Skip to main content

Asbestos-Induced Oxidative Stress in Lung Pathogenesis

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Asbestos exposure causes multiple nonmalignant and malignant diseases through complex mechanisms that are not fully understood. Oxidant generation is strongly implicated in the pathogenesis of asbestos-related diseases by evidence from various in vitro and in vivo studies. We will first describe how asbestos fibers generate oxidants, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), through direct and indirect interactions with target cells. Next, we will describe how asbestos-induced oxidants influence multiple downstream biological processes involved in DNA damage, apoptosis, mitogen-activated protein kinase (MAPK) signaling, and inflammation. Elucidating the redox-regulated pathways involved in asbestos-related disease causation is complex but will likely lead us to future biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceto N, Bertino P et al (2009) Taurolidine and oxidative stress: a rationale for local treatment of mesothelioma. Eur Respir J 34(6):1399–1407

    CAS  PubMed  Google Scholar 

  • Aljandali A, Pollack H et al (2001) Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals. J Lab Clin Med 137(5):330–339

    CAS  PubMed  Google Scholar 

  • Aung W, Hasegawa S et al (2007) Potential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis. Carcinogenesis 28(9):2047–2052

    CAS  PubMed  Google Scholar 

  • Aust AE, Eveleigh JF (1999) Mechanisms of DNA oxidation. Proc Soc Exp Biol Med 222(3):246–252

    CAS  PubMed  Google Scholar 

  • Barlow CA, Barrett TF et al (2007) Asbestos-mediated CREB phosphorylation is regulated by protein kinase a and extracellular signal-regulated kinases 1/2. Am J Physiol Lung Cell Mol Physiol 292(6):L1361–L1369

    CAS  PubMed  Google Scholar 

  • Broaddus VC, Yang L et al (1996) Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest 98(9):2050–2059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buder-Hoffmann S, Palmer C et al (2001) Different accumulation of activated extracellular signal-regulated kinases (ERK 1/2) and role in cell-cycle alterations by epidermal growth factor, hydrogen peroxide, or asbestos in pulmonary epithelial cells. Am J Respir Cell Mol Biol 24(4):405–413

    CAS  PubMed  Google Scholar 

  • Carter AB, Tephly LA et al (2004) High levels of catalase and glutathione peroxidase activity dampen H2O2 signaling in human alveolar macrophages. Am J Respir Cell Mol Biol 31(1):43–53

    CAS  PubMed  Google Scholar 

  • Chao CC, Park SH et al (1996) Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys 326(1):152–157

    CAS  PubMed  Google Scholar 

  • Chu WM (2013) Tumor necrosis factor. Cancer Lett 328(2):222–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Couillin I, Petrilli V et al (2011) The inflammasomes. Springer, Basel

    Google Scholar 

  • Dai J, Churg A (2001) Relationship of fiber surface iron and active oxygen species to expression of procollagen, PDGF-A, and TGF-beta(1) in tracheal explants exposed to amosite asbestos. Am J Respir Cell Mol Biol 24(4):427–435

    CAS  PubMed  Google Scholar 

  • de Melo M, Gerbase MW et al (2006) Phosphorylated extracellular signal-regulated kinases are significantly increased in malignant mesothelioma. J Histochem Cytochem 54(8):855–861

    PubMed  Google Scholar 

  • Dostert C, Petrilli V et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320(5876):674–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fattman CL, Tan RJ et al (2006) Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase. Free Radic Biol Med 40(4):601–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faux SP, Howden PJ (1997) Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E. Environ Health Perspect 105(Suppl 5):1127–1130

    PubMed Central  PubMed  Google Scholar 

  • Gazzano E, Foresti E et al (2005) Different cellular responses evoked by natural and stoichiometric synthetic Chrysotile asbestos. Toxicol Appl Pharmacol 206(3):356–364

    CAS  PubMed  Google Scholar 

  • Gazzano E, Turci F et al (2007) Iron-loaded synthetic Chrysotile: a new model solid for studying the role of iron in asbestos toxicity. Chem Res Toxicol 20(3):380–387

