar as cosmology is concerned, they propose a program to extract from the quantum

formalism a “quasiclassical domain of familiar experience,” which, if we understand them

correctly, defines for them the basic ontology of quantum theory. This they propose to do

by regarding the Wigner formula (referred to in Points 4 and 21), for the joint probabilities

of the results of a sequence of measurements of quantum observables, as describing the

probabilities of objective, i.e., not-necessarily-measured, events—what they call alternative

histories. Of course, owing to interference effects one quickly gets into trouble here unless

one restricts this use of the Wigner formula to what they call alternative (approximately)

decohering histories, for which the Wigner formula can indeed be regarded as defining

(approximate) probabilities, which are additive under coarse-graining. Thus far GMH in

essence reproduce the work of Griffiths [36] and Omnes [47]. But, as GMH further note,

the condition of (approximate) decoherence by itself allows for far too many possibilities.

They thus introduce additional conditions, such as “fullness” and “maximality,” as well

as propose certain (as yet tentative) measures of “classicity” to define an optimization

procedure they hope will yield a more or less unique quasiclassical domain. (They also
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consider the possibility that there may be many quasiclassical domains, each of which

would presumably define a different physical theory.)

As in our analysis of Bohmian mechanics, universal initial conditions—for GMH the

initial universal wave function(or density matrix)—play a critical role. And just as in

Bohmian mechanics, the wave function does not provide a complete description of the

universe, but rather attains physical significance from the role it plays in generating the

behavior of something else, something physically primitive—for GMH the quasiclassical

domain.

Insofar as nonrelativistic quantum theory is concerned, a significant difference between

Bohmian mechanics and the proposal of GMH is that the latter defines a research program

while the former is an already existing, and sharply formulated, physical theory. And as far

as relativistic quantum theory is concerned, we believe that, appearances to the contrary

notwithstanding, the lesson of Bohmian mechanics is one of flexibility (see also Point 19)

while the approach of GMH is rigid. In saying this we have in mind, on the one hand, that

GMH insist (1) that the possible ontologies be limited by the usual quantum description,

i.e., correspond to a suitable (possibly time-dependent) choice of self-adjoint operators on

Hilbert space; and (2) that this ontology be constrained further by the quantum formalism,

demanding that its evolution be governed by the Wigner formula—so that for them, but

not for Bohmian mechanics, the consideration of decoherence indeed becomes essential,

bound up with questions of ontology.

On the other hand, one lesson of Bohmian mechanics is that ontology need not be so

constrained. While the quantum formalism must—and for Bohmian mechanics does—

emerge in measurement-type situations, the behavior of the basic variables, describing the

fundamental ontology, outside of these situations need bear no resemblance to anything

suggested by the quantum formalism. (Recall, in fact, that it quite frequently happens

that simple, symmetric laws on a deeper level of description lead to a less symmetric

phenomenological description on a higher level.) Indeed, these basic variables, whether

they describe positions, or field configurations, or what have you, need not even correspond

to self-adjoint operators. That they rather trivially do in Bohmian mechanics is, in part,
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merely an artifact of the equivariant measure’s being a strictly local functional of the wave

function, which was in no way crucial to our analysis.

In particular, while dissipation or decoherence are relevant both to Bohmian mechanics

and to GMH, for GMH they are crucial to the formulation of the theory, to the specifi-

cation of an ontology , while for Bohmian mechanics they are relevant only on the level of

phenomenology . And insofar as the formation of new theories is concerned, the lesson of

Bohmian mechanics is to look for fundamental microscopic laws appropriate to the (or a)

natural choice of ontology, rather than to let the ontology itself be dictated by some law,

let alone by what is usually regarded as a macroscopic measurement formalism.

It is perhaps worth considering briefly the two-slit experiment. In Bohmian mechan-

ics the electron, indeed, goes through one or the other of the two slits, the interference

pattern arising because the arrival of the electron at the “photographic” plate reflects the

interference profile of the wave function governing the motion of the electron. In partic-

ular, and this is what we wish to emphasize here, in Bohmian mechanics a spot appears

somewhere on the plate because the electron arrives there; while for GMH “the electron

arrives somewhere” because the spot appears there.

23. There is one situation where we may, in fact, know more about configurations than

what is conveyed by the quantum equilibrium hypothesis ρ = |ψ|
2
: when we ourselves are

part of the system! See, for example, the paradox of Wigner’s friend [59]. In thinking

about this situation it is important to note well that, while it may be merely a matter of

convention whether or not we choose to include say ourselves in the subsystem of inter-

est, the wave function to which the quantum equilibrium hypothesis refers—that of the

subsystem—depends crucially on this choice.

24. We have shown, in part here and in part in [29], how the quantum formalism emerges

within a Bohmian universe in quantum equilibrium. Thus, evidence for the quantum

formalism is evidence for quantum equilibrium—global quantum equilibrium. This should

be contrasted with the thermodynamic situation, in which the evidence points towards

pockets of thermodynamic equilibrium within global thermodynamic nonequilibrium.
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The reader may wish to explore quantum nonequilibrium. What sort of behavior would

emerge in a universe which is initially in quantum nonequilibrium? What phenomenologi-

cal formalism or laws would govern such behavior? We happen to have no idea! We know

only that such a world is not our world! Or do we?
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