    CAS  PubMed  Google Scholar 

  • Ghio AJ, Stonehuerner J et al (2008) Iron homeostasis in the lung following asbestos exposure. Antioxid Redox Signal 10(2):371–377

    CAS  PubMed  Google Scholar 

  • Golladay SA, Park SH et al (1997) Efflux of reduced glutathione after exposure of human lung epithelial cells to crocidolite asbestos. Environ Health Perspect 105(Suppl 5):1273–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goth L (2006) The hydrogen peroxide paradox. Orv Hetil 147(19):887–893

    PubMed  Google Scholar 

  • Gulumian M (1999) The role of oxidative stress in diseases caused by mineral dusts and fibres: current status and future of prophylaxis and treatment. Mol Cell Biochem 196(1–2):69–77

    CAS  PubMed  Google Scholar 

  • Haegens A, van der Vliet A et al (2005) Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice. Cancer Res 65(21):9670–9677

    CAS  PubMed  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S–724S; discussion 724S-725S

    CAS  PubMed  Google Scholar 

  • Hansen JM, Go YM et al (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215–234

    CAS  PubMed  Google Scholar 

  • Heintz NH, Janssen YM et al (1993) Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci USA 90(8):3299–3303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heintz NH, Janssen-Heininger YM et al (2010) Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42(2):133–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hillegass JM, Shukla A et al (2010a) Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann N Y Acad Sci 1203:7–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hillegass JM, Shukla A et al (2010b) Utilization of gene profiling and proteomics to determine mineral pathogenicity in a human mesothelial cell line (LP9/TERT-1). J Toxicol Environ Health A 73(5):423–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hillegass JM, Shukla A et al (2010c) Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells. Part Fibre Toxicol 7:26

    PubMed Central  PubMed  Google Scholar 

  • Howden PJ, Faux SP (1996) Fibre-induced lipid peroxidation leads to DNA adduct formation in salmonella typhimurium TA104 and rat lung fibroblasts. Carcinogenesis 17(3):413–419

    CAS  PubMed  Google Scholar 

  • Huang SX, Jaurand MC et al (2011) Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. J Toxicol Environ Health B Crit Rev 14(1–4):179–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang SX, Partridge MA et al (2012) Mitochondria-derived reactive intermediate species mediate asbestos-induced genotoxicity and oxidative stress-responsive signaling pathways. Environ Health Perspect 120(6):840–847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanova AV, Ivanov SV et al (2007) Autoimmunity, spontaneous tumourigenesis, and IL-15 insufficiency in mice with a targeted disruption of the tumour suppressor gene Fus1. J Pathol 211(5):591–601

    CAS  PubMed  Google Scholar 

  • Ivanova AV, Ivanov SV et al (2009) Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects. Mol Cancer 8:91

    PubMed Central  PubMed  Google Scholar 

  • Iwagaki A, Choe N et al (2003) Asbestos inhalation induces tyrosine nitration associated with extracellular signal-regulated kinase 1/2 activation in the rat lung. Am J Respir Cell Mol Biol 28(1):51–60

    CAS  PubMed  Google Scholar 

  • Janssen YM, Barchowsky A et al (1995) Asbestos induces nuclear factor kappa B (NF-kappa B) DNA-binding activity and NF-kappa B-dependent gene expression in tracheal epithelial cells. Proc Natl Acad Sci USA 92(18):8458–8462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen YM, Driscoll KE et al (1997) Asbestos causes translocation of p65 protein and increases NF-kappa B DNA binding activity in rat lung epithelial and pleural mesothelial cells. Am J Pathol 151(2):389–401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen-Heininger YM, Macara I et al (1999) Cooperativity between oxidants and tumor necrosis factor in the activation of nuclear factor (NF)-kappaB: requirement of Ras/mitogen-activated protein kinases in the activation of NF-kappaB by oxidants. Am J Respir Cell Mol Biol 20(5):942–952

    CAS  PubMed  Google Scholar 

  • Jarvinen K, Pietarinen-Runtti P et al (2000) Antioxidant defense mechanisms of human mesothelioma and lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 278(4):L696–L702

    CAS  PubMed  Google Scholar 

  • Jiang L, Akatsuka S et al (2012) Iron overload signature in Chrysotile-induced malignant mesothelioma. J Pathol 228(3):366–377

    CAS  PubMed  Google Scholar 

  • Jimenez LA, Zanella C et al (1997) Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am J Physiol 273(5 Pt 1):L1029–L1035

    CAS  PubMed  Google Scholar 

  • Kamp DW, Graceffa P et al (1992) The role of free radicals in asbestos-induced diseases. Free Radic Biol Med 12(4):293–315

    CAS  PubMed  Google Scholar 

  • Kliment CR, Englert JM et al (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 284(6):3537–3545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YC, Devin CJ et al (2001) Transforming growth factor beta2 induced pleurodesis is not inhibited by corticosteroids. Thorax 56(8):643–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann BD, Pietenpol JA (2012) Targeting mutant p53 in human tumors. J Clin Oncol 30(29):3648–3650

    CAS  PubMed  Google Scholar 

  • Liu JY, Brody AR (2001) Increased TGF-beta1 in the lungs of asbestos-exposed rats and mice: reduced expression in TNF-alpha receptor knockout mice. J Environ Pathol Toxicol Oncol 20(2):97–108

    CAS  PubMed  Google Scholar 

  • Liu JY, Brass DM et al (1998) TNF-alpha receptor knockout mice are protected from the fibroproliferative effects of inhaled asbestos fibers. Am J Pathol 153(6):1839–1847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JY, Sime PJ et al (2001) Transforming growth factor-beta(1) overexpression in tumor necrosis factor-alpha receptor knockout mice induces fibroproliferative lung disease. Am J Respir Cell Mol Biol 25(1):3–7

    PubMed  Google Scholar 

  • Liu G, Beri R et al (2010) Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis. Chem Biol Interact 188(2):309–318

    CAS  PubMed  Google Scholar 

  • Luster MI, Simeonova PP (1998) Asbestos induces inflammatory cytokines in the lung through redox sensitive transcription factors. Toxicol Lett 102–103:271–275

    PubMed  Google Scholar 

  • Manning CB, Sabo-Attwood T et al (2008) Targeting the MEK1 cascade in lung epithelium inhibits proliferation and fibrogenesis by asbestos. Am J Respir Cell Mol Biol 38(5):618–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marczynski B, Rozynek P et al (2000) Levels of 8-hydroxy-2’-deoxyguanosine in DNA of white blood cells from workers highly exposed to asbestos in Germany. Mutat Res 468(2):195–202

    CAS  PubMed  Google Scholar 

  • Martinez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11(3):669–702

    CAS  PubMed  Google Scholar 

  • Massague J (1996) TGFbeta signaling: receptors, transducers, and mad proteins. Cell 85(7):947–950

    CAS  PubMed  Google Scholar 

  • Miller J, Shukla A (2012) The role of inflammation in the development and therapy of malignant mesothelioma. Am Med J 3:240–248

    CAS  Google Scholar 

  • Miserocchi G, Sancini G et al (2008) Translocation pathways for inhaled asbestos fibers. Environ Health 7:4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157(5 Pt 1):1666–1680

    CAS  PubMed  Google Scholar 

  • Mossman BT, Marsh JP et al (1990) Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis. Am Rev Respir Dis 141(5 Pt 1):1266–1271

    CAS  PubMed  Google Scholar 

  • Mossman BT, Lippmann M et al (2011) Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health B Crit Rev 14(1):76–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mossman BT, Shukla A et al (2013) New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas. Am J Pathol 182:1065–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murata M, Thanan R, et al. (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J biomed Biotechnol. 2012: 623019

    Google Scholar 

  • Murthy S, Adamcakova-Dodd A et al (2009) Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 297(5):L846–L855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neri M, Ugolini D et al (2008) Genetic susceptibility to malignant pleural mesothelioma and other asbestos-associated diseases. Mutat Res 659(1–2):126–136

    CAS  PubMed  Google Scholar 

  • Newick K, Cunniff B et al (2012) Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells. PLoS One 7(6):e39404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nici L, Monfils B et al (2004) The effects of taurolidine, a novel antineoplastic agent, on human malignant mesothelioma. Clin Cancer Res 10(22):7655–7661

    CAS  PubMed  Google Scholar 

  • Nilsonne G, Sun X et al (2006) Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress. Free Radic Biol Med 41(6):874–885

    CAS  PubMed  Google Scholar 

  • Nymark P, Wikman H et al (2008) Molecular and genetic changes in asbestos-related lung cancer. Cancer Lett 265(1):1–15

    CAS  PubMed  Google Scholar 

  • Opitz I, Sigrist B et al (2007) Taurolidine and povidone-iodine induce different types of cell death in malignant pleural mesothelioma. Lung Cancer 56(3):327–336

    CAS  PubMed  Google Scholar 

  • Osborn-Heaford HL, Ryan AJ et al (2012) Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis. J Biol Chem 287(5):3301–3312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pande P, Mosleh TA et al (2006) Role of alphavbeta5 integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells. Toxicol Appl Pharmacol 210(1–2):70–77

    CAS  PubMed  Google Scholar 

  • Panduri V, Weitzman SA et al (2003) The mitochondria-regulated death pathway mediates asbestos-induced alveolar epithelial cell apoptosis. Am J Respir Cell Mol Biol 28(2):241–248

    CAS  PubMed  Google Scholar 

  • Panduri V, Weitzman SA et al (2004) Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 286(6):L1220–L1227

    CAS  PubMed  Google Scholar 

  • Panduri V, Surapureddi S et al (2006) P53 Mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Cell Mol Biol 34(4):443–452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panduri V, Liu G et al (2009) Role of mitochondrial hOGG1 and aconitase in oxidant-induced lung epithelial cell apoptosis. Free Radic Biol Med 47(6):750–759

    CAS  PubMed  Google Scholar 

  • Park SH, Aust AE (1998a) Participation of iron and nitric oxide in the mutagenicity of asbestos in hgprt−, gpt + Chinese hamster V79 cells. Cancer Res 58(6):1144–1148

    CAS  PubMed  Google Scholar 

  • Park SH, Aust AE (1998b) Regulation of nitric oxide synthase induction by iron and glutathione in asbestos-treated human lung epithelial cells. Arch Biochem Biophys 360(1):47–52

    CAS  PubMed  Google Scholar 

  • Pascolo L, Gianoncelli A et al (2011) Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part Fibre Toxicol 8(1):7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pascolo L, Gianoncelli A et al (2013) The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci Rep 3:1123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pociask DA, Sime PJ et al (2004) Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest 84(8):1013–1023

    CAS  PubMed  Google Scholar 

  • Quinlan TR, BeruBe KA et al (1998) Mechanisms of asbestos-induced nitric oxide production by rat alveolar macrophages in inhalation and in vitro models. Free Radic Biol Med 24(5):778–788

    CAS  PubMed  Google Scholar 

  • Rahman I, Gilmour PS et al (2002) Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem 234–235(1–2):239–248

    PubMed  Google Scholar 

  • Ramos-Nino ME, Timblin CR et al (2002) Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res 62(21):6065–6069

    CAS  PubMed  Google Scholar 

  • Reddy SP, Mossman BT (2002) Role and regulation of activator protein-1 in toxicant-induced responses of the lung. Am J Physiol Lung Cell Mol Physiol 283(6):L1161–L1178

    CAS  PubMed  Google Scholar 

  • Rhee SG, Woo HA (2011) Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid Redox Signal 15(3):781–794

    CAS  PubMed  Google Scholar 

  • Riganti C, Aldieri E et al (2002) Crocidolite asbestos inhibits pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human lung epithelial cells. Free Radic Biol Med 32(9):938–949

    CAS  PubMed  Google Scholar 

  • Riganti C, Aldieri E et al (2003) Long and short fiber amosite asbestos alters at a different extent the redox metabolism in human lung epithelial cells. Toxicol Appl Pharmacol 193(1):106–115

    CAS  PubMed  Google Scholar 

  • Robinson C, Woo S et al (2012) The antioxidants vitamins A and E and selenium do not reduce the incidence of asbestos-induced disease in a mouse model of mesothelioma. Nutr Cancer 64(2):315–322

    CAS  PubMed  Google Scholar 

  • Salmeen A, Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7(5–6):560–577

    CAS  PubMed  Google Scholar 

  • Scapoli L, Ramos-Nino ME et al (2004) Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by asbestos. Oncogene 23(3):805–813

    CAS  PubMed  Google Scholar 

  • Sekido Y (2010) Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci 101(1):1–6

    CAS  PubMed  Google Scholar 

  • Shen Z, Bosbach D et al (2000) Using in vitro iron deposition on asbestos to model asbestos bodies formed in human lung. Chem Res Toxicol 13(9):913–921

    CAS  PubMed  Google Scholar 

  • Shukla A, Mossman BT (2004) Asbestosis and asbestos related cancers: role of reactive oxygen and nitrogen species. In: Vallyathan V, Castranova V, Shi X (eds) Oxygen/Nitrogen radicals lung injury and sisease, vol 187. Marcel Dekker Inc, New York, pp 179–195

    Google Scholar 

  • Shukla A, Mossman BT (2005) Molecular mechanisms of environmental particulates in lung inflammation and fibrosis. Recent Res Devel Mol Cell Biochem 2:35–48

    CAS  Google Scholar 

  • Shukla A, Mossman BT (2008) Cell signaling by oxidants: pathways leading to activation of mitogen-activated protein kinases (MAPK) and activator protein-1 (AP-1). Curr Top Membr 61:193–211, Elsevier Inc

    Google Scholar 

  • Shukla A, Timblin CR et al (2001) The role of free radicals in asbestos and silica induced fibrotic lung diseases. In: Fuchs J, Packer L (eds) Environmental stressors in health. Marcel Dekker, Inc, New York, pp 185–201

    Google Scholar 

  • Shukla A, Gulumian M et al (2003a) Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med 34(9):1117–1129

    CAS  PubMed  Google Scholar 

  • Shukla A, Jung M et al (2003b) Asbestos induces mitochondrial DNA damage and dysfunction linked to the development of apoptosis. Am J Physiol Lung Cell Mol Physiol 285(5):L1018–L1025

    CAS  PubMed  Google Scholar 

  • Shukla A, Stern M et al (2003c) Asbestos-induced apoptosis is protein kinase C delta-dependent. Am J Respir Cell Mol Biol 29(2):198–205

    CAS  PubMed  Google Scholar 

  • Shukla A, Flanders T et al (2004) The gamma-glutamylcysteine synthetase and glutathione regulate asbestos-induced expression of activator protein-1 family members and activity. Cancer Res 64(21):7780–7786

    CAS  PubMed  Google Scholar 

  • Shukla A, MacPherson MB et al (2009) Alterations in gene expression in human mesothelial cells correlate with mineral pathogenicity. Am J Respir Cell Mol Biol 41(1):114–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla A, Hillegass JM et al (2011) ERK2 is essential for the growth of human epithelioid malignant mesotheliomas. Int J Cancer 129(5):1075–1086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simeonova PP, Luster MI (1995) Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-alpha response from alveolar macrophages. Am J Respir Cell Mol Biol 12(6):676–683

    CAS  PubMed  Google Scholar 

  • Simeonova PP, Toriumi W et al (1997) Molecular regulation of IL-6 activation by asbestos in lung epithelial cells: role of reactive oxygen species. J Immunol 159(8):3921–3928

    CAS  PubMed  Google Scholar 

  • Srivastava RK, Lohani M et al (2010) Cyto-genotoxicity of amphibole asbestos fibers in cultured human lung epithelial cell line: role of surface iron. Toxicol Ind Health 26(9):575–582

    CAS  PubMed  Google Scholar 

  • Su T, Li X et al (2012) Real-time imaging elucidates the role of H2O2 in regulating kinetics of epidermal growth factor-induced and Src-mediated tyrosine phosphorylation signaling. J Biomed Opt 17(7):076015

    PubMed  Google Scholar 

  • Sullivan DE, Ferris M et al (2008) The latent form of TGFbeta(1) is induced by TNFalpha through an ERK specific pathway and is activated by asbestos-derived reactive oxygen species in vitro and in vivo. J Immunotoxicol 5(2):145–149

    CAS  PubMed  Google Scholar 

  • Sullivan DE, Ferris M et al (2009) TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J Cell Mol Med 13(8B):1866–1876

    PubMed Central  PubMed  Google Scholar 

  • Syslova K, Kacer P et al (2010) LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J Breath Res 4(1):017104

    CAS  PubMed  Google Scholar 

  • Tan RJ, Fattman CL et al (2004) Redistribution of pulmonary EC-SOD after exposure to asbestos. J Appl Physiol 97(5):2006–2013

    CAS  PubMed  Google Scholar 

  • Tanaka S, Choe N et al (1998) Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat. J Clin Invest 102(2):445–454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tephly LA, Carter AB (2007) Differential expression and oxidation of MKP-1 modulates TNF-alpha gene expression. Am J Respir Cell Mol Biol 37(3):366–374

    CAS  PubMed  Google Scholar 

  • Tephly LA, Carter AB (2008) Asbestos-induced MKP-3 expression augments TNF-alpha gene expression in human monocytes. Am J Respir Cell Mol Biol 39(1):113–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timblin CR, Janssen YW et al (1995) Transcriptional activation of the proto-oncogene c-jun by asbestos and H2O2 is directly related to increased proliferation and transformation of tracheal epithelial cells. Cancer Res 55(13):2723–2726

    CAS  PubMed  Google Scholar 

  • Tomatis M, Turci F et al (2010) High aspect ratio materials: role of surface chemistry vs. Length in the historical “long and short amosite asbestos fibers”. Inhal Toxicol 22(12):984–998

    CAS  PubMed  Google Scholar 

  • Toyooka S, Kishimoto T et al (2008) Advances in the molecular biology of malignant mesothelioma. Acta Med Okayama 62(1):1–7

    CAS  PubMed  Google Scholar 

  • Turci F, Tomatis M et al (2011) The iron-related molecular toxicity mechanism of synthetic asbestos nanofibres: a model study for high-aspect-ratio nanoparticles. Chemistry 17(1):350–358

    CAS  PubMed  Google Scholar 

  • Wang Y, Faux SP et al (2004) Interleukin-1beta and tumour necrosis factor-alpha promote the transformation of human immortalised mesothelial cells by erionite. Int J Oncol 25(1):173–178

    CAS  PubMed  Google Scholar 

  • Wang X, Wu Y et al (2006) Oxidant generation promotes iron sequestration in BEAS-2B cells exposed to asbestos. Am J Respir Cell Mol Biol 34(3):286–292

    CAS  PubMed  Google Scholar 

  • Xie C, Reusse A et al (2000) TNF-alpha increases tracheal epithelial asbestos and fiberglass binding via a NF-kappaB-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 279(3):L608–L614

    CAS  PubMed  Google Scholar 

  • Yang H, Bocchetta M et al (2006) TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci USA 103(27):10397–10402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zanella CL, Posada J et al (1996) Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res 56(23):5334–5338

    CAS  PubMed  Google Scholar 

  • Zanella CL, Timblin CR et al (1999) Asbestos-induced phosphorylation of epidermal growth factor receptor is linked to c-fos and apoptosis. Am J Physiol 277(4 Pt 1):L684–L693

    CAS  PubMed  Google Scholar 

  • Zhang Y, Lee TC et al (1993) Enhanced IL-1 beta and tumor necrosis factor-alpha release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol 150(9):4188–4196

    CAS  PubMed  Google Scholar 

  • Zhang P, Wang YZ et al (2000) Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem 275(29):22479–22486

    CAS  PubMed  Google Scholar 

  • Zhu S, Manuel M et al (1998) Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ Health Perspect 106(Suppl 5):1157–1163

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kelly Butnor, MD (Pathologist, FAHC, University of Vermont) for providing diseased and normal lung images for this manuscript and Maximilian MacPherson for illustrations. Work by our group is supported by RO1 ES021110 and T32 ES007122 from NIEHS and a grant from Mesothelioma Applied Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Miller, J., Thompson, J., Shukla, A. (2014). Asbestos-Induced Oxidative Stress in Lung Pathogenesis. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_201

Download citation

Publish with us

Policies and ethics